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1 Introduction

Paris and Harrington [2] proved The Large Ramsey Theorem. We will examine the case of Large
Ramsey for graphs (stated below). The general case is interesting in that the associated function
grows so quickly that the proof is not in Peano Arithmetic. This was Paris and Harrington’s
motivation (see Appendix). We give upper bounds in the case of 2-coloring the edges of a graph.
The graph case is provable in Peano Arithmetic. None of this manuscript is original.

Notation 1.1

1. Let k, n ∈ N, k < n. K[k,n] is the complete graph on the vertices {k, k + 1, . . . , n} (This is
not the complete bipartite graph with k vertices on the left and n vertices on the left even
though the notation looks similar.)

2. Let Kω be the complete graph on the vertices of N.

3. Let K[k,ω) be the complete graph on the vertices {k, k + 1, . . .}.

4. We will only be coloring EDGES of complete graphs. Henceforth in this manuscript the term
coloring G will mean coloring the edges of G.

5. Assume that a complete graph (on a finite or infinite number of vertices) is colored. A
homogeneous set is a set of vertices of the graph such that every edge between them has the
same color. A set is homogeneous RED if it is homogeneous and the color is RED (similar
for BLUE).

6. Let A ⊆ N. A is large if A is larger than its minimal element.

Example 1.2

(a) The set {10, 15, 20, . . . , 100} is large since it has 20 ≥ 10 elements.

(b) The set {1010, 1010 + 1, . . . , 1010 + 109} is not large since it has 109 + 1 < 1010 elements.

7. The notation µx means least x. The domain is assumed to be the natural numbers. For
example

f(y) = µx[x2 ≥ y]

would be another way to express f(y) =
⌈√

y
⌉
.

Recall the infinite Ramsey Theorem:

Theorem 1.3 For every c ∈ N, for all c-colorings of Kω, there exists an infinite homogeneous set.

We use this to give a proof of the Large Ramsey Theorem:
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Theorem 1.4 Let c ∈ N. For all k there exists n such that for every c-coloring of K[k,n] there
exists a large homogeneous set.

Proof:
Assume, by way of contradiction, that the theorem is false. Let c, k be such that for all n > k

there exists a c-coloring of K[k,n], which we denote COLn, such that there is no large homogeneous
set relative to COLn. We use the COLn’s to create a coloring of K[k,ω) which we call COL.

List out the edges of K[k,ω): e1, e2, . . .. We color each edge as follows.
Initially set

COLORINGS1 = N
COL(e1) = µd[∃∞n ∈ COLORINGS1 such that COLn(e1) = d]

Let i ≥ 2. Assume inductively that

1. e1, . . . , ei−1 are colored.

2. COLORINGSi = {j : COLj(e1) = COL(e1), . . . ,COLj(ei−1) = COL(ei−1)}.

3. COLORINGSi is infinite.

Let

COL(ei) = µd[∃∞n ∈ COLORINGSi such that COLn(ei) = d]
COLORINGSi+1 = COLORINGSi ∩ {n : COLn(ei) = d}

It is easy to see that, after each step, the conditions 1, 2, 3 still hold.

COL is a c-coloring of K[k,ω). By Theorem 1.3 there is an infinite homogeneous set

H = {f1 < f2 < f3 < · · · }.

Take the first f1 vertices,

H ′ = {f1 < f2 < f3 < · · · < ff1}.

This is a homogeneous set relative to COL. By the definition of COL there is at least one (in
fact infinitely many) n such that COLn agrees with COL on all of the edges between elements of
H ′. Hence H ′ is a large homogeneous subset relative to COLn. This contradicts the definition of
COLn.

Definition 1.5 Let LRc(k) be the least n such that n satisfies the conclusion of Theorem 1.4.

Note that the proof gave no bounds on LRc(k). In this manuscript we do the following:
We give a proof of Theorem 1.4 in the c = 2 case that yields the following: for all k ≥ 3,

LR2(k) ≤ 2k2k
. The proof is due to Erdos and Mills [1]. Later Mills improved this to LR2(k) ≤

222.942k
. (We do not include the proof of the improved result.)
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2 LR2(k) ≤ (k + 1)((k−1)!)2

Theorem 2.1 For k ≥ 3 the following hold.

