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ON DINUR’S PROOF OF THE PCP THEOREM

JAIKUMAR RADHAKRISHNAN AND MADHU SUDAN

Abstract. Probabilistically checkable proofs are proofs that can be checked
probabilistically by reading very few bits of the proof. In the early 1990s, it
was shown that proofs could be transformed into probabilistically checkable
ones with only a modest increase in their length. The initial transformations,
though elementary, were a little too complex. A recent work due to Irit Dinur
gives a dramatically simple (and radically new) construction of probabilisti-
cally checkable proofs. This article explains the notion of a probabilistically
checkable proof, presents the formal definition and then introduces the reader
to Dinur’s work along with some of the context.

1. Introduction

As advances in mathematics continue at the current rate, editors of mathematical
journals increasingly face the challenge of reviewing long, and often wrong, “proofs”
of classical conjectures. Often, even when it is a good guess that a given submission
is erroneous, it takes excessive amounts of effort on the editor’s/reviewer’s part to
find a specific error one can point to. Most reviewers assume this is an inevitable
consequence of the notion of verifying submissions and expect the complexity of the
verification procedure to grow with the length of the submission. One of the main
aims of this article is to point out that this is actually not the case: There does exist
a format in which we can ask for proofs of theorems to be written. This format
allows for perfectly valid proofs of correct theorems, while any purported proof
of an incorrect assertion will be “evidently wrong” (in a manner to be clarified
below). We refer to this format of writing proofs as Probabilistically Checkable
Proofs (PCPs).

In order to formalize the notion of a probabilistically checkable proof, we start
with a bare-bones (computationally simplified) view of logic. A system of logic
is described by a collection of axioms which include some “atomic axioms” and
some derivation rules. An assertion is a sentence which is simply a sequence of
letters over the underlying alphabet. A proof of a given assertion is a sequence
of sentences ending with the assertion, where each sentence is either one of the
axioms or is obtained by applying the derivation rules to the previous sentences
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in the proof. An assertion which has a proof is a theorem. We will use the word
argument to refer to a sequence of sentences (which may be offered as “proofs” of
“assertions” but whose correctness has not been verified).

While systems of logic come in many flavors and allow varying degrees of power
in their inference rules and the nature of intermediate sentences that they would
allow, the “computational perspective” unifies all of these by using the following
abstraction: It suggests that a system of logic is given by a computationally efficient
algorithm called the verifier. The inputs to a verifier is a pair of sequences over
some finite alphabet, an assertion T and evidence Π; the verifier accepts this pair
if and only if Π forms a proof of T in its system of logic. Such verifiers certainly
capture all known systems of logic. Indeed without the computational efficiency
restriction, it would be impossible to capture the spirit that theorems are often hard
to prove, but once their proofs are given, they are easy to verify. For our purposes,
we associate the word “efficient” with the feature that the algorithm runs in time
polynomial in the length of its inputs. (As an aside, we note that this distinction
between the proving theorems and verifying proofs is currently a conjecture and is
exactly the question examined under the label “Is P=NP?”.)

The notion that a verifier can perform any polynomial time computation enriches
the class of theorems and proofs considerably and starts to offer highly non-trivial
methods of proving theorems. (One immediate consequence is that we can as-
sume theorems/proofs/assertions/arguments are binary sequences, and we will do
so henceforth.) For instance, suppose we have an assertion A (say the Riemann Hy-
pothesis), and say we believe that it has a proof which would fit within a 10,000 page
article. The computational perspective says that given A and this bound (10,000
pages), one can efficiently compute three positive integers N, L, U with L ≤ U ≤ N
such that A is true if and only if N has a divisor between L and U . The integers
N , L, and U will be quite long (maybe writing them would take a million pages),
yet they can be produced extremely efficiently (in less than the amount of time it
would take a printer to print out all these integers, which is certainly at most a
day or two). (This specific example is based on a result due to Joe Kilian, personal
communication.) The theory of NP-completeness could be viewed as an enormous
accumulation of many other equivalent formats for writing theorems and proofs.
Depending on one’s perspective, any such given format may or may not be a better
format for writing theorems and proofs. What is important for us is that despite
the fact that it differs radically from our mental picture of theorems/proofs, this is
as valid a method as any. Every theorem has a valid proof, and this proof is only
polynomially larger than the proof in any other system of logic, a notion referred
to as “completeness”. Conversely, no false assertion has a proof, a notion referred
to as “soundness”.

The ability to perform such non-trivial manipulations to formats in which the-
orems and proofs are presented raises the possibility that we may specify formats
that allow for other features (that one does not expect from classical proofs). The
notion of PCPs emerges from this study. Here we consider verifiers that vary in
two senses: (1) The verifiers are probabilistic — they have access to a sequence
of unbiased independent coins (i.e., random variables taking values from the set
{0, 1} equiprobably); and (2) The verifiers have “oracle” access to the proof. I.e.,
to read any specific bit of the proof the verifier is allowed direct access to this bit
and charged one “query” for this access. (This is in contrast to the classical notion
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of the Turing machine, where all information is stored on tapes and accessing the
ith bit takes i units of time and implies access to all the first i bits of the proof.)
However, we will restrict the number of random bits that the verifier has access
to. We will also restrict the number of queries the verifier is allowed to make.
The latter is definitely a restriction on the power of the verifier (classical verifiers
accessed every bit of the proof). The former does not enhance the power of the
verifier unless the verifier is allowed to err. So we will allow the verifier to err and
consider the question: What is the tradeoff between the query complexity and the
error incurred by the verifier? It must be stressed at this point that we require
the error probability to be bounded away from 1 for every false assertion and every
supporting argument. (It would not make any sense, given the motivation above, to
assume some random distribution over theorems and proofs, and this is not being
done.)

Theoretical computer scientists started to examine this tradeoff starting in 1990
and have made some remarkable progress to date. We review this history be-
low. (We remark that this is just a history of results; the notion of a prob-
abilistically checkable proof itself evolved slowly over a long sequence of works
[24, 10, 14, 23, 8, 22, 7], but we will not describe the evolution of this notion here.)
Results constructing PCP verifiers typically restrict the number of random bits to
be logarithmic in the size of the probabilistically checkable proof. Note that this is
an absolute minimum limit, or else a verifier making few queries does not have a
positive probability of accessing most of the bits of the proof. They then asked the
question: How small can the PCP be (relative to the classical proof) and how many
bits need to be queried? The first sequence of results [9, 8, 22] quickly established
that the number of queries could be exponentially smaller than the length of the
proof (e.g., in a proof of length n, the number of queries may be as small as say
log2 n), while getting nearly polynomial sized proofs (in fact, [8] obtained nearly lin-
ear sized PCPs.) The second short sequence [7, 6] established what is now referred
to as “The PCP Theorem”, which showed that the number of bits queried could be
reduced to an absolute constant(!) independent of the length of the theorem or the
proof (given just the length of the proof), with PCPs of length just a polynomial
in the classical proof. This immediately raised the question: What is this universal
constant—the number of queries that suffices to verify proofs probabilistically? It
turns out there is yet another tradeoff hidden here. It is always possible to reduce
the number of queries to three bits if the verifier is allowed to err with probability
very close to (but bounded away from) one. So to examine this question, one needs
to fix the error probability. So, say we insist that arguments for incorrect asser-
tions are accepted with probability (close to) half, while proofs of valid theorems
are accepted with probability one. In such a case, the number of queries made by
the verifier of [6] has been estimated at around 106 bits—not a dramatically small
constant, though a constant all right! The third phase in the construction of PCPs
[13, 12] attempted to reduce this constant and culminated in yet another surprise.
H̊astad [26] shows that the query complexity could be essentially reduced to just
three bits to get the above error probabilities. Subsequent work in this area has
focused on the question of the size of the PCP relative to the size of the classical
proofs and shown that these could be reduced to extremely small blow-ups. (Clas-
sical proofs of length n are converted to PCPs of length n · (log n)O(1) in the work
of Dinur [19].)
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A somewhat orthogonal goal of research in PCPs has been to find simple rea-
sons why proofs ought to be probabilistically checkable. Unfortunately, much of
the above results did not help in this regard. The results from the first sequence
achieved the effect by a relatively straightforward but striking algebraic transforma-
tion (by encoding information into values of algebraic functions over finite fields).
Later results built on this style of reasoning but got even more complex (see, e.g.,
[35, page 12] for a look at the ingredients needed to get the PCP theorem of [26]).
Recently, Dinur and Reingold [20] proposed a novel, if somewhat ambitious, itera-
tive approach to constructing PCPs which was radically different from prior work.
While the idea was appealing, the specific implementation was still hard and did not
lead to a satisfactory alternative construction of PCPs. Subsequently, Dinur [19]
finally made remarkable progress on this question, deriving the right ingredients to
give a dramatically simple proof of the PCP theorem.

This work of Dinur is the focus of much of this article. We will try to outline
her approach and provide context to the steps taken by Dinur which may provide
further insight into her work (and highlight the novelty of the approach as well as
the new technical ingredients developed in her work). The hope is that a reader,
after reading this article, would be motivated to read the original work and, upon
doing so, would appreciate the developments in her paper.

In what follows, we will start by setting up some basic notation and background
in computational complexity in Section 2. We then introduce the formal definition
of a PCP and a statement of the main result in Section 3. In this section we
also introduce an alternate view of PCPs as forms of optimization problems. This
language is useful in explaining Dinur’s approach to constructing PCPs. In Section 4
we then describe Dinur’s approach at a high level and contrast it with the earlier
approaches. Dinur’s approach repeatedly applies two transformations to a “current
verifier”, starting from a classical (non-probabilistic) verifier of proofs. The end
result is a probabilistic verifier of proofs. In Sections 5 and 6 we describe the two
transformations in greater detail, providing background on these (in particular, we
describe some simpler transformations one may consider and why they don’t work).

2. Preliminaries

We start by fixing some basic notation (and introducing some basic concepts
such as strings and graphs).

In what follows R will denote the reals, Z the set of all integers, and Z
+ the set

of positive integers. For x ∈ R, we let �x� denote the largest integer less than or
equal to x. For x ∈ R, let log x denote the quantity �log2 x� where log2 denotes the
logarithm of x to base 2.

By {0, 1}∗ we denote the set of all finite length binary sequences. (We refer to
such sequences as strings.) For a string x ∈ {0, 1}∗, let |x| denote its length. For
random variable X taking on values in domain D and event E : D → {true, false},
we let PrX [E(X)] denote the probability of the event E over the random choice
of X. We often use the shorthand “f(n)” to denote the function n �→ f(n). (In
particular, it will be common to use “n” to denote the argument of the function
without explicitly specifying so.) Examples include the functions n2, log n, etc.

Later in this article we will need to resort to some terminology from “graph
theory”. Formally a graph G is given by a pair (V, E). The set V is finite, and
its elements are called vertices. The set E is the set of edges. Each edge e ∈ E
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will be associated with two (not necessarily distinct) vertices, its head and tail,
denoted by head(e) and tail(e). We say that e is of the form (u, v) if tail(e) = u
and head(e) = v; we then say that e leaves u and enters v. The edge sets for our
graphs will be symmetric: that is, each edge e of the form (u, v) will be paired with
a unique edge of the form (v, u); this edge is called e−. If e is a self-loop, that is,
for the form (u, u), then e−1 = e. If (u, v) ∈ E, then we refer to v as being adjacent
to u or being a neighbor of u. The number of edges leaving u is called the degree
of u and is denoted by deg(v) (a self-loop on v contributes one to the degree, not
two). We say that a graph is d-regular if every vertex has degree d; thus, for a
d-regular graph (V, E), we have |E| = d|V |. A walk in a graph is a sequence of
edges e1, e2, . . . , e� such that head(ei−1) = tail(ei), for i = 2, . . . , �. The distance
between u and v is the length � of the shortest walk v0, . . . , v� satisfying v0 = u and
v� = v.

