
SUM-PRODUCT Theorems
An Exposition by William Gasarch

1 Introduction

Let A be a set of n reals.

Def 1.1

A + A = {x + y : x, y ∈ A}
A · A = {xy : x, y ∈ A}
A/A = {x/y : x, y ∈ A} (This one assumes 0 /∈ A.)

We will show the following.

• At least one of |A + A| or |A · A| is ”large”. (These are called “Sum-Product
Theorems”.)

• At least one of |A + A| or |A/A| is ”large”.

We were inspired to do this exposition by Avi Wigderson’s applications of sum-
product theorems [20] and Alexander Iosevich’s [9] excellent exposition of one of these
theorems.

Example 1.2 A = {1, 2, . . . , n}. Then

• A + A = {2, . . . , 2n}, so |A + A| = O(n).

• A · A = {xy | x, y ∈ [n]}. For a rough estimate just consider the primes
in {2, . . . , n}. There are Θ(n/ log n) of them. Each product of two primes is
unique, hence |A · A| ≥ Ω(n2/(log n)2).

• A/A = {x/y | x, y ∈ [n]}. For a rough estimate just consider the primes
in {2, . . . , n}. There are Θ(n/ log n) of them. Each product of two primes is
unique, hence |A/A| ≥ Ω(n2/(log n)2).

Example 1.3 A = {21, 22, . . . , 2n}. Then

• A + A. The sums are all of the form 2a + 2b. We claim that if 2a + 2b = 2c + 2d

then {a, b} = {c, d}; hence |A + A| = Ω(n2). Assume

2a + 2b = 2c + 2d.

We can assume that a = min{a, b, c, d}. Divide by 2a to obtain

1 + 2b−a = 2c−a + 2d−a.

By a parity argument an odd number of b−a, c−a and d−a are 0. We consider
the cases.
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1. a = b. Then we have
2 = 2c−a + 2d−a.

We must have a = c and a = d. So a = b = c = d, hence {a, b} = {c, d}.
2. a = c. Then we have

1 + 2b−a = 1 + 2d−a, and

2b−a = 2d−a.

So b− a = d− a, so b = d. Hence {a, b} = {c, d}.
3. a = d. Then we have

1 + 2b−a = 2c−a1.

2b−a = 2c−a.

b− a = c− a

b = c. Hence {a, b} = {c, d}.
4. a = b and c = a and d = a. So a = b = c = d, hence {a, b} = {c, d}.

• A · A = {22, . . . , 22n}, so |A · A| = O(n).

• A/A = {2−n, . . . , 2n}, so |A/A| = O(n).

Note that in both examples either |A + A| or |A · A| was large. There have been
many theorems that say that at least one of them is large. We list theorems about
these concepts and then prove two of them. We will prove the two strongest theorems
known about one of |A ·A| and |A + A| being large for A a finite set of reals. We will
then obtain a result about |A + A| or |A/A| being large using the machinery of the
second result.

1. Erdös and Szemerédi [7] showed that there exists a constant ε such that if A
is a set of n integers then

max{|A + A|, |A · A|} = Ω(n1+ε).

2. Nathanson [11] showed that if A is a set of n integers then

max{|A + A|, |A · A|} = Ω(n1+(1/31)).

3. Chen [4] showed that if A is a set of n integers then

max{|A + A|, |A · A|} = Ω(n1+(1/20)).
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4. Ford [8] showed that if A is a set of n integers then

max{|A + A|, |A · A|} = Ω(n1+(1/15)).

5. Elekis [6] (see also [9]) showed that if A is a set of n reals then

max{|A + A|, |A · A|} = Ω(n1+(1/4)).

We will present a proof of this theorem. Our source is [9].

6. Solymosi [16] (see also [19]) showed that if A is a set of n reals then

max{|A + A|, |A · A|} = Ω
(

n1+(3/11)

(log n)3/11

)
.

We will present a proof of this theorem. Our source is [19].