1. LR2(k) ≤ (k + 1)((k−1)!)2

2. LR2(k) ≤ 2k2k
(this follows from part 1 and algebra).

Proof:
We set n = (k + 1)((k−1)!)2 , however, this will not come into play until the very end.
Assume, by way of contradiction, that there is a 2-coloring of K[k,n] with no large homogeneous

set. Let COL be that coloring. We define two sequences of vertices. This will look similar to one of
the usual proofs of (the ordinary) Ramsey’s Theorem; however, we will point out the differences.

Let

1. a0 = k.

2. For all i ≥ 1

ai = µx[ai−1 < x ≤ n and {a0, . . . , ai−1, x} is Homogeneous RED].

Note that ai might not exist. If ai does not exist then, for all i′ > i, ai′ does not exist.

3. b0 = k.

4. For all i ≥ 1

bi = µx[bi−1 < x ≤ n and {b0, . . . , bi−1, x} is Homogeneous BLUE].

Note that bi might not exist. If bi does not exist then, for all i′ > i, bi′ does not exist.

Note 2.2

1. If a0, a1, . . . , ak−1 are defined then we have our large homogeneous set. If b0, b1, . . . , bk−1 are
defined then we have our large homogeneous set. Hence we assume they both stop before
they get to k − 1. We also assume that they both stop at the same place (A similar proof
works if they stop at different places.) Let L be the maximum index such that aL and bL are
defined. We assume that aL+1, bL+1 do not exist. We also assume L ≤ k − 2.

2. We are not tossing out any vertices as is common in proofs of Ramsey’s theorem. However,
we will keep track of the vertices that are not in either sequence very carefully.

Claim 1: a0 = b0 = k. For all i ≥ 1, for all j ≥ 0 ai 6= bj and bi 6= aj .
Proof of Claim 1:

Clearly a0 = b0 = k. For all i, j ≥ 1 ai > a0 = b0 and bj > b0 = a0. Hence we need only
consider i, j ≥ 1.

If i, j ≥ 1 then COL(a0, ai) = RED and COL(b0, bj) = COL(a0, bj) = BLUE. Hence ai 6= bj .
End of Proof of Claim 1

We now carefully partition the elements that were not chosen to be in either sequence.

3



Motivation: Lets say that

a0 < a1 < · · · < a`

are all defined. Let x be such that

x > a` and x /∈ {a`+1, . . . , aL} ∪ {b`+1, . . . , bL}.

Assume that COL(a0, x) = RED.

Why is x /∈ {a`+1, . . . , aL}?

There are several possibilities (though this list is not exhaustive):

1. COL(a0, x) = RED but COL(a1, x) = BLUE.

2. COL(a0, x) = COL(a1, x) = RED, but COL(a2, x) = BLUE.

...

`-1. COL(a0, x) = · · · = COL(a`−2, x) = RED but COL(a`−1, x) = BLUE.

`. COL(a0, x) = · · · = COL(a`−1, x) = RED but COL(a`, x) = BLUE.

Assume that COL(a0, x) = BLUE.

Why is x /∈ {b`+1, . . . , bL}?

There are several possibilities (though this list is not exhaustive):

1. COL(b0, x) = BLUE but COL(b1, x) = RED.

2. COL(b0, x) = BLUE = COL(b1, x) = BLUE, but COL(b2, x) = RED.

...

`-1. COL(b0, x) = · · · = COL(b`−2, x) = BLUE but COL(b`−1, x) = RED.

`. COL(b0, x) = · · · = COL(b`−1, x) = BLUE but COL(b`, x) = RED.

End of Motivation
We now define sets of x’s that are not in {a`+1, . . . , aL, b`+1, . . . , bL} as motivated above.

Definition 2.3 For 1 ≤ ` ≤ L define the following sets.

A` = {x : a` < x ≤ n ∧ {a0, . . . , a`−1, x} is Homogeneous RED ∧ COL(a`, x) = BLUE}.

Bi = {x : b` < x ≤ n ∧ {b0, . . . , b`−1, x} is Homogeneous BLUE ∧ COL(b`, x) = RED}.
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Claim 2:

1. {k, . . . , n} − {a0, . . . , aL, b1, . . . , bL} = A1 ∪ · · · ∪AL ∪B1 ∪ · · · ∪BL.