We will also need in Section 6 a common extension of the notion of graphs named
hypergraphs. As in graphs, hypergraphs are described by a collection of vertices
and (hyper)edges, with the novelty that the hyperedges may form relations on more
than two vertices. Formally, for a positive integer r, an r-uniform hypergraph is
described by a pair (V, E) where V is a finite set and E is a set of subsets of V ,
with every e ∈ E being of size r.

2.1. Computational complexity: P, NP, proofs and optimization. The the-
ory of computation is broadly concerned with the task of computing functions or
solving “search” problems. A functional computational problem is described by a
function f : {0, 1}∗ → {0, 1}∗, and the goal is to compute f(x), given x. The run-
ning time of an algorithm A computing f is measured as a function of the input size
and is denoted TA(n), where TA(n) is the maximum over all inputs x ∈ {0, 1}n of
the running time of A on x. If there is a polynomial p(n) satisfying TA(n) ≤ p(n) for
every n, then A is said to be a polynomial time algorithm. The class of all Boolean
functions f : {0, 1}∗ → {0, 1} that are computable by polynomial time algorithms
denotes the class P . Note that computing a Boolean function f is equivalent to
deciding membership in the language (computer scientist’s phrase for subsets of
{0, 1}∗) Lf = {x : f(x) = 1}.

Many computational problems are not quite functional, but more about solving
“search” problems. Consider for example the classical graph coloring problem where
the input is a graph G = (V, E) and an integer k and the goal is to find a coloring
A : V → {1, . . . , k} such that for every edge e of the form (u, v), it is the case that
A(u) 	= A(v), if such a coloring exists. Problems such as coloring are characterized
by the fact that there may be many “solutions” to the problem, and the goal is to
find any one (or simply determine if a solution exists). Formally, such problems may
be described by a relation R ⊆ {0, 1}∗×{0, 1}∗. Given an input x ∈ {0, 1}∗ the goal
is to find a solution y ∈ {0, 1}∗ such that (x, y) ∈ R. (In the case of graph coloring,
the input x is the pair (G, k), and the solution y is the coloring A.) For simplicity
we often focus on the (slightly) simpler problem of merely deciding whether x has a
solution y (such that (x, y) ∈ R). This defines a language associated with a relation
R, LR = {x : ∃y s.t. (x, y) ∈ R}.

The class NP consists of all languages LR where R has “polynomially short
solutions” (i.e., there is a polynomial q such that for every pair (x, y) ∈ R it is the
case that |y| ≤ q(|x|)) and for which deciding validity of a solution (i.e., deciding
whether (x, y) ∈ R) is in P. Graph coloring is a common example of a problem in
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NP. Other well-known ones include the traveling salesman problem, bin packing,
finding large cliques in graphs, deciding satisfiability of a logical formula, etc.

In addition to being in the class NP, the above problems also share the common
feature of being notoriously hard. No polynomial time algorithm is known to solve
these problems to date. To explain this commonality (and to justify somewhat the
common difficulty), the theory of NP-completeness was developed in the early ’70s
by Cook [18], Levin [30], and Karp [29]. Informally, an NP language L is said to be
NP-complete if it is provably harder than every other problem in NP. One way to
formalize this is to say that for every NP language L′ there exists a polynomial time
computable transformation T such that for every x ∈ {0, 1}∗ x ∈ L′ if and only if
T (x) ∈ L. It turns out that all the problems mentioned in the previous paragraph
are also NP-complete. So in fact they are equivalent to each other, explaining their
commonality. It is a widely held belief that P 	= NP, though at this point this
remains a conjecture.

One particular NP-complete problem is the following: Fix a (reasonable) system
of logic whose theorems and proofs are written as binary strings. Then the language
SHORT PROOFS that consists of all theorems T that have proofs of length at most,
say, |T |2 is an NP-complete language. This is true since in any reasonable system
of logic, it should be “easy” to verify proofs, where the informal term “easy” can
be formalized by the requirement that the proof can be verified in time polynomial
in its length. Part of the argument in favor of the belief that P does not equal
NP stems from the language SHORT PROOFS. If P were equal to NP there would
essentially be an “automated” efficient way to prove theorems, something that does
not seem feasible. Indeed it was this perspective, the study of the complexity of
theorem proving, that led Cook [18] to define the class NP.

On the other hand, much of the interest in NP-completeness arises from the per-
spective it sheds on “combinatorial optimization”, the field that looks for efficient
methods to solve optimization problems. Many of the above-mentioned problems,
including graph coloring, bin packing, and the traveling salesman problem, are in-
stances of optimization problems. NP-completeness thus provides a bridge between
such combinatorial optimization and logic by showing that many optimization prob-
lems are as hard to solve as proving theorems. In what follows we will formally
describe the notion of probabilistically checkable proofs and show how it adds to
the study of optimization.

3. Probabilistically checkable proofs

A proof system is formalized by its “verifier”, i.e., the algorithm that, given an
assertion and supporting argument, verifies if the argument proves the assertion.
Formally such a verifier is given by (an algorithm to compute) a function V :
{0, 1}∗ × {0, 1}∗ → {0, 1}. That V (T, Π) = 1 implies that the assertion T is a
theorem with Π being a proof.

As mentioned earlier, we are going to enhance classical verifiers/algorithms by
endowing them with access to random strings and oracles. We will denote random
strings just like other strings. An oracle will just be a function O : Q → A where
Q is a countable set and A is finite. The most common version is with Q = Z

+

and A = {0, 1}. Algorithms are allowed to compute various queries q1, . . . , qt and
obtain answers O[q1], . . . , O[qt] to the queries. The number of queries made (t) is
termed the query complexity of the algorithm. The output of a probabilistic oracle
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algorithm A on input x, random string R ∈ {0, 1}∗ and access to oracle O will be
denoted AO(x; R). Notice that we will always be interested in the distribution of
this random variable AO(x; R) when R is chosen uniformly from set {0, 1}� (while
x and O will be fixed). With this notation in hand we are ready to define PCP
verifiers and the complexity class PCP.

Definition 3.1. For functions r, q, a : Z
+ → Z

+ an (r, q, a)-restricted PCP verifier
is a probabilistic oracle algorithm V that on input x ∈ {0, 1}n expects a random
string R ∈ {0, 1}r(n) and queries an oracle Π : Z

+ → {0, 1}a(n) at most q(n) times
and computes a “Boolean verdict” V Π(x; R) ∈ {0, 1}.

Definition 3.2. For positive constant 0 ≤ s ≤ 1, we say that an (r, q, a)-restricted
PCP verifier V accepts a language L ⊆ {0, 1}∗ with soundness s if for every x ∈
{0, 1}n the following hold:
Completeness: If x ∈ L, then there exists a Π : Z

+ → {0, 1}a(n) such that for
every R V Π(x : R) = 1.

Soundness: If x 	∈ L, then for every Π : Z
+ → {0, 1}a(n) it is the case that

PrR[V Π(x : R) = 1] ≤ s.
By PCPs[r, q, a] we denote the class of all languages L such that there exists an
(r, q, a)-restricted PCP verifier accepting L with soundness s.

Throughout this article we will assume that the queries of the PCP verifiers are
made “non-adaptively”; i.e., the exact location of questions does not depend on the
responses to other questions. The responses affect only the accept/reject predicate
of the verifier.

The early results [9, 8, 22] could be described as showing that there exist poly-
nomials p1, p2 : Z

+ → Z
+ such that NP ⊆ PCP1/2[p1(log n), p2(log n), 1]. The PCP

theorem, whose new proof we hope to outline later, may now be stated formally as

Theorem 3.3 ([7, 6]). There exists a constant q such that NP =⋃
c∈Z+ PCP 1

2
[c log n, q, 1].

Finally, the state of the art result along these lines is that of H̊astad [26] (see
also [25]), which shows that for every ε > 0, NP = ∪c∈Z+PCP 1

2+ε[c log n, 3, 1].
One aspect we do not dwell on explicitly is the size of the “new proof”. It is easy

to convert an (r, q, a)-PCP verifier into one that runs in time 2r(n) × 2q(n) × 2a(n),
whose queries are always in the range {1, . . . , 2r(n)+q(n)+a(n)}. In other words, one
can assume “w.l.o.g.” that the proof is a string of size at most 2r(n)+q(n)+a(n). So in
particular if the randomness and query complexity and answer length are bounded
by O(log n), then the PCP proofs are still polynomial sized, and so we won’t worry
about the size explicitly.

3.1. PCPs and approximations. One of the principal weaknesses in the classical
applications of the theory of NP-completeness to optimization problems was its
inability to make any statements about the complexity of finding nearly optimal
solutions to optimization problems. The PCP theorem provided a means to address
this issue. Below we explain the issues in a little more detail in the context of graph
coloring.

Consider the following optimization problem related to graph coloring. Given a
graph G = (V, E) and integer k, find a coloring A : V → {1, . . . , k} that maximizes
the number of “satisfied” edges, where an edge e = {u, v} is said to be satisfied if
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A(u) 	= A(v). If P 	= NP, then it is clear that this maximization problem cannot be
solved in polynomial time (since such an algorithm could be used to determine in
polynomial time if G is k-colorable, which is NP-complete). However, is it hard to
compute a coloring A that is guaranteed to satisfy many edges, say at least .999M
edges, where M denotes the number of edges that are satisfied by the optimal color-
ing? Such a coloring would be termed a .999 approximation to the coloring problem
and is often a very good substitute for the “optimal” coloring. Significant research
thus far has failed to yield a polynomial time .999 approximation algorithm for the
coloring problem, but yet the theory of NP-completeness did not immediately rule
out such an algorithm. All it rules out are algorithms that satisfy M edges, but an
algorithm that satisfies M − 1 edges might still be conceivable.

To extend the theory of NP-completeness to rule out a .999 approximation to
graph coloring, it would be useful to have a transformation T from some NP-
complete language L to graph k-coloring (for some fixed k) with the following
properties:

• If x ∈ L, then T (x) is k-colorable.
• If x 	∈ L, then no k-coloring satisfies a .999 fraction of the edges of T (x).

Such a transformation would then rule out a polynomial time .999 approximation
algorithm for graph k-coloring, assuming P 	= NP (since then we could use the
algorithm’s output on T (x) to decide if x ∈ L or not).

The PCP theorem, it turns out, does indeed produce such transformations (and
rules out an α-approximation algorithm for graph k-coloring for some α < 1, though
this α may be larger than .999). We won’t give such a transformation for the graph
k-coloring problem, but a generalization of this problem. This generalization, which
we call constraint graph coloring, turns out to be central to Dinur’s proof of the
PCP theorem. As in graph coloring, here also the task is to find a k-coloring of a
given graph that maximizes the number of satisfied edges. However, we allow more
general (more restrictive) conditions for satisfiability of edges. In fact the exact
conditions are part of the input description. We present this definition formally
below.