7. Bourgain, Katz, Tao [2] investigated sum-product theorems over the finite fields
of order p. They showed the following: There exists a functions c : (0, 1) → R>0
and ε : (0, 1) → (0, 1) such that the following is true. Let p be a prime and Fp

is the field on p elements. Let δ ∈ (0, 1/2). If A ⊆ Fp and pδ < |A| < p1−δ then

max{|A + A|, |A · A|} ≥ c(δ)|A|1+ε(δ).

8. LOOK INTO THIS LATER there exists an absolute constant c such that the
following is true. Let p be a prime. Let A be a subset Fp (the field of p elements)
of size n. Let k ≥ 1 be such that there is no finite subfield G of F of cardinality
|G| ≤ k|A| and no x ∈ F such that |A−(x ·G)| ≤ k. Then either |A| = O(kO(1))
or

max{|A + A|, |A · A|} = Ω(kc|A|).

For proof see the reference above or [19].

9. Solymosi [15] (see also [19]) showed that if A is a set of n complex numbers then

max{|A + A|, |A · A|} = Ω(n1+(1/4)).

10. M. Chang [3] showed the following two theorems.

(a) There exists a function Φ(n) which goes to infinity such that the following
is true. Let d be a fixed integer. Let A be a finite set of n d×d real matrices
such that, for all M, M ′ distinct elements of the set, det(M − M ′) 6= 0.
Then

max{|A + A|, |A · A|} = Ω(nΦ(n)).
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(b) For every d there exists ε > 0 such that the following holds. Let A be a
set of n d× d real symmetric matrices. Then

max{|A + A|, |A · A|} = Ω(n1+ε).

The proofs we present depend on the Szemerédi-Trotter theorem. The proof of the
Szemerédi-Trotter theorem that we present depends on the Crossing Lemma. Hence
we prove the Crossing Lemma and then the Szemerédi-Trotter theorem. Both of these
results are interesting in their own right and have many other applications.

2 The Crossing Lemma

The following is well known and easy to find, so we will not prove it.

Lemma 2.1 If G = (V, E) is a planar graph with v vertices and e edges then e ≤
3v − 6.

Def 2.2 Let G be a graph. The crossing number of G is the minimal number of
non-vertex crossings that the graph can be drawn with. We often denote the crossing
number by c. Note that a planar graph has crossing number 0.

Lemma 2.3 If G = (V, E) is a graph with v vertices, e edges, and crossing number
c then c ≥ e− 3v.

Proof:
First draw the graph in the plane with c non-vertex crossings. Remove the edges

that cause the crossings one at a time until the graph is planar. The new graph G′

has v vertices and e− c edges. By the prior lemma

e− c ≤ 3v − 6

e ≤ 3v + c− 6.

c ≥ e− 3v + 6 ≥ e− 3v.

We will get a much better lower bound on c. This result, called The Crossing
Lemma, was proven independently by Ajtai, Chvátal, Newborn, Szemerédi [1] and
Leighton [10].
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Lemma 2.4 Let G = (V, E) be a graph with v vertices’s, e edges, and crossing
number c. If e ≥ 4v then c ≥ Ω( e3

v2 ).

Proof: Let p be a probability that we will set later. For every vertex in the graph
remove it with probability 1− p. Let the resulting graph be G = (V ′, E ′). We denote
the number of vertices by v′, the number of edges by e′, and the crossing number by
c′.

E(v′) = vp since we retain each edge with probability p.
E(e′) = ep2 since we need to retain both of the endpoints to retain the edge.
E(c′) ≤ cp4 since if you retain all four vertices then you might retain the crossing,

but if you lose any one of them then you won’t.
By Lemma 2.3 we have

c′ ≥ e′ − 3v′.

By the linearity of expectation we have

E(c′) ≥ E(e′)− 3E(v′)

Combining this with what we already know about E(v′), E(e′) and E(c′) we obtain

cp4 ≥ E(c′) ≥ ep2 − 3vp.

c ≥ e

p2
− 3v

p3
.