2. For all 1 ≤ `, `′ ≤ L, A` ∩B`′ = ∅.

3. For all 1 ≤ ` < `′ ≤ L, A` ∩A`′ = ∅ and B` ∩B`′ = ∅.

4. n + 1 = k + (2L + 1) + |A1|+ · · · |AL|+ |B1|+ · · ·+ |BL|. (We will later see why we chose to
bound n + 1 instead of n and why we put the 2L + 1 in parenthesis. We do not really need
the equality. Just having the ≤ is all we need. Hence we do not even need parts 2 and 3. But
parts 2 and 3 and the equality are good to know.)

Proof of Claim 2:
1) Let x ∈ {k, . . . , n} − {a0, . . . , aL, b1, . . . , bL}. Recall that a0 = b0. There are two cases.

Case RED: COL(a0, x) = COL(b0, x) = RED
Let j be the largest number such that aj < x. Why was x not chosen to be aj+1? Since

COL(a0, x) = RED

there is an `, 1 ≤ ` ≤ j such that

COL(a0, x) = COL(a1, x) = · · · = COL(a`−1, x) = RED

but
COL(a`, x) = BLUE.

Hence x ∈ A`. Since 1 ≤ ` ≤ j ≤ L we have

x ∈ A1 ∪ · · · ∪AL

Case BLUE: COL(a0, x) = COL(b0, x) = BLUE By similar reasoning we have

x ∈ B1 ∪ · · · ∪BL

Combining Case RED and Case BLUE we get

{k, . . . , n} − {a0, . . . , aL, b1, . . . , bL} ⊆ A1 ∪ · · · ∪AL ∪B1 ∪ · · · ∪BL.

We now prove the reverse inclusion. Assume x ∈ A` (the case of x ∈ B` is similar).

• a` < x ≤ n, hence x ∈ {k, . . . , n} − {a0, . . . , a`}.

• COL(a`, x) = BLUE, hence x /∈ {a`+1, . . . , aL}.

• COL(a`, x) = RED hence x /∈ {b0, . . . , bL}.
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Putting this all together we get x ∈ {k, . . . , n} − {a0, . . . , aL, b1, . . . , bL}. Hence

A1 ∪ · · · ∪AL ∪B1 ∪ · · · ∪BL ⊆ {k, . . . , n} − {a0, . . . , aL, b1, . . . , bL}.

2) If x ∈ A` then COL(a0, x) = RED. If x ∈ B`′ then COL(a0, x) = BLUE. Hence A` ∩B`′ = ∅.

3) If x ∈ A` then COL(a`, x) = BLUE. If ` < `′ and x ∈ A`′ then COL(a`, x) = RED. Hence
A` ∩A`′ = ∅.
4) By part 1:

{k, . . . , n} − {a0, . . . , aL, b1, . . . , bL} = A1 ∪ · · · ∪AL ∪B1 ∪ · · · ∪BL.

|{k, . . . , n} − {a0, . . . , aL, b1, . . . , bL}| = |A1 ∪ · · · ∪AL ∪B1 ∪ · · · ∪BL|.

Since n + 1 /∈ {a0, . . . , aL, b1, . . . , bL} and not in A1 ∪ · · · ∪AL ∪B1 ∪ · · · ∪BL we have

|{k, . . . , n + 1} − {a0, . . . , aL, b1, . . . , bL}| = |A1 ∪ · · · ∪AL ∪B1 ∪ · · · ∪BL|+ 1.

By parts 2 and 3 all of the A’s and B’s are disjoint. Hence

n + 1− (k − 1)− (2L + 1) = 1 + |A1|+ · · ·+ |AL|+ |B1|+ · · ·+ |BL|.

n + 1 = 1 + (k − 1) + (2L + 1) + |A1|+ · · ·+ |AL|+ |B1|+ · · · |BL|.

n + 1 = k + (2L + 1) + |A1|+ · · · |AL|+ |B1|+ · · ·+ |BL|.

End of Proof of Claim 2
How big can A` and B` be? We bound it using the ordinary Ramsey Function.

Definition 2.4 R(k1, k2) is the least number n such that for all 2-colorings of Kn there is either
a RED homogeneous set of size k1 or a BLUE homogeneous set of size k2. R(k1, k2) exists by the
ordinary Ramsey’s theorem.