Definition 3.4 (Constraint graph, coloring).
Constraint Graph: A constraint graph G is a tuple 〈V, E, Σ, C〉, where (V, E) is

an undirected graph (we allow multiple edges and self-loops), Σ is a finite
set called the alphabet of G, and C is a collection of constraints, 〈ce : e ∈ E〉,
where each ce is a function from Σ × Σ to {0, 1}.

Coloring and Satisfaction: A coloring of G is a function A : V → Σ. We say
that the coloring A satisfies an edge e = {u, v} if ce(A(u), A(v)) = 1. We
say that the coloring A satisfies G if A satisfies all edges in G. If there is a
coloring that satisfies G, then we say that G is satisfiable. We say that G
is ε-far from satisfiable if every coloring leaves at least a fraction ε of the
edges of G unsatisfied. Let

unsat(G) = max{ε : G is ε-unsatisfiable} = min
A

|{e : A does not satisfy e}|
|E| .

We use GK to denote the set of constraint graphs with an alphabet of size
K.

Remark. The constraints in the above definition are allowed to be arbitrary func-
tions of two inputs, each taking values in the set Σ.
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As with other optimization problems, we have a natural language associated with
constraint graphs, where given a constraint graph we are required to determine if it
is satisfiable. We will refer to this as the constraint graph coloring problem. Since
the constraint graph coloring problem generalizes graph k-coloring, it is also NP-
complete. Dinur proves the following considerable strengthening of this assertion
that says that the existence of an efficient algorithm that approximates unsat

sufficiently closely would imply that P = NP.

Theorem 3.5 (Main Theorem). There is a constant ε0 > 0 such that for every
language L in NP, there is a polynomial-time transformation T mapping input
instances of L to G16 such that

• if x ∈ L, then T (x) is satisfiable;
• if x 	∈ L, then T (x) is ε0-far from satisfiable.

We now show that the above theorem is closely related to the PCP theorem.

Proposition 3.6. The following are equivalent:
(1) There is a constant ε0 > 0 such that for for every language L in NP, there

is a polynomial-time transformation T mapping input instances of L to G16

such that
• if x ∈ L, then T (x) is satisfiable;
• if x 	∈ L, then T (x) is ε0-far from satisfiable.

(2) There is a constant ε0 > 0 such that NP ⊆ PCP1−ε0 [r, 2, 2], where r =
O(log n).

Proof.
(1) ⇒ (2): Fix an input x, and consider the constraint graph T (x). The proof

oracle is the coloring Π : V (T (x)) → {0, 1}4. We may assume that the
number of edges in T (x) is a power of two. The verifier tosses her coins
and based on the outcome picks a random edge e of the form (u, v) (with
constraint ce) of T (x), reads Π(u) and Π(v) from the proof, and accepts if
and only if the constraint ce(Π(u), Π(v)) = 1.

(2) ⇒ (1): Fix an input x. Consider the oracle Π. We construct a constraint graph
G with one vertex of each location of Π that could be probed by the verifier.
Thus, there are at most 2r(|x|) vertices in G; since r = O(log n), there are
only polynomially many vertices. For each random string R ∈ {0, 1}r(|x|)

we introduce an edge eR. For this random string R, if the verifier queries
the oracle at locations u and v, then the edge connects the vertices u and
v of G, and the constraint evaluates to 1 if and only if the values assigned
to u and v cause the verifier to accept.

�

Syntactically the proposition does not prove the equivalence between the PCP
theorem (Theorem 3.3) and the Main Theorem (Theorem 3.5). But it is straight-
forward to see that PCP1−ε0 [r, 2, 4] ⊆ PCP1−ε0 [r, 8, 1] ⊆ PCP(1−ε0)c [r · c, 8 · c, 1] for
every c ∈ Z

+ and so the Main Theorem does imply the PCP theorem. The other
direction, showing PCP1/2[r, q, 1] ⊆ PCP1−ε0 [c ·r, 2, 2] for some c < ∞ and ε0 > 0, is
also not too hard to show, and Proposition 6.2 essentially shows such a reduction.
Modulo this caveat, the proposition above does show how the PCP theorem shows
the inapproximability (to within a factor of 1− ε0) of the constraint graph coloring
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problem. Once one has such a hardness, one can then use transformations to show
the hardness of approximating many other optimization problems. We won’t do so
here, but refer the reader to [5] for a collection of such results.

We now move to the task of describing Dinur’s proof of the Main Theorem.

4. Overview of Dinur’s approach

Before moving on to describing Dinur’s approach to proving the PCP theorem,
let us briefly describe the prior approaches. Though the prior approaches to proving
the PCP theorem were typically stated in the “PCPs[r, q, a]” notation, the effective
equivalence with constraint graph coloring allows us to interpret them in the latter
language, and we do so here.

4.1. Previous approaches. One of the principal issues to focus on is the “gap”
in the unsatisfiability achieved by the transformation. Notice that the reduction we
seek creates a gap between the unsatisfiability of the instances when x ∈ L and the
unsatisfiability when x 	∈ L; the former is 0, but the latter is at least some absolute
constant ε. We refer to this quantity as the “gap” achieved by the reduction.

The previous approaches were very careful to maintain large gaps in reductions.
Since it was unclear how to create a direct reduction from some NP complete
language L to constraint graph K-coloring for finite K = |Σ| with a positive gap,
the prior approaches essentially allowed K to grow with n = |x|. The results
of Babai et al. [9, 8] and Feige et al. [22] used algebraic techniques (representing
information as coefficients of multivariate polynomials and encoding them by their
evaluations) to get reductions from any NP-complete language L to constraint graph
K(n)-coloring for K(n) ≈ 2(log n)c

for some constant c.1 Arora and Safra [7] showed
that transformations implicit in the PCP constructions could be composed in a non-
obvious way to reduce the alphabet size dramatically. For instance, their technique
could reduce K(n) to log(log(· · · (log n))) for any finite number of logarithms! This
motivated the search for new PCPs that would compose better. Arora et al. [6]
produced two such PCPs whose composition (several times) led to K(n) = O(1).
In both the above cases, the composition reduced the gap by a constant factor, but
this was okay since the composition was applied only a finite number of times.

Thus the previous approach could be described as constructing PCPs by “alpha-
bet reduction”, subject to “gap preservation”. In contrast, Dinur’s approach does
quite the opposite. It starts with a reduction from the NP-complete language L
to Max k-CSP-Σ which has minimal gap (producing only unsat(φ) ≥ 1/ poly(n)
when x 	∈ L), but where k and Σ are finite. She then applies a sequence of iterations
that ensure “gap amplification” while “preserving alphabet size”.

4.2. Dinur’s approach. The starting point for Dinur’s transformation is the NP-
completeness of the graph 3-coloring problem, which we now state in a form suitable
to us.

Theorem 4.1. For every language L in NP, there is a polynomial-time transfor-
mation T0 mapping input instances of L to G16 such that

• if x ∈ L, then T0(x) is satisfiable;

1Strictly speaking, the early results also did not achieve a constant gap in our notation, but
we will ignore this issue to make the explanation simple.
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• if x 	∈ L, then T0(x) is ( 1
m )-far from satisfiable, where m is the number of

constraints in T0(x).

The overall strategy for proving Theorem 3.5 is as follows: We invoke Theo-
rem 4.1 and obtain a transformation that takes the input instances of the given
language L to constraint graphs (in fact, instances of the graph 3-coloring prob-
lem) with an inverse polynomial gap. Next, we work towards increasing this gap by
repeatedly applying a specially designed transformation. Each application of this
transformation at least doubles the gap while increasing the size of the graph by a
constant factor. After roughly O(log n) applications (where n is the size of the in-
put instance for L) of the transformation, we obtain the required constraint graph.
The final transformation that justifies Theorem 3.5 has the form x �→ T (�)(T0(x)),
where � = O(log |x|), T0 is the transformation promised by Theorem 4.1, and T is
a special gap-amplifying transformation invented by Dinur [19] which we will get
to shortly.

First, we will work in this article with a slightly restricted class of constraint
graph instances. These restrictions are not essential to our lemmas; however, they
do simplify the proof of one of them (Lemma 4.6).

Definition 4.2 (Restricted constraint graphs). An instance G ∈ GK is said to be
restricted if K = 2k for some integer k; the alphabet Σ = F

k
2 is the vector space of

k-dimensional vectors over F2, the finite field of two elements; and every constraint
ce(A(u), A(v)) is given by a collection of degree two polynomials P1, . . . , Pm over 2k
variables from F2 and the constraint ce is satisfied if and only if for every polynomial
Pj we have Pj(A(u), A(v)) = 0. (Note that since each color, A(u) as well as A(v),
is a k-dimensional vector over F2, together their coordinates give a 2k-dimensional
vector over F2, at which Pj can be evaluated.) We use G̃′

K to denote the set of
restricted constraint graphs with alphabet of size K.

We need one more definition before we can describe the properties of Dinur’s
transformation T .

Definition 4.3 (Linear-size transformation). Let G′ and G′′ be sets of constraint
graphs. A polynomial-time computable function T : G′ → G′′ is said to be an
(α, ε)-transformation if

(1) for all G ∈ G′, if G is satisfiable, then T (G) is satisfiable; and
(2) for all G ∈ G′, unsat(T (G)) ≥ min{α · unsat(G), ε}; and
(3) the size of the output is bounded by a linear function of the size of the

input; that is, there exist constants a, b ≥ 0 such that for all G ∈ G′,
|T (G)| ≤ a|G| + b.

Using this notation, we can now present the gap amplifying transformation re-
ferred to above.

Lemma 4.4 (Main Lemma). There is a constant ε > 0 such that there exists a
(2, ε)-transformation from G̃16 to G̃16.

Dinur actually works directly with unrestricted instances. In this article we
restrict ourselves to the restricted version; as we see below this is sufficient for our
purposes.

We remark that the reduction above is totally novel in the PCP literature and
already finds other applications (other than providing alternate proofs of the PCP
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theorem) in Dinur’s paper (see [19, Section 7]). Later in this section, we describe
the main ingredients in the proof of Lemma 4.4; the detailed proof appears in
Section 5. Before we proceed to these, let us formally show that Theorem 3.5
follows immediately from Theorem 4.1 and Lemma 4.4.

Proof of Theorem 3.5. Let L be a language in NP , and let x be an input instance of
L. We start by creating a transformation from L to T0 which satisfies the property
that T0(x) ∈ G̃16 and T0(x) is satisfiable if and only if x ∈ L. Given x ∈ {0, 1}n,
the transform T0 first produces a graph G such that G is 3-colorable if and only
if x ∈ L, using the polynomial time transformation promised in Theorem 4.1. It
then transforms G into an instance of G̃16 as follows: The set of vertices and edges
of the constraint graph is the same as that of G, and the alphabet is {0, 1}4. The
three colors {0, 1, 2} are encoded using the binary strings {0000, 0100, 1000}. For
each edge {u, v} of G, we have the system of polynomial equations

A(u)1, A(u)2 = 0;
A(v)1, A(v)2 = 0;

A(u)3 = 0;
A(u)4 = 0;
A(v)3 = 0;
A(v)4 = 0;

(A(u)1 − A(v)1 + 1) · (A(u)2 − A(v)2 + 1) = 0 (mod 2).

The first six equations ensure that only valid colors are used to color u and v; the
last equation ensures that the colors assigned to u and v are different. This final
constraint graph is the output of T0(x).

Now, let T1 be the (2, ε)-transformation promised by Lemma 4.4. Let m be the
number of constraints in T0(x), and let � = log m. Our final transformation T ,
then, is x �→ T

(�)
1 (T0(x)). Let us verify that T has the required properties. Let

G0 = T0(X), and for i = 1, 2, . . . , �, let Gi = T1(Gi−1).