Set p = 4v/e (this is where we use e > 4v).
Then we get

c ≥ e3

64v2
= Ω

(
e3

v2

)
.

Note 2.5 The hypothesis e ≥ 4v of Lemma 2.4 can be weakened to e ≥ (3 + ε)v for
any ε > 0.

Note 2.6 The above proof gives c ≥ e3

64v2 ∼ 0.0156 e3

v2 . The best result known to
date is by Pach, Radoicic, Tardos, and Toth [13, 14] who have that if e ≥ 7n then
c ≥ 0.032 e3

v2 . It is know that there are an infinite number of n such that there is a

graph on n vertices with graphs with e ≥ 7n and c ≤ 0.09 e3

v2 .
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3 The Szemerédi-Trotter Theorem

If you have a set of points P , and a set of lines L, how many times do a point and
a line meet? They could of course meet 0 times. What is the maximum amount of
times they could meet?

Def 3.1 Let P be a set of points and L be a set of lines. An incidence of P and L
is a pair (p, `) ∈ P × L such that point p is on line `. Let

IP,L = {(p, `) : p ∈ P, ` ∈ L and p is on `}.

We will leave out the subscripts if they are understood.

We will prove the following theorem:

|I| = O(|P |+ |L|+ (|L||P |)2/3).

This was first proven by Szemerédi and Trotter [18]. Different proofs can be found
in [5] and [12]. We present the simplest known proof, due to Székely [17].

Theorem 3.2 For any set of P points and L lines in the plane,

|I| ≤ O(|P |+ |L|+ (|L||P |)2/3).

Proof:
Define a graph G = (V, E) as follows:

V = P , the set of points.
E = {(x, y) : x and y are both on some line ` ∈ L and are adjacent }.

Let v = |V | and e = |E|. It is easy to see that v = P The number of edges is
harder to determine. Let the lines be `1, `2, . . . , `L. Assume that `i has pi points of
P on it. Then `i is responsible for pi − 1 edges. Hence the total number of edges is

|L|∑
i=1

(pi − 1) = (
|L|∑
i=1

pi)− |L| = |I| − |L|.

Hence

e = |I| − |L|.

Look at the natural way to draw the graph— placing the points where they are
naturally. Where there is a crossing you must have two of the lines intersecting.
Hence there are at most |L|2 crossings. Hence

c ≤ |L|2.
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We want to apply Lemma 2.4. However, for this we need e ≥ 4v. But this might
not be true. Hence we have two cases.
Case 1: e < 4v. Hence |I|−|L| ≤ 4|P |, so |I| ≤ 4|P |+|L| = O(|P |+|L|+(|L||P |)2/3).

Case 2: e ≥ 4v. We apply Lemma 2.4 to obtain

|L|2 ≥ c ≥ Ω
(

e3

v2

)
= Ω

(
(|I| − |L|)3

|P |2
)

(|L||P |)2 ≥ Ω((|I| − |L|)3)

(|L||P |)2/3 ≥ Ω(|I| − |L|)

|I| ≤ O((|L||P |)2/3 + |L|) ≤ O(|P |+ |L|+ (|L||P |)2/3).

Note 3.3 The best known upper and lower bounds on I are due to Pach, Radoicic,
Tardos, and Toth [13], [14]. They are

0.42(|L||P |)2/3 + |L|+ |P | ≤ |I| ≤ 2.5(|L||P |)2/3 + |L|+ |P |.

4 Corollaries of the Szemerédi-Trotter Theorem

We state two corollaries that we will need in the second product-sum theorem.

Lemma 4.1 Let P be a set of points and let k ∈ N. (We assume k is bigger than
any constant we may encounter.) Let

L = {` : ` has at least k points from P on it}.

Then

|L| = O
(
max

{ |P |
k

,
|P |2

k3

})
.