Claim 3:

1. For 1 ≤ ` ≤ L, |A`| < R(k − `, a` − 1)

2. For 1 ≤ ` ≤ L, |B`| < R(k − `, b` − 1)

Proof of Claim 3:
We prove part 1. Part 2 is similar. Assume, by way of contradiction, that |A`| ≥ R(k−`, a`−1).

Apply the ordinary Ramsey theorem to the induced complete graph on the vertices of A`.
Case 1: There is a RED homogeneous set of size k − i. Call this set H. Recall that for every
element of x ∈ A` (and hence every x ∈ H)

COL(a0, x) = COL(a1, x) = · · · = COL(a`−1, x) = RED.
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Hence the set

H ∪ {a0, . . . , a`−1}

is homogeneous RED. It is of size (k − `) + i = k and its least element is a0 = k. Hence it is a
large homogeneous set. This contradicts the initial assumption about COL that it has no large
homogeneous sets.

Case 2: There is a BLUE homogeneous set of size a` − 1. Call this set H. Recall that for every
element x ∈ A` (and hence every x ∈ H)

COL(a`, x) = BLUE.

Hence the set

H ∪ {a`}

is homogeneous BLUE. It is of size (a`−1)+1 = a` and its least element is a` (recall that all elements
of A` are > a`). Hence it is a large homogeneous set. This contradicts the initial assumption about
COL that it has no large homogeneous sets.
End of Proof of Claim 3

You might think OH, WE ARE DONE since, by Claim 2,

n + 1 = k + (2L + 1) + |A1|+ · · ·+ |AL|+ |B1|+ · · · |BL|.

and by Claim 3 we have bounds on |A`| and |B`|. But alas, here is what we can get from this
information:

n + 1 = k + (2L + 1) + |A1|+ · · ·+ |AL|+ |B1|+ · · · |BL|
≤ 3k + 1 + R(k − 1, a1 − 1) + · · ·+ R(k − L, aL − 1) + R(k − 1, b1 − 1) + · · ·+ R(k − L, bL − 1)
≤ 3k + 1 + 2L×R(k − 1,max{aL, bL} − 1)
≤ 3k + 1 + 2k ×R(k − 1,max{aL, bL} − 1)

What bounds do we have on aL, bL? All we know is that aL, bL ≤ n. So we obtain

n + 1 ≤ 3k + 1 + 2k ×R(k − 1, n− 1).

This is not helpful at all! :-(.
Lets look back to our bound on n + 1:

n + 1 = k + (2L + 1) + |A1|+ · · ·+ |AL|+ |B1|+ · · ·+ |BL|.

This should be useful! There should be a way to bound this! As the saying goes sometimes its
easier to solve a harder problem. Lets try to bound partial sums. We will first bound ai’s and bi’s
by sums of the A’s and B’s. These bounds will look similar to the bound on n + 1 and the proofs
will be similar. We will then bound these partial sums. But we need to know the order of the ai’s
and bi’s.

List out
a0, a1, a2, . . . , aL, b1, b2, . . . , bL
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in order and rename them:

k = c0 < c1 < c2 < · · · < c2L.

By Claim 1 these are all distinct.
For 1 ≤ i ≤ 2L let

Ci =

{
Aj if ci = aj

Bj if ci = bj .

We define c2L+1 = n + 1. By Claim 2 we have

c2L+1 ≤ k + (2L + 1) + |C1|+ · · ·+ |C2L|.

(We can now say why we stated the original inequality on n + 1 as we did. We used n + 1
instead of n since n could be one of the ai’s or bi’s. We put the 2L+1 in parenthesis so it matched
the index of the c when we defined c2L+1 = n + 1.)

We will show, by a proof similar to Claim 2, that, for all 1 ≤ i ≤ 2L

ci ≤ k + i + |C1|+ · · ·+ |Ci−1|.

This does not seem like progress. We want to bound the sum, not bound something else by the
sum, or by a partial sum. But trust me, it will be useful for our final goal.
Claim 4:

1. {k, . . . , ci − 1} − {c0, . . . , ci−1} ⊆ C1 ∪ · · · ∪ Ci−1. (A better but clumsier statement is true.
We will note it but not use it.)

2. ci ≤ k + i + |C1|+ · · ·+ |Ci−1|.