Completeness: T0 takes inputs in L to satisfiable constraint graphs, and T1 takes
satisfiable constraint graphs to satisfiable constraint graphs. Thus, T takes
inputs in L to satisfiable constraint graphs.

Soundness: If x 	∈ L, then unsat(G0) ≥ 1
m . Since T1 is a (2, ε)-transformation,

we have by induction that unsat(Gi) ≥ min{ 2i

m , ε}. In particular,

unsat(T (x)) = unsat(G�) ≥ min
{

2�

m
, ε

}
.

Since, 2� ≥ m, we conclude that unsat(T (x)) ≥ ε.
Running time: To show that the total time required to compute T is bounded

by a polynomial in |x|, we first argue that the size of each Gi is bounded
by a polynomial in |x|. This is clearly true for G0 because T0 can be
computed in polynomial time. Since T1 is a linear-size transformation, we
have |Gi| ≤ c|Gi−1|+d ≤ (c+d)|Gi−1| for some constants c, d. This implies
that |Gi| ≤ (c + d)i|T0(x)| ≤ (c + d)�|T0(x)| ≤ a|x|b for some constants a, b
(where the final inequality uses the fact that � = log |T0(x)|.
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The total running time is then bounded by the time taken to produce G0

plus the time taken for the � = O(log |x|) executions of the transform T1 on
inputs of size polynomial in |x|. Clearly, the total running time is bounded
by a polynomial in |x|.

�
Thus our focus now shifts to Lemma 4.4, and we start to peek into its proof.

4.3. Proof of Lemma 4.4. Dinur proves this lemma by combining two counter-
acting transformations. The first transformation amplifies the gap by increasing
the alphabet size. The second transformation is now in the classical style, which
reduces the gap somewhat, but more importantly reduces the alphabet size. While
it is clear that both reductions are opposing in direction, the level of detail we
have permitted ourselves above leaves it unclear as to what would happen if the
two reductions were applied in sequence. Would this increase the gap or reduce it?
Would it increase the alphabet size or reduce it (or preserve it)?

Part of the insight behind Dinur’s approach is the observation that both these
transformations are especially powerful. The first allows us to amplify the gap by
an arbitrary large factor, subject to a sufficiently large explosion in the alphabet
size. The second brings the alphabet size to a fixed constant while paying a fixed
price in terms of the gap. These terms are articulated in the assertions below.

Lemma 4.5 (Gap amplification). For every constant c, there are constants ε, K > 0
such that there is a (c, ε)-transformation from G̃16 to G̃K .

In other words, one can pick any factor c to amplify by, and there is a transfor-
mation that will achieve that amplification, provided the alphabet size is allowed to
increase to an appropriately large constant depending only on c and independent
of the size of the input graph.

Lemma 4.6 (Alphabet reduction). There exists a constant ε2 > 0 such that for
all constants k, there is an (ε2, 1)-transformation from G̃K to G̃16.

Here we are buying a small alphabet size by paying for it in terms of a reduction
in gap. It is important that this loss in gap, determined by the factor ε2 above, is
independent of alphabet size. We will elaborate more on this in a later section.

We devote separate sections to the proof of these two lemmas. For now, let us
show how Lemma 4.4 follows from them.

Proof of Lemma 4.4. Consider the constant ε2 given by Lemma 4.6 and set c = 2
ε2

.
With this value of c, we obtain from Lemma 4.5 constants ε1, k > 0, and a
(c, ε1)-transformation T1 from G̃16 to G̃K . From Lemma 4.6, we obtain an (ε2, 1)-
transformation from G̃K to G̃16. Our final transformation from G̃16 to G̃16 is
G �→ T2(T1(G)). We claim that T is a (2, ε1ε2)-transformation. Clearly, T can
be computed in polynomial time. Since, for all G ∈ G̃16, |T1(G)| ≤ a1|G| + b1

and for all G ∈ G̃K , |T2(G)| ≤ a2|G| + b2 (for some constants a1, b1, a2, b2 ≥ 0), it
follows that |T (G)| ≤ a1a2|G| + a2b1 + b2; thus, T incurs only a linear blow-up in
size. Similarly, since T1 and T2 take satisfiable instances to satisfiable instances, so
does their composition T . And finally, we have

unsat(T (G)) ≥ ε2 · unsat(T1(G)) ≥ min{ε2 · c · unsat(G), ε2 · ε1}
= min{2 · unsat(G), ε},
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where ε = ε1ε2. This concludes the proof of Lemma 4.4. �

With this out of the way, we can turn our attention to gap amplification and
alphabet reduction, and the proofs of Lemmas 4.5 and 4.6.

5. Gap amplification

We now move to the technical centerpiece of Dinur’s proof of the PCP theorem.
Before getting into the specifics of this problem, we first describe the context of the
result and its proof.

5.1. Background: Error reduction in randomized computation. The prob-
lem of gap amplification in constraint graphs sits in the wider context of error
reduction in the developing theory of randomized computation. Since every es-
sentially randomized algorithm errs with some positive probability, it is natural to
investigate whether, how, and at what cost this error can be reduced.

Let us examine the problem of gap amplification in constraint graphs in this
context. It will be helpful to work in the framework of the PCP arising from
constraint graphs as described in Proposition 3.6. What is a verifier? It is a
randomized algorithm that examines the given proof Π in order to accept or reject.
It errs when its computation accepts for some input not in the language. If the
gap of the reduction is ε, then the probability that it errs is at most 1 − ε. So,
indeed, to increase the gap, we need to reduce the error in the verifier’s randomized
algorithm.

The simplest way to reduce errors in randomized algorithms is by running the
algorithm several times independently. For instance, consider one of the classical
(randomized) algorithms to determine if an n-bit integer is a prime. The early
algorithms (cf. [31]) had the property that they would always declare prime inputs
to be “prime”, but for any composite input they may declare it also to be “prime”
with probability half. The classical algorithm would need an n-bit long random
string to perform this test. Now, suppose we wish to reduce this error probability
(of mistakenly classifying composite numbers as primes) to say 1/128; one needs
only to run the basic algorithm seven times and declare a number to be prime only
if every one of the seven iterations declared it to be prime. One of the drawbacks
of this approach is that this process costs seven times the original in terms of
randomness as well as running time. While the latter may be an affordable cost
(especially for settings other than primality testing, where no polynomial time
deterministic algorithm is known), the increasing cost of randomness may prove
less affordable. (Unlike the case of processor speeds in computers, which under
the empirically observed “Moore’s Law” keep doubling every three years, physical
generation of pure randomness does not seem to be getting easier over the years.)

For gap amplification in PCPs, randomness is a precious resource. After error
reduction, if we were to translate the PCP back into a constraint graph, the number
of constraints in the resulting graph would be determined by the amount of ran-
domness used by the verifier of the PCP (as we saw in the proof of Proposition 3.6).
Since we want the the size of the constraint graph to increase by at most a constant
factor, we can afford a constant additive increase only in the amount of randomness
used, so even doubling the amount of randomness is, in general, unaffordable. Is
there a more “randomness-efficient” way to reduce errors in randomized algorithms?
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This question has been studied extensively in the CS literature under the la-
bel of “recycling randomness” [1, 17, 28], and it is known that it suffices to use
something like n + ck bits, for some absolute constant c, to reduce the error to
2−k (though the cost in terms of running time remains a multiplicative factor of
k). The most common technique for such “random-efficient” amplification is to
repeat the randomized algorithm with related randomness. More formally, suppose
A(x; R) denotes the computation of a randomized algorithm to determine some
property of x (e.g., A(x) = 1 if and only if x is a prime integer). The standard
amplification constructs a new algorithm A′(x; R′) where R′ = (R1, . . . , Rk) is a
collection of k independent random strings from {0, 1}n and A′(x; R′) = 1 if and
only if A(x; R1) = · · · = A(x; Rk) = 0. Now, given that each invocation A(x; Ri)
“leaks” only one bit of information about Ri, using independent random coins is
completely inessential for this process. Indeed it is easy to establish the existence
of subsets S ⊆ {{0, 1}n}k of cardinality only 2O(n+k) such that the performance of
A′ where R′ is chosen uniformly from S is almost as good as when drawn from the
entire universe of cardinality 2nk. The computational bottleneck here is to produce
such a distribution/set S efficiently.

One popular approach to producing such a set efficiently uses the technique of
“random walks” on “expander graphs”. Here we create a graph G whose vertices
are the space of random strings of A (i.e., V (G) = {0, 1}n) with the property that
each vertex of G is adjacent to a fixed number, D, of other vertices in G. For the
application of recycling randomness it will be important that one can enumerate in
time polynomial in n all the neighbors of any given vertex R ∈ {0, 1}n, though for
the purpose of the PCP gap amplification it will suffice to be able to compute this
in time 2O(n). The “random walk” technique to recycling randomness produces
R′ = (R1, . . . , Rk) by first picking R1 ∈ {0, 1}n uniformly at random, and then
picking R2 to be a random neighbor of R1, and R3 to be a random neighbor of R2

and so on. In other words, R′ is generated by taking a “random walk” on G.
To understand the randomness implications of this process, we first note that

this process takes n + k log D bits of randomness. So it is efficient if D is small.
On the other hand, the amplification property relates to structural properties of
the graph. For instance, the reader can see that it wouldn’t help if the graph had
no edges or were just a collection of 2n/(D + 1) disconnected complete graphs of
size D + 1 each! Indeed for the amplification to work well, the graph needs to be
extremely well connected or an “expander” as defined next.

Definition 5.1 (Expander graphs). For a graph G = (V, E) and a subset S ⊆ V ,
let ES = {e ∈ E : tail(e) ∈ S ∧ head(e) ∈ V \ S} denote the set of edges going from
S to its complement. The expansion of the set S, denoted e(S), is the quantity

e(S) =
|ES |
|S| .

G is said to be an (η, d)-expander if G is d-regular and every set S with |S| ≤ |V |/2
has expansion e(S) ≥ η. We call an (η, d)-expander G positive if every vertex of G
has at least d

2 self-loops.

It is by now well known in the CS literature that if R′ if generated by a k-step
random walk on an (η, d)-expander, then the error probability reduces to 2−δk where
δ is a universal constant depending only on η and d. (This result was first shown
in a specific context by Ajtai et al. [1], and then noted for its general applicability
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in [17, 28].) Furthermore, a rich collection of “explicit” (η, d)-expanders has been
constructed, allowing for wide-ranging application of this insight. We will use the
following.

Theorem 5.2 (Existence of expanders). There exist constants η0 > 0 and d0 > 0
such that for all n ≥ 1, one can in polynomial time in n construct an (η0, d0)-
positive expander with n vertices.

We do not provide a proof of this important theorem. Hoory, Linial and Wigder-
son [27] survey such constructions and also describe several applications.

These ideas immediately lead to PCPs where the time complexity and the
amount of randomness used by the verifier are as we would like: to amplify some
small gap by a factor of 2, we need to run the verifier’s algorithm a constant num-
ber of times, using a constant number of more random bits than before. There is,
however, still one, fatal, flaw in this method. The new verifier has to make more
than two queries to the oracle, whereas in order to translate the PCP back to a
constraint graph (e.g., using Proposition 3.6), we need the verifier to make just two
queries. Are there ways to amplify the gap while at the same time maintaining the
number of queries made by the verifier at two?