Proof: Note that the number of incidences of P and L is at least k|L|. Hence

|I| ≥ k|L|.

Using this and Theorem 3.2 to P and L to obtain

k|L| ≤ |I| ≤ O(|P |+ |L|+ (|L||P |)2/3).

There are two cases.
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Case 1: (|L||P |)2/3 ≤ |P |+ |L|.

k|L| ≤ O(|P |+ |L|) ≤ O(|P |) + O(|L|)

|L| ≤ O
( |P |

k

)
.

Case 2: |P |+ |L| ≤ (|L||P |)2/3.

k|L| ≤ O(|L||P |)2/3)

k|L|1/3 ≤ O(|P |2/3)

k3|L| ≤ O(|P |2)

|L| ≤ O
( |P |2

k3

)
Combining the two cases yields

|L| = O
(
max

{ |P |
k

,
|P |2

k3

})
.

Lemma 4.2 Let L be a set of lines and let k ∈ N. Let

P = {p : p is on at least k lines from L}.

Then

|P | = O
(
max

{ |L|
k

,
|L|2

k3

})
.

Proof: Note that the number of incidences of P and L is at least k|P |. Hence

|I| ≥ k|P |.

Using this and Theorem 3.2 to P and L to obtain

k|P | ≤ |I| ≤ O(|P |+ |L|+ (|L||P |)2/3).

There are two cases.
Case 1: (|L||P |)2/3 ≤ |P |+ |L|.

k|P | ≤ O(|P |+ |L|)
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|P | ≤ O
( |L|

k

)
.

Case 2: |P |+ |L| ≤ (|L||P |)2/3.

k|P | ≤ O((|L||P |)2/3)

k|P |1/3 ≤ O(|L|2/3)

k3|P | ≤ O(|L|2)

|P | ≤ O
( |L|2

k3

)
Combining the two cases results in

|P | = O
(
max

{ |L|
k

,
|L|2

k3

})
.

5 The n1+(1/4)-Product-Sum Theorem

Elekis [6] showed the following theorem. Our source is [9].

Theorem 5.1 If A is a set of n reals then

max{|A + A|, |A · A|} = Ω(|A|1+(1/4)).

Proof:
Let P = (A + A)× (A ·A). Let s = |A + A| and p = |A ·A|. Note that |P | = sp.

We will show that sp ≥ Ω(n5/2), hence one of s, p has to be ≥ Ω(n5/4).
Let L be the set of lines of the form y = x/a + a′ where a, a′ ∈ A. Note that

|L| = |A|2.
How many incidences are there? Let y = x/a + a′ be a line in L. Note that for

all a′′ ∈ A the point (aa′′, a′ + a′′) ∈ P is on the line. Hence each line has at least |A|
incidences. Therefore there are at least |A|3 incidences.

Combining this with Theorem 3.2 we obtain

|A|3 ≤ |I| ≤ O(|A|2 + sp + (|A|2sp)2/3).

Hence
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|A|3 ≤ O(sp + (|A|2sp)2/3)

Assume, by contradiction, that sp << |A|5/2. Then

|A|3 ≤ O(sp + (|A|2sp)2/3) << O(|A|5/2 + (|A|9/2)2/3) ≤ O(|A|3).

This is a contradiction. Hence sp ≥ Ω(|A|5/2). Therefore

max{|A + A|, |A · A|} = Ω(|A|5/4).

6 The n(1+3/11)/(log n)3/11-Sum Product Theorem

We will prove that, for any finite set A of reals,

max{|A + A|, |A · A|} = Ω
(

n1+(3/11)

(log n)3/11

)
.

We will need the following lemma, often called the Power Mean Inequality. The
proof is in the appendix.

Lemma 6.1 For all nonnegative reals n1, . . . , nk, and for all reals r,

k∑
i=1

nr
i

k
≥ (

∑k
i=1 ni)

r

kr−1
.

We will prove the main theorem as a sequence of lemmas revolving around the
following set.