Proof of Claim 4
1)

We assume that ci = aj1 and that the largest index of a b-term is j2. The proof is similar if the
roles of a and b are reversed. We use α as an index if the index does not matter. Do not assume
that the α are all the same. We are assuming that

c0 < c1 < · · · < cα = bj2 < aα < · · · < aj1 = ci.

Let x ∈ {k, . . . , ci − 1} − {c0, . . . , ci−1}. Recall that c0 = a0 = b0. There are two cases. (These
two cases are similar to those in the proof of Claim 2.)

Case RED: COL(a0, x) = COL(b0, x) = RED. Let j be the largest number such that aj < x.
Why was x not chosen to be aj+1? Since

COL(a0, x) = RED

there is an `, 1 ≤ ` ≤ j such that

COL(a0, x) = COL(a1, x) = · · · = COL(a`−1, x) = RED
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but
COL(a`, x) = BLUE.

Hence x ∈ A`. Since 1 ≤ ` ≤ j we have

x ∈ A1 ∪ · · · ∪Aj .

In Claim 2 we had the obvious fact that j ≤ L. Here we have something stronger. What are
the bounds on j? Since

x ∈ {k, . . . , ci − 1} = {k, . . . , aj1 − 1}

and aj < x hence j < j1. Hence
x ∈ A1 ∪ · · · ∪Aj1−1.

Case BLUE: COL(a0, x) = COL(b0, x) = BLUE By similar reasoning

x ∈ B1 ∪ · · · ∪Bj2−1.

Combining Case RED and Case BLUE we have

{k, . . . , ci − 1} − {c0, . . . , ci−1} ⊆ A1 ∪ · · · ∪Aj1−1 ∪B1 ∪ · · · ∪Bj2−1.

Notice that the right hand side is actually a subset of C1 ∪ · · · ∪ Ci−1. It is missing Bj2 which
is one of the C’s. This is the clumsier statement we alluded to earlier. However, we add that C
value back in and have

{k, . . . , ci − 1} − {c0, . . . , ci−1} ⊆ C1 ∪ · · · ∪ Ci−1.

2) By part 1 we have

{k, k + 1, . . . , ci − 1} − {c0, c1, . . . , ci−1} ⊆ C1 ∪ · · · ∪ Ci−1.

|{k, k + 1, . . . , ci − 1} − {c0, c1, . . . , ci−1| ≤ |C1 ∪ · · · ∪ Ci−1|.

(ci − 1)− (k − 1)− i ≤ |C1|+ · · ·+ |Ci−1|.

ci − k − i ≤ |C1|+ · · ·+ |Ci−1|.

ci ≤ k + i + |C1|+ · · ·+ |Ci−1|.

End of Proof of Claim 4
We have ci bounded by a sum of |Cj | where j < i. We have bounds on |Cj | from Claim 3. Can

we use this to get bounds on ci? NO. We will try and see where it fails.
Since Cj ∈ {A1, . . . , Aj , B1, . . . , Bj} we have
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|Cj | ≤ max{|A1|, . . . , |Aj |, |B1|, . . . , |Bj |}
≤ max{R(k − 1, a1 − 1), R(k − 2, a2 − 1), . . . , R(k − j, aj − 1), R(k − 1, b1 − 1, . . . , R(k − j, bj − 1)}
≤ R(k − 1,max{aj , bj − 1})

Lets say that the sequence

c0 < c1 < · · · < c2j

is

a0 < b1 < a1 < b2 < · · · < aj < bj .

Then aj = c2j−1 and bj = c2j . Hence we obtain

|Cj | ≤ R(k − 1, c2j − 1)

ci ≤ k + i + |C1|+ · · ·+ |Ci−1| ≤ k + i + (i− 1)R(k − 1, c2i−2).

This is NOT helpful since we are bounding ci by a term that involves c2i−2.
We need to bound, for all i, k + i + |C1|+ · · ·+ |Ci−1|. We will do this. The bound on ci from

Claim 4 will be used in the proof.
We need to define a recurrence tailor made for our application. First we define a sequence of

bits.

Definition 2.5 We define a sequence σ ∈ {0, 1}2L. For 1 ≤ i ≤ 2L

σ(i) =

{
0 if ci is some aj ;
1 if ci is some bj

(1)

Let σ = σ(1)σ(2) · · ·σ(2L). Note that σ has L 0’s and L 1’s and that L ≤ k − 1.