5.2. Background: Parallel repetition. For this section it is convenient to switch
to the PCP language. Consider a PCP verifier V that on input x and random string
R makes two queries, q1(R) and q2(R), to an oracle Π : Z

+ → Σ and accepts if
the responses a = Π(q1(R)) and b = Π(q2(R)) satisfy f(R, a, b) = 1 for some fixed
predicate f depending on x.

The naive amplification (corresponding to reduction A4 described earlier) cor-
responds to the following verifier V ′: V ′ picks two random strings R1, R2 from
the space of the randomness of V and issues queries q1(R1), q2(R1), q1(R2), q2(R2)
to Π. If the responses are a1, b2, a2, b2, then V ′ accepts if f(R1, a1, b1) = 1 and
f(R2, a2, b2) = 1. The acceptance probability of the modified verifier V ′ (maxi-
mized over Π) is the square of the acceptance probability of V (maximized over Π),
which is good enough for us. However, it makes 4 queries, and this is the issue we
wish to address in this section.

One natural attempt at reducing the number of queries may be to “combine”
queries in some natural way. This is referred to as parallel repetition of PCPs.
In the k-fold parallel repetition we consider a new verifier V ||⊗k that accesses an
oracle Π||⊗k : (Z+)k → Σk (with the association that the k coordinates in the
domain correspond to k queries to Π, and the k coordinates in the range to the k
responses of Π) and functions as follows: V ||⊗k picks k independent random strings
R1, . . . , Rk and queries Π||⊗k with (q1(R1), . . . , q1(Rk)) and (q2(R1), . . . , q2(R2)).
If the responses of Π||⊗k are (a1, . . . , ak) and (b1, . . . , bk), then V ||⊗k accepts if
f(Ri, ai, bi) = 1 for every i ∈ {1, . . . , k}.

One may hope that the error in the k-fold parallel repetition goes down exponen-
tially with k. However, any such hopes are dashed by the following example, which
gives a choice of (Σ, f, q1, q2) such that the error of the k-fold parallel repetition
increases exponentially with k.

Example. Let V work with Σ = {0, 1} and the space of random strings R be
{0, 1}. Let qi(R) = i + R and let f(0, a, b) = b and f(1, a, b) = 1 − a. The reader
may verify that for every oracle Π : {1, 2, 3} → {0, 1} the acceptance probability
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of V is 1
2 . Furthermore there exist Π||⊗k for which the acceptance probability of

V ||⊗k is 1 − 2−k.
The example illustrates some of the many problems with naive hopes one may

have from parallel repetition. In the face of the above example, one may wonder if
any amplification is possible at all in this setting. After many works exploring many
aspects of this problem, Raz [33] gave a dramatic positive. He considers restricted
verifiers whose “question” spaces (the image of q1(·) and q2(·)) are disjoint and
shows that for such verifiers, error does reduce exponentially with the number
of iterations, with the base of the exponent depending only on the acceptance
probability of the original verifier and the answer size |Σ|. Furthermore, there
exist reductions reducing any verifier to a restricted verifier losing only a constant
factor in the gap. (The reader may try to see how one such reduction is implied by
Proposition 6.2, Part 3.) When combined, these two steps allow us to amplify the
gap in PCPs, but now we have lost the “linear size property”.

Is it possible to try parallel repetition while recycling randomness? Given the
difficulty in analyzing parallel repetition (Raz’s proof, while essentially elementary,
is already one of the most intricate proofs seen in the PCP setting), the task of
combining it with recycling randomness appears forbidding. Remarkably enough,
Dinur [19] manages to combine the two techniques and achieve the desired gap
amplification, and does so with relatively simple proofs. Among other things, Dinur
observes that even an example such as the above may not defeat the purpose. For
the purposes of Lemma 4.5 it suffices to show that the acceptance probability goes
down, provided it was very high to start with, and that in the remaining cases it
remains bounded away from 1 (by, say, 2k). Dealing with cases where the acceptance
probability is very high (e.g., greater than 1−|Σ|−k) turns out be easier than dealing
with the other cases. We now describe Dinur’s gap amplification.

5.3. Dinur’s gap amplifying transformation. The required transformation T1

will itself be a composition of three transformations, T11, T12 and T13. The first
two of these preprocess the input graph, turning it into a constant degree expander
and preparing the ground for launching T13, which then delivers the required am-
plification. Both T11 and T12 lose something in the gap (the alphabet remains the
same), but the amplification provided by the T13 more than compensates this loss.
In Section 5.1, we hinted at the need for conserving randomness while amplifying
the gap and the role of constant-degree expander graphs in reducing the error in
randomized algorithms. It turns out that gap amplification in constraint graphs is
similarly facilitated if the underlying graph can be assumed to be a constant-degree
expander, but the details now are rather more subtle.

5.4. Preprocessing. We are now ready to describe the transformations T11 and
T12. The first of these, T11, converts an arbitrary constraint graph into a constant-
degree graph, losing a fixed factor in the gap.

Lemma 5.3 (Constant-degree constraint graphs). There are constants δ1, d > 0
such that for all k, there is a (δ1, 1)-transformation T11 that transforms constraint
graphs in G̃K into d-regular constraint graphs in G̃K .

Suppose we are given a G ∈ G̃K but have no bound on the degrees of the vertices.
Consider a vertex v of G whose degree deg(v) is large. The idea is to split this vertex
into deg(v) vertices, dedicating one vertex for each edge incident on v in the original
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graph. The difficulty with this naive idea is that the coloring of the new graph could
assign different colors to the different copies of v, thereby making the new constraint
graph much easier to satisfy. The idea then is to connect the different copies
of v using equality constraints so that any coloring that assigns wildly differing
colors to the copies of v necessarily violates several of these constraints. We must,
however, be careful that the graph stays bounded-degree even with the new equality
constraints. A gadget achieving precisely this was invented by Papadimitriou and
Yannakakis [32] using expander graphs.

Lemma 5.4 (Equality gadget). Let H be a constraint graph that is an (η, d)-
expander such that every constraint is an equality function. Let χ : V (H) → Σ be a
coloring of H, and let χ∗ be the color that appears most frequently in this coloring.
Then,

Pr
e∈E(H)

[ce(χ) = 0] ≥ η

2d
Pr

v∈V (H)
[χ(v) 	= χ∗].

Proof. Consider a color σ ∈ Σ \ {χ∗}. For the set of vertices colored σ, i.e. χ−1(σ),
there are at least η|χ−1(σ)| edges that have one endpoint inside and one endpoint
outside. The constraint on every such edge evaluates to 0. Since such an edge
connects at most two minority color classes, the number of constraints violated by
χ is at least 1

2

∑
σ∈Σ\{χ∗} η|χ−1(σ)|. Thus,

Pr
e∈E(H)

[ce(χ) = 0] ≥ 1
2|E|

∑
σ∈Σ\{χ∗}

η|χ−1(σ)|

=
1

2d|V |
∑

σ∈Σ\{χ∗}
η|χ−1(σ)|

=
η

2d
Pr

v∈V (H)
[χ(v) 	= χ∗].

�

Using this gadget, we can now prove Lemma 5.3.

Proof of Lemma 5.3. We fill in the details in the outline above. The transformation
T11 will transform the given graph G ∈ G̃K into a graph G′ ∈ G̃K . Let K = 2k and
Σ(G) = {0, 1}k. The vertex v ∈ V (G) has deg(v) different versions in G′. Stated
formally, for v ∈ V (G), we let

[v] = {(v, e) : e ∈ E(G) and tail(e) = v}.

We will refer to [v] as the cloud of v. The vertex set of G′ will be the union of
all such clouds, that is, V (G′) =

⋃
v∈V (G)[v]. There are two kinds of edges in G′.

First, there are the edges derived from the edges of G: for each edge e ∈ E(G)
of the form (u, v), we have an edge e′ ∈ E(G′) of the form ((u, e), (v, e−)) in G′

(recall that e− is the reversed version of e and tail(e−1) = v); e′ is associated with
the same constraint as e. Second, we have the edges internal to the clouds arising
out of the Papadimitriou-Yannakakis gadget. Let Hv be an (η, d0)-expander graph
(as promised by Theorem 5.2) with vertex set [v], where we associate the edge of
the form {u′, v′} with the equality constraint, now represented by the system of
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polynomial equations {Xu′,i − Xv′,i = 0 : 1 ≤ i ≤ k}. Let

E1 = {e′ : e ∈ E(G)};
E2 =

⋃
v∈V (G)

E(Hv).

Thus, E(G′) = E1 ∪ E2. Note that all constraints are still expressed as a system
of polynomial equations of degree at most two. This describes the transformation
T11. It remains to verify that it has the required properties.

It is straightforward to verify that if G is satisfiable, then G′ is satisfiable. Let
us now argue that unsat(G′) ≥ δ1 · unsat(G), for some absolute constant δ1 >
0. Fix a coloring χ′ of G′. The idea is that if the colors in a single cloud vary
substantially, then by Lemma 5.4, a good fraction of the edges inside the cloud will
reject. However, if some one color is used heavily in the clouds, then the situation is
similar to the original graph, and a good fraction of the constraints between clouds
(corresponding to edges derived from the original graph) will reject. To state this
formally, consider the coloring χ for G obtained from χ′ by applying ‘majority
decoding’ on each cloud: χ(v) is the color that χ′ assigns most frequently to the
vertices of [v]. We call a vertex of G′ a minority vertex if its color is not shared by
the majority (more than half) of the vertices in its cloud. By definition, a fraction
unsat(G) of the edges of G are left unsatisfied by the coloring χ. For an edge
e ∈ E(G), if ce(χ) = 0, then at least one of the following two conditions must hold:
(I) ce′(χ′) = 0; (II) e′ is incident on a minority vertex of G′. Thus,

unsat(G) ≤ Pr
e∈E(G)

[ce(χ) = 0]

≤ Pr
e∈E(G)

[ce′(χ′) = 0] + Pr
e∈E(G)

[e′ is incident on a minority vertex].(1)

Consider the first term on the right. Since |E(G′)| = (d0 + 1)|E(G)|, we have

(2) Pr
e∈E(G)

[ce′(χ′) = 0] ≤ (d0 + 1) Pr
e∈E(G′)

[ce(χ′) = 0].

Next consider the second term on the right-hand side of (1). This quantity is closely
related to the number of minority vertices in G. Indeed, a random vertex v of G′

can be generated by first picking a random derived edge and then choosing one of
its endpoints. Thus,

Pr
v∈V (G′)

[v is a minority vertex] ≥ 1
2

Pr
e∈E(G)

[e′ is incident on a minority vertex].

By Lemma 5.4, it follows that

Pr
e′∈E2

[ce′(χ′) = 0] ≥ η

2d0
Pr

v∈V (G′)
[v is a minority vertex]

≥ η

4d0
Pr

e∈E(G)
[e′ is incident on a minority vertex].

Since |E(G′)| = (d0 + 1)|V | ≤ 2d0|V | = 2|E2|, we conclude that

(3) Pr
e∈E(G)

[e′ is incident on a minority vertex] ≤ 8d0

η
Pr

e∈E(G′)
[ce(χ′) = 0].

Returning to (1) and using (2) and (3), we obtain

unsat(G) ≤
(

d0 + 1 +
8d0

η

)
Pr

e∈E(G′)
[ce(χ′) = 0].
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Thus, the claim holds with δ1 =
(
d0 + 1 + 8d0

η

)−1

and d = d0 + 1. �

Next, we need a transformation that will turn the constraint graph into an
expander.