Notation 6.2 For the rest of this section A is a fixed finite set of reals and

X = {(a1, a2, a3, a4) : a1, a2, a3, a4 ∈ A ∧ a1

a2

=
a3

a4

}.

We will also use the equivalent formulation

X = {(a1, a2, a3, a4) : a1, a2, a3, a4 ∈ A ∧ a1a4 = a2a3}.

We will prove an upper bound, and a lower bound on |X|.
First a lower bound.

Lemma 6.3 |X| ≥ |A|4/|A · A|.
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Proof:
Let A · A = {p1, . . . , pk}. Note that k = |A · A|. For all i, 1 ≤ i ≤ k, let

Ni = {(a, b) ∈ A× A : ab = pi}.

ni = |Ni|.

We first get an exact expression for |X|. Every element of |X| is formed by first
finding an element pi ∈ A · A to be what a1a4 = a2a3 will be, and then finding the
two ordered pairs in Ni to be the (a1, a4) and (a2, a3). Hence

|X| =
k∑

i=1

n2
i .

The number of elements in A × A is clearly |A|2. We now count the number of
elements in A× A a different way. Every element of A× A can be though of as first
picking the product pi and then picking the elements that have that product. Hence

|A× A| =
k∑

i=1

ni.

But we also have |A× A| = |A|2. Hence

k∑
i=1

ni = |A|2.

By Lemma 6.1, with r = 2, we have:

(∑k
i=1 ni

k

)2

≤
∑k

i=1 n2
i

k
.

Since
∑k

i=1 ni = |A|2 and
∑k

i=1 n2
i = |X| we have( |A|2

k

)2

≤ |X|
k

|A|4

k2
≤ |X|

k

|A|4

k
≤ |X|

Recall that k = |A · A|. Hence

|X| ≥ |A|4

|A · A|
.
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To get an upper bound on |X| we need more concepts. We can assume 0 /∈ A.
Now we do a thought experiment. Look at A×A. Divide it up based on the ratio of
the two numbers. That is, for every m ∈ A/A, we have a box

BOXm = {(x, y) : x, y ∈ A ∧ x/y = m}.

Hence we have that A × A = ∪m∈A/ABOXm. We order these boxes not by the
numerical values of m— we do not care about that— but by how big the boxes are.
Let m1, m2, . . . ,m|A/A| be such that

|BOXm1| ≤ |BOXm2| ≤ · · · ≤ |BOXm|A/A||.

We could then group the boxes together as follows:
Let

BOXm1 , . . . , BOXmi1

be all the boxes with cardinality in [1, 2). Let

BOXmi1+1
, . . . , BOXmi2

be all the boxes with cardinality in [2, 4). Let

BOXmi2+1
, . . . , BOXmi3

be all the boxes with cardinality in [4, 8). And so on, via powers of two. With this in
mind, here is a formal definition.

Def 6.4 Let
Dd = {m ∈ A/A : d ≤ |BOXm| < 2d}.

Notation 6.5
Xd = {(a1, a2, a3, a4) :

a1

a2

=
a3

a4

∈ Dd}.

Notation 6.6 POW2 is the set of powers of 2.

Lemma 6.7

1. If d ≥ |A|+ 1 then Dd = ∅.

2. For all d, |Xd| ≤ O(d2|Dd|).

3. |X| = ∑
d∈POW2,d≤|A| |Xd|.
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Proof:

1) We show that, for all m, |BOXm| ≤ |A|. Every element in BOXm is an ordered
pair (a, a′) ∈ A × A such that a/a′ = m. Map each element to its first component.
This is a 1-1 mapping of BOXm into |A|. Hence |BOXm| ≤ |A|.