Definition 2.6 We define f on strings with ≤ k − 1 0’s and ≤ k − 1 1’s as follows.

1. f(λ) = k + 1

2. f(τ0) = f(τ) + R(k − j, f(τ)− 1) where j is the number of 0’s in τ .

3. f(τ1) = f(τ) + R(k − j, f(τ)− 1) where j is the number of 1’s in τ .

Notation 2.7 If τ ∈ {0, 1}∗ then τ [i..j] is τ(i) · · · τ(j).
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Claim 5: For all 1 ≤ i ≤ 2L

k + i + |C1|+ · · ·+ |Ci−1| ≤ f(σ[1..i− 1])

Proof of Claim 5
We prove this by induction on i.

Base case: For i = 1 we need

k + 1 + |C1|+ · · ·+ |C0| ≤ f(λ)

Since |C1|+ · · ·+ |C0| = 0 and f(λ) = k + 1, this is true.
Induction Hypothesis (IH): Claim 5 is true for i. Note what this gives us:

k + i + |C1|+ · · ·+ |Ci−1| ≤ f(σ[1..i− 1])

We prove Claim 5 for i + 1.

k + (i + 1) + |C1|+ · · ·+ |Ci| = (k + i + |C1|+ · · ·+ |Ci−1|) + |Ci|+ 1;
≤ f(σ[1..i− 1]) + |Ci|+ 1 by IH .

We assume ci = aj (the case of ci = bj is similar). This also gives us that σ(i) = 0. KEY: j is
the number of 0’s in σ[1..i]. Note that Ci = Aj and |Aj | < R(k − j, aj − 1). Hence

|Ci|+ 1 ≤ R(k − j, aj − 1) = R(k − j, ci − 1).

Now we need a bound on ci. OH, we have one from Claim 4! Recall that Claim 4 states

ci ≤ k + i + |C1|+ · · · |Ci−1|.

WOW- the induction hypothesis states

k + i + |C1|+ · · ·+ |Ci−1| ≤ f(σ[1..i− 1])

Hence we have

ci ≤ k + i + |C1|+ · · ·+ |Ci−1| ≤ f(σ[1..i− 1])

We use this to obtain

|Ci|+ 1 ≤ R(k − j, aj − 1) = R(k − j, ci − 1) ≤ R(k − j, f(σ[1..i− 1])− 1).

Therefore

f(σ[1..i− 1]) + |Ci|+ 1 ≤ f(σ[1..i− 1]) + R(k − j, f(σ[1..i− 1])− 1).

By the definition of f we have

f(σ[1..i]) = f(σ[1..i− 1] + R(k − j, f(σ[1..i− 1])− 1.

Hence we have our result.
End of Proof of Claim 5

To bound the recurrence we need the following fact from Ramsey Theory
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Fact 2.8 If 2 ≤ k1 < k2 then
R(k1, k2) ≤ kk1−1

2 − kk1−2
2 .

Proof of Fact
This follows from the well known inequality

R(a, b) ≤ R(a, b− 1) + R(a− 1, b).

End of proof of Fact

Definition 2.9 If τ ∈ {0, 1}∗ then numzeros(τ) is the number of zero’s in τ and numones(τ) is
the number of ones in τ .

Claim 6: Let k ∈ N, k ≥ 3, and σ ∈ {0, 1}∗. Assume that numzeros(σ), numones(σ) ≤ k − 1.
Then

f(σ) ≤ (k + 1)
(k−1)!2

(k−numzeros(σ)−1)!(k−numones(σ)−1)! .

Proof of Claim 6:
We prove this by induction on numzeros(σ) + numones(σ)

Base Case: numzeros(σ) + numones(σ) = 0
Then σ = λ and we have

f(σ) ≤ (k + 1)
(k−1)!2

(k−1)!(k−1)! = k + 1.

Induction Hypothesis (IH): Let σ be the string we want to prove Claim 6 for. We can assume
that for all τ with numzeros(τ) + numones(τ) < numzeros(σ) + numones(σ), Claim 6 holds.

We can assume numzeros(σ), numones(σ) ≤ k− 1. We assume σ = τ0 (the case where σ = τ1
is similar) Clearly numzeros(τ) = numzeros(σ) − 1 and numones(τ) = numones(σ). Hence we
can apply the IH to τ . Also note that, since numzeros(σ) ≤ k − 1, numzeros(τ) ≤ k − 2.