Lemma 5.5 (Expander constraint graphs). For all d > 0, there are constants
δ2, η, d0 > 0 such that there is a (δ2, 1)-transformation T12 that transforms a d-
regular constraint graph in G̃K into a constraint graph in G̃K that is an (η, 2(d+d0))-
positive expander.

Proof. Let G ∈ G̃K be the given d-regular constraint graph. Let H be an (η0, d0)-
expander (as in Theorem 5.2) with the same set of vertices as G. Let G′ be the union
of G and H, where the edges of H are associated with the trivial constraint that is
always true (formally represented by the empty system of polynomial equations).
Now we add d + d0 self-loops (with trivial constraints) to every vertex of G′ to
obtain the final constraint graph G′′. Clearly, if G is satisfiable, then so is G′′.
Furthermore, since |E(G)| ≥

(
d
2

)
|V (G)| and |E(G′′)| ≤ 2(d + d0)|V (G)|, we have

unsat(G′′) ≥
(

d
4(d+d0)

)
unsat(G). So, G′′ is an (η0, 2(d + d0))-positive expander,

and the map G �→ G′′ is the (δ2, 1)-transformation, for δ2 = d
4(d+d0)

. �

5.5. The verifier takes a walk. We now approach the crucial part of Dinur’s
proof.

Lemma 5.6. For all c, d, η > 0 there are constants ε, K > 0 such that there is
a (c, ε)-transformation T13 taking constraint graphs in G̃16 that are (η, d)-positive
expanders to constraint graphs in G̃K .

Let G ∈ G̃16 be an (η, d)-positive expander. Let unsat(G) = γ; that is, every as-
signment leaves a fraction γ of the edges unsatisfied. Viewing this in the framework
of a PCP (as in Proposition 3.6), the verifier rejects every coloring with probability
at least γ. The natural way to increase this rejection probability is for the verifier to
examine several constraints at the same time. There are two concerns: (1) picking
each constraint requires us to toss new coins, and if these are done independently,
the size of the constraint graph we derive from the resulting PCP (by invoking
Proposition 3.6) will not be linear in the size of the original graph; (2) this strategy
requires the verifier to examine the colors assigned to several vertices, but in order
to obtain a constraint graph in the end, we can allow at most two probes by the
verifier. The first concern is addressed by picking the edges, not independently, but
by taking a random walk on an expander graph. The length of the random walk
will depend on the number of edges we want to examine and the amplification we
wish to achieve. Since we need amplification only by a constant factor, walks of
constant length will suffice. Now, let us address the second concern. Given that
the edges we pick are going to be in the vicinity of the starting and ending vertices,
we expand the alphabet of vertices so that at each vertex we now have information
about the colors assigned to all vertices in its neighborhood; that is, every vertex
u in the neighborhood v has an opinion about v’s color. There is no guarantee,
however, that these opinions are consistent. How, then, can we conclude that ex-
amining several edges in this manner is somehow related to examining these edges
in the original graph? For this, we must look deeper into Dinur’s proof.

Based on G, we will first describe a verifier that reads two locations from a proof
and simultaneously checks the constraints for several edges of the original graph.
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This will amplify the gap. We will then transform this PCP into a new constraint
graph with a larger alphabet, as we did in the proof of Proposition 3.6.

5.6. The PCP. Fix t ≥ 1. We describe the proof oracle and verifier below. The
verifier probes this proof randomly at two locations and, based on the values read,
decides to accept or reject. If the original constraint graph is satisfiable, then there
exists a proof that the verifier accepts with probability 1. On the other hand, if
the original constraint graph is ε-far from satisfiable, then the verifier rejects every
proof with probability at least ε · Ω(t).

The proof: For each vertex v ∈ V (G), the proof now provides an assignment for
all vertices that are within a distance t from v. We view the proof as a function
A : V (G) → Σ(G)(d+1)t

, where A(v) denotes this (partial) assignment provided
at vertex v. We use A(v)[w] to refer to the value A(v) assigns to vertex w, and
think of A(v)[w] as vertex v’s opinion for the color that should be assigned to w
in order to satisfy G. Thus, every vertex within distance t of w has an opinion
for w; there is no guarantee, however, that these opinions agree with each other.
Vertices w that don’t appear within distance t of v are not explicitly assigned a
value in A(v); for such vertices w, we say that A(v)[w] is null. Let A1 and A2 be
two partial assignments, and let e be an edge of G of the form (u, v). We say that
A1 and A2 pass the test at e if at least one of the following conditions holds: (i)
one of A1(u), A1(v), A2(u), and A2(v) is null; (ii) A1 and A2 agree on {u, v} and
ce(A1[u], A2[v]) = 1.

The verifier: The verifier picks two random vertices, a and b, of the graph and
performs a test on the values stored there.

The random walk: The two vertices a and b are generated using a random walk,
as follows:

I. Let a = v0 be a random vertex chosen uniformly from V (G). Repeat
Step II until some condition for stopping is met.

II. Having chosen v0,v1, . . . ,vi−1, let ei be a random edge leaving vi−1, chosen
uniformly among the d edges e with tail(e) = vi−1. Let vi be the other
endpoint of ei, that is, vi = head(ei−1). With probability 1

t , STOP and
set T = i.

The test: Suppose the random walk visits the vertices a = v0,v1, . . . ,vT = b
using the sequence of edges, e1, e2, . . . , eT . If A(a) and A(b) fail (i.e. don’t pass)
the test at some ei, the verifier rejects; otherwise, it accepts. When a and b are
clear from the context, we say that the test at ei fails when we mean that A(a)
and A(b) fail the test at ei.

Lemma 5.7. Suppose the constraint graph G is an (η, d)-expander.

(a) If G is satisfiable, then there is a proof that the verifier accepts with proba-
bility 1.

(b) If G is ε-far from satisfiable, then the verifier rejects every proof with prob-
ability at least (

1
512C

)
· t · min

{
ε,

1
t

}
,

where C = 1 + d2

η2 .



40 JAIKUMAR RADHAKRISHNAN AND MADHU SUDAN

Proof. Part (a) is straightforward. Given a satisfying assignment A for G, let the
proof be the assignment A such that A(v)[w] = A(w). �

The idea for part (b) is the following: Fix an assignment A. We will argue
that for such an assignment A to succeed in convincing the verifier, the opinions
of different vertices must be generally quite consistent. This suggests that a good
fraction of A is consistent with a fixed underlying assignment A for G. Now, since
G is ε-far from satisfiable, A must violate at least a fraction ε of the constraints
in G. Since the verifier examines t edges on an average, the expected number of
unsatisfied edges it encounters is tε. Most of the work will go into showing that
when it does encounter these edges, it rejects with a sufficient probability and that
these rejections are not concentrated on just a few of its walks. In our analysis we
will use the following fact, which formalizes the memoryless nature of the verifier’s
random walk. (We omit the proof.)

Lemma 5.8 (Fact about the random walk). Let e ∈ E(G) be of the form (u, v).
Consider the verifier’s walks conditioned on the event that the edge e appears exactly
k times (for some k ≥ 1) in the walk, that is, the number of i’s for which ei = e
(in particular, vi−1 = u and vi = v) is exactly k. Conditioned on this event,
consider the starting vertex, a, and the ending vertex, b. We claim that a and b
are independent random variables. Furthermore, a has the same distribution as the
random vertex obtained by the following random process.

Start the random walk at u, but stop with probability 1
t before mak-

ing each move (so we stop at u itself with probability 1
t ). Output

the final vertex.
Similarly, we claim that b can be generated using a random walk starting from v
and stopping with probability 1

t before each step.

Now, fix a proof A. Let us “decode” A and try to obtain an assignment A for
G. The idea is to define A(u) to be the most popular opinion available in A for u,
but motivated by Lemma 5.8, the popularity of an opinion will be determined by
considering a random walk.
The new assignment A for G: To obtain A(u), we perform a random walk
starting from u mentioned in Lemma 5.8 (stopping with probability 1

t before each
step). Restrict attention to those walks that stop within t−1 steps. Let the vertex
where the walk stops be bu. This generates a distribution on the vertices of G. For
each letter σ in the alphabet, determine the probability (under this distribution)
that bu’s opinion for u is σ. Then, let A(u) be the letter that has the highest
probability. Formally,

A(u) ∆= arg max
σ∈Σ

Pr[A(bu)[u] = σ and T ≤ t − 1].

We now relate the verifier’s probability of rejection to the the fraction of edges of
G left unsatisfied by A. Since G is ε-far from satisfiable, a fraction ε of the edges of
G is left unsatisfied by A. We wish to argue that whenever the verifier encounters
one of these edges in its walk, it is likely to reject the walk. Let F be a subset of
these unsatisfied edges of the largest size such that |F | ≤ 1

t . Then,

(4) min
{

ε,
1
2t

}
≤ |F |

|E| ≤ 1
t
.

Now, consider the edges used by the verifier in its walk: e1, e2, . . . , eT.
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Definition 5.9 (Faulty edge). We say that the i-th edge of the verifier’s walk is
faulty if

• ei ∈ F and
• A(a) and A(b) fail the test at ei.

Let N be the random variable denoting the number of faulty edges on the verifier’s
walk.

Since the verifier rejects whenever it encounters a faulty edge on its walk, it
is enough to show that N > 0 with high enough probability. We will prove the
following two claims.

Claim 5.10.

E[N] ≥ t
|F |
8|E|(5)

and

E[N2] ≤ Dt
|F |
|E| ,(6)

where D = 4
(
1 + d2

η2

)
.

Let us now assume that these claims hold, and complete the proof of Lemma 5.7:

Pr[verifier rejects] ≥ Pr[N > 0] ≥ E[N]2

E[N2]

≥
(

1
64D

)
· t ·

(
|F |
|E|

)

≥
(

1
128D

)
· t · min

{
ε,

1
t

}
.

For the second inequality, we used the fact (which follows from the Chebyshev-
Cantelli inequality; see also Alon and Spencer [4, Section 4.8, Ex. 1]) that for any
non-negative random variable X, Pr[X > 0] ≥ E[X]2

E[X2] . For the last inequality we
used (4).

5.7. Proofs of the claims.

Proof of (5). We will estimate the expected number of faulty occurrences for each
edge in F . Fix one such edge e of the form (u, v), and let Ne denote the number
of faulty occurrences of e in the verifier’s walk. Let #e denote the number of
occurrences (not necessarily faulty) of e in the walk. Note that the i-th edge of
the walk is uniformly distributed over the set of all edges, and so E[#e] = t

|E| for
all e. Condition on the event #e = k, and consider the starting vertex a and the
ending vertex b. By Lemma 5.8, a and b can be generated using independent lazy
random walks starting at u and v respectively. The probability that the walk to
generate a traverses t or more edges is

(
1 − 1

t

)t ≤ exp(−1). Thus, with probability

at least α
∆= 1− exp(−1) the starting vertex a is at a distance at most t− 1 from u

and hence at most t from v. Let pu be the probability that the a is at a distance
at most t − 1 from u and A(a)[u] = A(u); similarly, let pv be the probability that
b is at a distance at most t − 1 from v and A(b)[v] = A(v). Now, the test at e
fails if A(a)[u] 	= A(b)[u] (and both are not null). This happens with probability
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at least α(α − pu). Similarly, by considering v, we conclude that the test at e fails
with probability at least α(α − pv). Furthermore, with probability at least pupv,
we have

ce(A(a)[u],A(b)[v]) = ce(A(u), A(v)) = 0,

in which case the test at e fails. Thus, overall,

Pr[the test at e fails | #e = k] ≥ max {α(α − pu), α(α − pv), pupv}

≥ α2

(√
5 − 1
2

)2

>
1
8
.