Since |BOXm| ≤ |A|, we have that, for d ≥ |A|+ 1, Dd = ∅.
2) To form an element of |Xd| you first pick an element m ∈ Dd for the quotients to
equal. You can do that in |Dd| ways. You then pick two ordered pairs (a1, a2) and
(a3, a4) such that a1/a2 = a3/a4 = m. How many ordered pairs can there be? By the
definition of Dd there are between d and 2d. Hence there are O(d2) ways to pick the
ordered pairs. So we have

|Xd| = O(d2|Dd|).

3) Let POW2 be the set of powers of 2. It is easy to see that

X =
⋃

d∈POW2

Xd.

By part (1) all d ≥ |A|+ 1 have Dd = ∅ and hence Xd = ∅. Therefore the union need
only consider d ≤ |A|.

To get an upper bound on |X| we will get an upper bound on |Xd|. To get an
upper bound on |Xd| we will get an upper bound on |Dd|.

Lemma 6.8

1. Let SLOPES and A be finite sets of reals such that |SLOPES| ≤ |A|2. Let

L = {` : ` has slope in SLOPES and has a point in A× A}.

Then |L| = Ω(|A||SLOPES|3/2).

2. Let d ∈ N. Let

L = {` : ` has slope in Dd and has a point in A× A}.

Then |L| = Ω(|A||Dd|3/2).

Proof:
1) We will be applying Lemma 4.1 and 4.2. Hence we will be defining sets of points
and lines.

Look at the set

MEET = {p : p is on ≥ |SLOPES| of the lines in L }.

We obtain upper and lower bounds on |MEET |.
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Let (x, y) ∈ A×A. For every m ∈ SLOPES there is a line in L that goes through
(x, y). Hence (x, y) ∈ MEET . Therefore

|MEET | ≥ |A× A| = |A|2.

We apply Lemma 4.2 to L with k = |SLOPES| to obtain

|MEET | ≤ O
(
max

{ ||L||2

|SLOPES|3
,

||L||
|SLOPES|

})
.

There are two cases.
Case 1: |L|

|SLOPES| ≤
|L|2

|SLOPES|3 .

|A|2 ≤ |MEET | ≤ O
( |L|2

|SLOPES|3
)

|L| = Ω(|A||SLOPES|3/2).

Case 2: |L|2
|SLOPES|3 ≤

|L|
|SLOPES| .

|A|2 ≤ |MEET | ≤ O
( |L|
|SLOPES|

)

|L| = Ω(|A|2|SLOPES|) = Ω(|A||A||SLOPES|).

Since |SLOPES| ≤ |A|2, |A| ≥ |SLOPES|1/2. Hence we get

|L| = Ω(|A||A||SLOPES|) ≥ Ω(|A||SLOPES|1/2|SLOPES|) = Ω(|A||SLOPES|3/2).

2) This follows from part (1) and the observation that since Dj ⊆ A/A, |Dj| ≤ |A|2.

Lemma 6.9 Let d ∈ N. Then

|Dd| ≤ O
( |A + A|8/3

d2|A|2/3

)
.

Proof:
Let

P = (A + A)× (A + A).

Let
L = {` : ` has slope in Dd and a point in A× A}.
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L′ = {` : ` has ≥ d elements of P on it }.

We show L ⊆ L′. Let ` ∈ L. There exists a1, a2, a3, a4 ∈ A such that ` has slope
a3/a4 and passes through (a1, a2). Hence ` is described by the equation

y =
a3

a4

x + a2 −
a1a3

a4

.

Let m be the slope, m = a3

a4
. Note that by the definition of Dd there are at least

d ordered pairs (b1, c1), . . . , (bd, cd) ∈ A × A such that bi/ci = m. Hence, for all i,
1 ≤ i ≤ d,

y =
bi

ci

x + a2 −
a1bi

ci

.

Plug x = a1 + ci into this. You get

y =
bi

ci

(a1 + ci) + a2 −
a1bi

ci

y =
bia1

ci

+ bi + a2 −
a1bi

ci

y = a2 + bi.