By the definition of f and Fact 2.8

f(τ0) = f(τ) + R(k − numzeros(τ), f(τ)− 1) ≤ f(τ) + f(τ)k−numzeros(τ)−1 − f(τ)k−numzeros(τ)−2.

We break into cases. Our main concern is how much the −f(τ)k−numzeros(τ)−2 term will help
counter the f(τ) term.

1. If k − numzeros(τ) − 2 ≥ 1 then f(τ) − f(τ)k−numzeros(τ)−2 ≤ 0 hence both terms can be
ignored. Using this and the induction hypothesis we get

f(τ0) ≤ f(τ)k−numzeros(τ)−1 ≤ ((k + 1)
((k−1)!)2

(k−numzeros(τ)−1)!(k−numones(τ)−1)! )k−numzeros(τ)−1

≤ (k + 1)
((k−1)!)2

(k−numzeros(τ)−2)!(k−numones(τ)−1)!
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= (k + 1)
((k−1)!)2

(k−numzeros(σ)−1)!(k−numones(σ)−1)!

(This happens when numzeros(τ) ≤ k − 3. Since numzeros(τ) ≤ k − 2 the only case left is
numzeros(τ) = k − 2.)

2. If numzeros(τ) = k − 2 then

f(τ0) ≤ f(τ) + f(τ)k−numzeros(τ)−1 − f(τ)k−numzeros(τ)−2 = f(τ) + f(τ)− 1.

By the induction hypothesis, algebra, and k ≥ 3, one can show that

f(τ0) ≤ (k + 1)
((k−1)!)2

(k−numzeros(σ)−1)!(k−numones(σ)−1)! .

End of Proof of Claim 6
By Claim 2 we have

n + 1 ≤ k + (2L + 1) + |C1|+ · · ·+ |C2L|.

Let σ be as defined in Definition 2.5. By Claim 5

k + (2L + 1) + |C1|+ · · ·+ |C2L| ≤ f(σ).

By Claim 6

f(σ) ≤ (k + 1)(
(k−1)!

(k−L−1)!
)2

.

Using L ≤ k − 2 and the last three inequalities we obtain

n + 1 ≤ (k + 1)((k−1)!)2 .

This contradicts the definition of n.

3 Appendix

Notation 3.1

1. Let k, n ∈ N, k < n. Km
[k,n] is the complete m-hypergraph on the vertices {k, k + 1, . . . , n}

(This looks like the notation for the cross product of graphs or an m-partite graph, but its
not.)

2. Let Km
ω be the complete m-hyperegraph on the vertices of N.

3. Let Km
[k,ω) be the complete m-hypergraph on the vertices {k, k + 1, . . .}.

4. We will only be coloring EDGES of complete m-hypergraphs. Henceforth in this manuscript
the term coloring G will mean coloring the edges of G.
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5. Assume that a complete m-hypergraph (on a finite or infinite number of vertices) is colored.
A homogeneous set is a set of vertices of the graph such that every edge between them has
the same color.

6. Let A ⊆ N. A is large if A is larger than its minimal element. (Same as in main paper.)

Recall the infinite hypergraph Ramsey Theorem:

Theorem 3.2 For every m ∈ N, for every c ∈ N, for all c-colorings of Km
ω , there exists an infinite

homogeneous set.

This can be used to give a proof of the Large Ramsey Theorem:

Theorem 3.3 For every m ∈ N, for every c ∈ N, for all k there exists n such that for every
c-coloring of Km

[k,n] there exists a large homogeneous set.

We omit the proof, though it is similar to the proof of Theorem 1.3.

Definition 3.4 Let LRm
c (k) be the n in Theorem 3.3.

Paris and Harrington showed that Theorem 3.3 cannot be proven in Peano Arithmetic. They
showed that the function LRm

c (k) grows faster than any function whose existence can be proven in
Peano Arithmetic. This essentially means that the proof from the Theorem 3.2 is really the only
proof- so to prove this finitary theorem requires infinitary techniques. So a proof like that of the
original finite Ramsey Theorem, or of the bound in LR2(k) in this manuscript, cannot be obtained
for Theorem 3.3.
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