If A(a) and A(b) fail the test at e, then all the k occurrences of e in the walk are
considered faulty. Thus,

E[Ne] =
∑
k>0

Pr[Ne = k] · k

≥
∑
k>0

Pr[#e = k] · k · Pr[the test at e fails | #e = k]

≥
∑
k>0

Pr[#e = k] · k ·
(

1
8

)

=
(

1
8

)
E[#e]

=
t

8|E| .

Finally, summing over all e ∈ F , we have

E[N] =
∑

e

E[Ne] ≥
(

|F |
8|E|

)
t.

�

We have shown that the expected number of faulty edges on the verifier’s walk is
large. However, this does not automatically imply that the number of faulty edges
is positive with reasonable probability, for it could be that faulty edges appear on
the verifier’s walk in bursts and just a few walks account for the large expectation.
This is where we use the fact that our underlying graph is an expander. Intuitively,
one expects that a random walk in an expander graph is not likely to visit the
small set of edges, F , too many times. The following proposition quantifies this
intuition by showing that in the random walk the events of the form “ei ∈ F” are
approximately pairwise independent.

Proposition 5.11 (see Dinur [19]). For j > i,

Pr[ej ∈ F | ei ∈ F ] ≤
(

1 − 1
t

)j−i
(
|F |
|E| +

(
1 − η2

d2

)j−i−1
)

.

A proof of this proposition appears in Appendix B.
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Proof of (6). Let χi be the indicator random variable for the event “ei ∈ F”. Then,
Pr[χi = 1] = |F |

|E|
(
1 − 1

t

)i−1, and

E[N2] ≤
( ∞∑

i=1

χi

)2

≤ 2
∑

1≤i≤j<∞
E[χiχj ]

≤ 2
∞∑

i=1

Pr[χi = 1]
∑
j≥i

Pr[χj = 1 | χi = 1]

≤ 2
∞∑

i=1

Pr[χi = 1]

⎡
⎣1 +

∑
�≥1

(
1 − 1

t

)�
(
|F |
|E| +

(
1 − η2

2d2

)�−1
)⎤

⎦(7)

≤ 2
∞∑

i=1

Pr[χi = 1]

⎡
⎣1 +

∑
�≥1

(
1 − 1

t

)� |F |
|E| +

(
1 − η2

2d2

)�−1
⎤
⎦

≤ 2t
|F |
|E|

(
1 + t

|F |
|E| +

2d2

η2

)
,

where we used Proposition 5.11 in (7). Claim (6) follows from this because we have
assumed (see (4) above) that |F |

|E| ≤
1
t . �

5.8. The final constraint graph. It is relatively straightforward to model the
PCP described above as a constraint graph. There is one technicality that we
need to take care of: the verifier’s walks are not bounded in length, and a naive
translation would lead to a graph with infinitely many edges. We now observe that
we can truncate the verifier’s walk without losing much in the rejection probability.

Verifier with truncated walks: We will show that a version of Lemma 5.7 holds
even when the verifier’s walks are truncated at T ∗ = 5t, and it just accepts if its
walk has not stopped within these many steps.

Lemma 5.12 (Truncated verifier). Suppose the constraint graph G with alphabet
Σ is an (η, d)-expander. Consider the verifier with truncated walks.

(a) If G is satisfiable, then there is a proof that the verifier accepts with proba-
bility 1.

(b) If G is ε-far from satisfiable, then the verifier rejects every proof with prob-
ability at least (

1
1024C

)
· t · min

{
ε,

1
t

}
,

where C = 2
(
1 + ( d

η )2
)
.

Proof. We show only how the previous proof is to be modified in order to justify
this lemma. If the verifier’s walk is truncated before stopping, then no edge on
the walk is declared faulty. Under this definition, let N′ be the number of faulty
edges in the verifier’s random walk (N′ = 0 whenever the walk is truncated). Let
us redo Claim (5). Let I{T ≥ T ∗ + 1} be the indicator random variable for the
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event T ≥ T ∗ + 1. Then, N′ = N − N · I{T ≥ T ∗ + 1}, and

(8) E[N′] = E[N] − E[N · I{T ≥ T ∗ + 1}].

We already have a lower bound for E[N] in Claim (5), so it is sufficient to obtain an
upper bound for the second term on the right, which accounts for the contribution
to E[N] from long walks.

The contribution to E[N] from walks of length � is at most �|F |/|E| times the
probability that T = �. So, the contribution to E[N] from walks of length at least
T ∗ + 1 is

Pr[T ≥ T ∗ + 1] · E[T | T ≥ T ∗ + 1] · |F |
|E| .

The first factor is at most (1 − 1
t )

T∗
; the second is T ∗ + t. So,

E[N · I{T ≥ T ∗ + 1}] ≤ exp
(
−T ∗

t

)
(T ∗ + t) · |F |

|E| ≤ t · |F |
|E| ·

1
16

.

Thus, from (8), we obtain

E[N′] ≥ t · |F |
|E| ·

1
8
− t · |F |

|E| ·
1
16

≥ t · |F |
|E| ·

1
16

.

Note that N′ ≤ N, so the upper bound in (6) applies to E[N′] as well. Now,
Lemma 5.12 follows from the inequality E[N′ > 0] ≥ E[N′]2/E[N′2]. �

Definition 5.13 (The product constraint graph). Let G be a d-regular constraint
graph with alphabet Σ. The product graph Gt is defined as follows.

• The vertex set of the graph Gt is V (G).
• The alphabet for Gt is Σ(d+1)t

.
• The edges and their constraints correspond to the verifier’s actions outlined

above. We imagine that the verifier’s moves are described by a random
string of length T ∗ over the set [d] × [t]. The first component determines
which outgoing edge the verifier takes, and it stops after that step if the
the second component is 1 (say). For each vertex a and each sequence τ ,
we have an edge labeled τ leaving (with tail) a, corresponding to the walk
starting from vertex a determined by τ .

• If the walk does not terminate at the end of τ , then the ending vertex (i.e.
head) of this edge is also a (it is a self-loop), and the constraint on that
edge is always satisfied.

• If the walk does terminate and the final vertex is b, then the edge labeled
τ has the form (a, b), and its constraint is the conjunction of all constraints
of G checked by the verifier along this walk. Note that in G the constraints
were represented by a system of polynomial equations of degree at most
two; then the constraints in Gt also have the same form.

Thus, every vertex has (dt)T∗
edges leaving it, and the total number of edges in Gt

is exactly |V (G)| · (dt)T∗
.

Lemma 5.14. For all constants t, the function T13 : G �→ Gt (where G is a
restricted constraint graph that is an (η, d)-positive expander) is a

(
t

C′
2
, 1

t

)
-transfor-

mation, where C ′
2 = O

(
( d

η )2
)
. Also, |Σ(Gt)| = |Σ(G)|(d+1)t

; in particular, Σ(Gt)
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depends only on the alphabet of the original graph and the parameter t. The con-
straints of Gt are represented as a system of polynomial equations of degree at most
two; thus, Gt ∈ G̃K where K = |Σ(Gt)|.

Lemma 5.6 follows immediately from this.

6. Alphabet reduction

Recall that in this section we wish to prove Lemma 4.6, reproduced below.

Lemma 4.6. There exists a constant ε2 > 0 such that for all constants k, there is
an (ε2, 1)-transformation from G̃K to G̃16.

For the purposes of this section it will be useful to consider a further generaliza-
tion of the constraint graph coloring problems to “hypergraph constraints”. This
definition is motivated by the fact that the proof of Lemma 4.6 will reduce graph
coloring on arbitrary alphabets to hypergraph coloring over a fixed alphabet and
then convert this back to a constraint graph coloring problem.

The constraint hypergraph coloring problem is a generalization of the constraint
graph coloring problem to r-uniform hypergraphs with each constraint applying to
edges to the hypergraph. The following definition captures this notion formally.

Definition 6.1 (Constraint hypergraph, coloring). For a positive integer r, an
r-constraint hypergraph G is a tuple 〈V, E, Σ, C〉, where (V, E) is an r-uniform hy-
pergraph (we allow multiple edges and multiple incidences of the same vertex in an
edge), Σ is a finite set called the alphabet of G, and C is a collection of constraints,
〈ce : e ∈ E〉, where each ce is a function from Σr → {0, 1}. A coloring of G is a
function A : V → Σ. We say that the coloring A satisfies an edge e of the form
(u1, . . . , ur) if ce(A(u1), . . . , A(ur)) = 1. We say that the coloring A satisfies G if
A satisfies all edges in G. If there is a coloring that satisfies G, then we say that G
is satisfiable. We say that G is ε-far from satisfiable if every coloring leaves at least
a fraction ε of the edges of G unsatisfied. Let

unsat(G) = max{ε : G is ε-unsatisfiable} = min
A

|{e : A does not satisfy e}|
|E| .

We use G(r)
K to denote the set of r-constraint graphs with an alphabet of size K.

When K = 2k, Σ = F
k
2 and the constraints ce are given by a system of quadratic

(degree two) polynomials over the rk variables from F2 representing the colors of
the r underlying variables, we say that the constraint hypergraph is a restricted
constraint hypergraph. We use G̃(r)

K to denote the set of restricted constraint graphs.

To motivate our main lemmas we start by describing some of the basic (and
well-known) reductions between constraint hypergraph coloring problems. These
results don’t really suffice to prove Lemma 4.6, but thinking about this proposition
provides a good warm-up to thinking about reductions. It also emphasizes the
novelty in the lemma.

Proposition 6.2. Fix integers K = 2k and r > 0. Then the following are true:

(1) There exists a (1, 1)-transformation from G̃(r)
K to G̃(rk)

2 .
(2) There exists a (1/2r+2, 1)-transformation from G̃(r)

2 to G̃(3)
2 .

(3) There exists a (1/r, 1)-transformation from G̃(r)
K to G̃Kr .
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Proof of sketch. We won’t really prove Parts 1 and 2, since they are somewhat
tangential to our goal and furthermore quite elementary. But we will provide some
hints before giving a somewhat more detailed sketch of the proof of Part 3. The
first part is easy to achieve by simply viewing every vertex of an instance G̃(r)

K as
k vertices from an instance of G̃(rk)

2 . A 2k-coloring can then be viewed as binary
coloring of the k corresponding vertices, and constraints now apply to r · k vertices
at a time. The properties of the transformation can now be verified easily. The
second part follows from the classical reduction from r-SAT to 3-SAT (due to [18]).
Note that this reduction can be set up to create only restricted instances.