Hence the point (a1 + ci, a2 + bi) ∈ P is on the line. This holds for any i, so every
point in L has at least d elements of P on it. Therefore L ⊆ L′ and

|L| ≤ |L′|

By Lemma 4.1 with k = d we obtain

|L′| ≤ max
{ |P |2

d3
,
|P |
d

}
.

There are two cases.

Case 1: |P |
d
≤ |P |2

d3 .

|L| ≤ |L′| ≤ |P |2

d3
.

Since P = (A + A)× (A + A), |P | = |A + A|2. Hence

|L| ≤ |A + A|4

d3
.

By Lemma 6.8 we have

|L| = Ω(|A||Dd|3/2).
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Hence we have

|A||Dd|3/2 ≤ O(|L|) ≤
( |A + A|4

d3

)
.

|Dd|3/2 ≤ O
( |A + A|4

d3|A|

)
.

|Dd| ≤ O
( |A + A|8/3

d2|A|2/3

)
.

Case 2: |P |2
d3 ≤ |P |

d
.

|L| ≤ |L′| ≤ |P |
d

.

Since P = (A + A)× (A + A), |P | = |A + A|2. Hence

|L| ≤ |L′| ≤ |A + A|2

d
.

By Lemma 6.8 we have

|L| = Ω(|A||Dd|3/2).

Hence we have

|A||Dd|3/2 ≤ O(|L|) ≤ O
( |A + A|2

d

)
.

|Dd|3/2 ≤ O
( |A + A|2

d|A|

)
.

|Dd| ≤ O
( |A + A|4/3

d2/3|A|2/3

)
≤ O

( |A + A|4/3d4/3

d2|A|2/3

)
.

By Lemma 6.7.1 we know that, for d ≥ |A| + 1, Dd = 0. Hence we can assume
d ≤ |A| ≤ |A + A|. With this we have

|Dd| ≤ O
( |A + A|4/3d4/3

d2|A|2/3

)
≤ O

( |A + A|4/3|A + A|4/3

d2|A|2/3

)
≤ O

( |A + A|8/3|
d2|A|2/3

)

Lemma 6.10

|X| = O
( |A + A|8/3(log |A|)

|A|2/3

)
.
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Proof:
By Lemma 6.7.a

|Xd| = O(d2|Dd|).

By Lemma 6.9

|Dd| ≤ O
( |A + A|8/3

d2|A|2/3

)
.

Hence

|Xd| ≤ O
( |A + A|8/3

|A|2/3

)
.

Note that this bound is independent of d.
By Lemma 6.7.b and the above equation we have the following, where d ranges

over the powers of 2 that are ≤ O(|A|).

|X| =
∑
d

|Xd| =
∑
d

O
( |A + A|8/3

|A|2/3

)
= O

( |A + A|8/3(log |A|)
|A|2/3

)

Theorem 6.11 Let A be a finite set of reals.

1.

max{|A · A|, |A + A|} = Ω
( |A|14/11

(log |A|)3/11

)
.

2.
max{|A · A|, |A/A|} = Ω(|A|14/11).

Proof:
1) By Lemma 6.3 and 6.10

|A|4

|A · A|
≤ |X| ≤ O

( |A + A|8/3(log |A|)
|A|2/3

)
.

|A|14/3

|A · A|
≤ O(|A + A|8/3(log |A|)).

|A|14/3

log |A|
≤ O(|A · A||A + A|8/3)).

|A|14

(log |A|)3
≤ O(|A · A|3|A + A|8).
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Assume, by way of contradiction, that

|A · A| << |A|14/11/(log |A|)3/11

and

|A + A| << |A|14/11/(log |A|)3/11.

Then

|A|14

(log |A|)3
≤ O(|A · A|3|A + A|8) << O((|A|(14·3)/11|A|(14·8)/11)/(log |A|)3.

|A|14 << O(|A|(14·3)/11|A|(14·8)/11)

|A|14 << O(|A|14)

This is a contradiction.

2) By Lemma 6.9

|Dd| ≤ O
( |A + A|8/3

d2|A|2/3

)
.

Let
Yd = {(a1, a2) ∈ A× A :

a1

a2

∈ Dd}.

By the definition of Dd

|Yd| = O(dDd) = O
( |A + A|8/3

d|A|2/3

)
and

⋃
d∈POW2,d≤|A|

Yd = A× A.

Hence

∑
d∈POW2,d≤|A|

|Yd| = |A|2.

Let c be a parameter to be chosen later. We will split this sum up depending on

if d < c|A+A|8/3

|A|8/3 or d > c|A+A|8/3

|A|8/3 .

|A|2 =
∑

d∈POW2,d≤ c|A+A|8/3

|A|8/3

|Yd|+
∑

d∈POW2,d>
c|A+A|8/3

|A|8/3

|Yd|.
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≤
∑

d∈POW2,d≤ c|A+A|8/3

|A|8/3

|A + A|8/3

d|A|2/3
+

∑
d∈POW2,d>

c|A+A|8/3

|A|8/3

|A + A|8/3

d|A|2/3
.

Consider the second summation.

∑
d∈POW2,d>

c|A+A|8/3

|A|8/3

|A + A|8/3

d|A|2/3
≤ O(c|A|2).

Take c such that this quantity is ≤ |A|2
2

.
We now have

∑
d∈POW2,d≤ c|A+A|8/3

|A|8/3

|A + A|8/3

d|A|2/3
≥ Ω(|A|2).

Consider

Y =
⋃

d<
c|A+A|8/3

|A|8/3

Yd.

We map Y to A/A by mapping (a1, a2) to a1/a2. By the definition of Yd and

d < c|A+A|8/3

|A|8/3 this map is at most c|A+A|8/3

|A|8/3 -to-1. Hence

|A/A| ≥ |Y |
c|A+A|8/3

|A|8/3

≥ Ω
( |A|2||A|8/3

|A + A|8/3

)
.

|A/A||A + A|8/3 ≥ |A|14/3.

|A/A|3|A + A|8 ≥ |A|14.

By reasoning similar to that at the end of part 1 of this theorem, we obtain the
result.

7 Appendix: The Power-Mean Inequality

Lemma 7.1 For all nonnegative reals n1, . . . , nk, and for all reals r,

k∑
i=1

nr
i

k
≥ (

∑k
i=1 ni)

r

kr−1
.
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Proof: Consider the following problem: Given M , minimize
∑k

i=1 xr
i subject to

the constraints
∑k

i=1 xi = M . First look at the k = 2 case.
We want to minimize xr+yr subject to the constraint that x+y = M and x, y ≥ 0.

Hence we want to minimize
xr + (M − x)r subject to x ∈ [0, M ].
Using calculus one easily finds that this is minimized when x = M − x or when

x = y = M/2.
The min for the general problems occurs when all xi are M/k. This is because,

by the k = 2 case, if you have a solution where there is an i, j such that xi < xj you
can make it smaller by replacing both with (xi + xj)/2. Hence

min{
k∑

i=1

xr
i |

k∑
i=1

xi = M} =
k∑

i=1

(
M

k

)r

=
M r

kr−1
.

Let n1, . . . , nk be positive reals. Let M =
∑k

i=1 nk.

k∑
i=1

nr
i

k
≥ min{

k∑
i=1

xr
i |

k∑
i=1

xi = M} =
M r

kr−1
=

(
∑k

i=1 ni)
r

kr−1
.
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Alpar, Halasz, and Sárközy, editors, Studies in Pure Mathematics, pages 213–
218, 1983. To the memory of Paul Turan.

[8] K. Ford. Sums and products from a finite set of real numbers. Ramanjuan
Journal, 2:59–66, 1998. http://www.math.uiuc.edu/~ford/papers.html.

[9] A. Iosevich. Fourier analysis and geometric combinatorics. At http://

www.math.missouri.edu/~iosevich/expositorypapers.html where it is Sze-
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