Finally, the third part: This part is based on a result of Fortnow, Rompel and
Sipser [23]. Consider an instance G of G̃(r)

K with vertices V , edges E, on alphabet
Σ and constraints 〈ce〉e∈E . The vertices of the transformed instance G′ will consist
of a vertex u′ for every vertex u ∈ V and e′ for every edge e ∈ E. Colorings A′ to
the vertices of G′ take values in the set Σr. Let A′(u′)i denote the ith coordinate
of such a coloring (which lies in Σ). Corresponding to a constraint ce(u1, . . . , ur)
of G, the instance G′ will consist of r constraints c′e,i, one for each i ∈ [r]. The
constraint c′e,i applies to the variables u′

i and e′ and is satisfied by an assignment
A′ if and only if ce(A′(e′)) = 1 and A′(e′)i = A′(u′

i)1. It is easy to see that the
transformation preserves linear size (the number of constraints of G′ is r times the
number of constraints of G). It can also be verified that if A is an assignment to
the vertices of G satisfying every constraint of G, then any assignment satisfying
A′(u′)1 = A(u) and A′(e) = (A(u1), . . . , A(ur)) for e = 〈u1, . . . , ur〉 satisfies every
constraint of G′. Finally given an assignment A′ to the instance G′ consider the
assignment A(u) = A′(u′)1 for every u ∈ G. We claim that if A′ fails to satisfy a
fraction ε/r of the constraints of G′, then A fails to satisfy only a fraction ε of the
constraints of G. To see this it suffices to note that if for some e ∈ E the constraints
c′e,i are satisfied by A′ for every i ∈ [r], then ce is satisfied by A since

ce(A(u1), . . . , A(ur)) = ce(A′(u′
1)1, . . . , A

′(u′
r)1)

= ce(A′(e′)1, . . . , A′(e′)r)
= 1,

where the first equality is by the definition of A, the second by the second condition
in the satisfiability of (all of) the c′e,i’s, and the third equality from the first condition
of the satisfiability of (any of) the c′e,i’s. �

The above proposition gives a rich collection of simple transformations between
constraint hypergraph coloring problems. Indeed if we put together Parts 1, 2, and
3 of Proposition 6.2 above, we get a transformation from G̃K to G̃23 , which is one of
the goals of Lemma 4.6. The weakness of Proposition 6.2 becomes apparent when
we consider the guarantees we get from it. A straightforward application yields a
(1/(3 ·22k+2), 1)-transformation from G̃K to G̃8 which fails the promise that the gap
of the reduction would reduce by a factor independent of k. It is this aspect that
makes Lemma 4.6 quite non-trivial and forces a significant departure from standard
transformations of this nature. Fortunately work done in the 1990’s (in particular,
the work of Arora et al. [6]) gives a much stronger version which suffices for our
purposes. We paraphrase their result in our language here.

Lemma 6.3. There exists an ε3 > 0 such that for all integers K there exists an
(ε3, 1)-transformation from G̃K to G̃(4)

2 .
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Proving this lemma will occupy us for the rest of this section. But first we note
that this lemma immediately yields Lemma 4.6.

Proof of Lemma 4.6. We compose the transformation from Lemma 6.3 with the one
from Part 3 of Proposition 6.2. The composition yields a (ε3/4, 1)-transformation,
where ε3 is the constant of Lemma 6.3, thus yielding Lemma 4.6 for ε2 = ε3/4. �

We now focus on the task of transforming G̃K to G̃(4)
2 . The steps in the trans-

formation will be similar to the steps of the transformation given above in the
proof of Part 1 of Proposition 6.2 (only each step will now be significantly more
complex). We will start by “transforming” the vertices, explaining how to inter-
pret colorings of one instance as colorings of the other. Then we will transform
the constraints of the source instance. Analyzing this process will then yield the
reduction. The following two sections (Sections 6.1 and 6.2) introduce some of the
machinery. Section 6.3 presents the actual transformation which is then analyzed
in Section 6.4.

6.1. Encodings of vertex colorings. In the proof of Part 1 of Proposition 6.2, we
transformed K = 2k coloring to 2 coloring (of hypergraphs). This transformation
converted a single vertex u of G ∈ G̃(r)

K into k vertices u1, . . . , uk of G′ ∈ G̃(rk)
2 . The

colorings A(u) and A′(u1), . . . , A′(uk) were thus in one to one correspondence with
each other, allowing us to compare colorings of G′ with colorings of G. While this
made the analysis simple, it also introduced essential weaknesses in the transforma-
tion. In Part 1 of Proposition 6.2, this led to making the edges of the hypergraph
larger by a factor of k. If we didn’t want to pay such a price and keep the hyper-
edges small, then the reduction would have lost at least 1/k in its strength. While
we won’t go into details, this loss boils down to the fact that two different colorings
A1(u) = a and A2(u) = a′ might be discernible only by considering the colors of
one of the k corresponding vertices u1, . . . , uk. In turn this weakness boils down to
the fact that in translating the K-coloring of G to a 2-coloring of G′ we adopted
a simplistic representation of elements of K as binary strings—one which was not
very good at distinguishing distinct elements of K. As we will see shortly, one can
do much better by picking better, so-called “error-correcting” representations.

Below we will refer to a function E : {0, 1}k → {0, 1}� as an “encoding” of
elements of {0, 1}k. Corresponding to an encoding function, we will also consider
decoding functions D : {0, 1}� → {0, 1}k. Relative to such encoding functions our
transformations from G ∈ G̃K to G′ ∈ G̃(4)

2 will proceed by creating � vertices
u1, . . . , u� in G′ for each vertex u ∈ G. (There will be additional vertices and of
course some edges and constraints, corresponding to the constraints of G, but we
will describe those later.) The intent will be to show that if G is satisfied by the
coloring A, then G′ is satisfied by a coloring A′ which assigns to the vertex ui the
color E(A(u))i. Similarly when it comes to analyzing unsatisfiable instances we will
infer properties of a coloring A′ to the vertices of G′ by considering the induced
coloring A given by A(u) = D(A′(u1), . . . , A′(u�)). Motivated by this intention, we
now describe the encoding and decoding function we will use and some interesting
properties of this encoding function.

Definition 6.4 (The Hadamard encoding). The Hadamard encoding H maps
strings of length k to strings of length 2k. The encoding H(a) of a string a ∈ {0, 1}k
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is itself indexed by strings w ∈ {0, 1}k with the wth coordinate of H(a), denoted
H(a)(w), being given by

∑k
i=1 aiwi mod 2.

For the decoding we will use a canonical decoding function. For strings x, y ∈
{0, 1}� let δ(x, y) = |{i|xi �=yi}|

� . We say x is δ-close to y if δ(x, y) ≤ δ.
The Hadamard decoding of a string x ∈ {0, 1}2k

, denoted H−1(x), is defined
to be the string a which minimizes δ(H(a), x) with ties being broken arbitrarily.
In what follows we will show some nice properties of the Hadamard encoding (and
decoding) function.

The properties of the Hadamard encoding in turn go back to the properties
of linear functions. From this point onward we will view the elements {0, 1} as
elements of the field F2 and {0, 1}k as a k dimensional vector space over F2. In
particular for x, y ∈ {0, 1}k we will let x + y denote their vector sum in F

k
2 .

Definition 6.5 (Linear functions). A function f : {0, 1}k → {0, 1} is called a linear
function if it satisfies f(x + y) = f(x) + f(y) for every x, y ∈ {0, 1}k (and where
x + y denotes the vector addition of two vectors over F2). Equivalently f is linear
if it is a homogeneous polynomial of degree 1 in its arguments; i.e., there exists
c1, . . . , ck so that f(x1, . . . , xk) =

∑
cixi.

The properties of linear functions (and other low-degree functions) are derived
from the following simple and well-known results about low-degree multivariate
polynomials.

Lemma 6.6 ([34, 36]). Suppose p(Z) ∈ F[Z1, Z2, . . . , Zn] is a non-zero polynomial
of degree at most d over a field F. Let S ⊆ F be a finite set. Then, Prz∈Sn [p(z) =
0] ≤ d

|S| .

Proof. We use induction on n. For n = 1, the claim is obvious because a non-
zero polynomial can have at most d roots. Assume Zn appears in the polynomial
(otherwise, p(Z) ∈ F2[Z1, Z2, . . . , Zn−1] and the claim follows from the induction
hypothesis) and the degree in Zn is d1. Write

p(Z) = Zd1
n · p1(Z1, Z2, . . . , Zn−1) + p2(Z1, Z2, . . . , Zn),

where p1 ∈ F2[Z1, Z2, . . . , Zn−1] is a non-zero polynomial of degree at most d− d1.
By the induction hypothesis, Prz′∈Sn−1 [p1(z′) 	= 0] ≥ d−d1

|S| . Let h(Zn) = p(z′, Zn).
Given that p1(z′) 	= 0, h(Zn) is a degree d1 polynomial, and the event that p(z) = 0
is equivalent to the event that h(zn) = 0, which happens with probability at most
d1
|S| . Combining the two above we find that the probability that p(z) = 0 is at most
d/|S|. �

The Hadamard encoding is inspired by linear functions in one of two ways, both
of which become important to us. On the one hand we may view H(a) as defining
a linear function L(w1, . . . , wk) (i.e., a homogeneous polynomial of degree 1 in k
variables from F2), with L(w) = H(a)(w). On the other hand we may view the
Hadamard encoding as being indexed by all the linear functions L : {0, 1}k → {0, 1}
with H(a)(L) = L(a).

The properties of the Hadamard encoding that make it useful in our transfor-
mation relate to its “local correctibility” and the “local testability”.

Proposition 6.7. If a string X ∈ {0, 1}2k

indexed by linear functions satisfies
δ(H(a), X) < 1

4 , then a is uniquely defined by this property, and for every L, the
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probability over uniformly chosen L1 that H(a)(L) = X(L+L1)−X(L1) is at least
1 − 2δ(H(a), X).

Proof. The first assertion follows easily by contradiction. Suppose there exist a 	=
b such that δ(H(a), X), δ(H(b), X) < 1

4 . Viewing H(a) as the evaluations of a
linear function L1 with H(a)(w) = L1(w) and letting L2 denote the corresponding
function for H(b), we have L1 − L2 is a non-zero polynomial of degree 1 over F2.
By Lemma 6.6, we have that the probability that L1(w) − L2(w) = 0 is at most
1/2 and thus δ(H(a), H(b)) ≥ 1/2. But then, by the triangle inequality, we have
δ(H(a), H(b)) ≤ δ(H(a), X) + δ(H(b), X) < 1

2 , giving us the desired contradiction.
For the second part let δ = δ(H(a), X). Note that the probability (over L1) that

X(L + L1) 	= H(a)(L + L1) is at most δ since L + L1 is uniformly distributed over
all linear functions. Next note that the probability that X(L1) 	= H(a)(L1) is also
at most δ (though of course this is not independent of the previous event). The
probability that either of these events occurs is at most 2δ, and if neither event
occurs, then we have X(L+L1)−X(L1) = H(a)(L+L1)−H(a)(L1) = H(L). �

Lemma 6.8 (Linearity testing, [16, 11]). If a string X ∈ {0, 1}2k

indexed by linear
functions L : {0, 1}k → {0, 1} satisfies PrL1,L2 [X(L1) + X(L2) 	= X(L1 + L2)] ≤ δ,
then there exists a string a such that δ(H(a), X) ≤ δ.

We defer the proof of this lemma to Appendix A. Roughly this construction will
replace a vertex u of G by a collection of vertices {u(L)}L where L ranges over all
the linear function. It will also have many 3-uniform constraints on the coloring
A′ (which can be viewed as 4-uniform ones by repeating one of the arguments) of
the form A′(u(L1)) + A′(u(L2)) = A′(u(L1 + L2)). The lemma above says that if
90% of such constraints are satisfied by A′, then it must be the case that there is
an a such H(a)(L) usually (for 90% of the L’s) equals u(L), and so it is reasonable
to view A′ as suggesting the coloring A(u) = D(〈A′(u(L))〉L). Furthermore, for
any fixed linear function L, we can effectively recover H(A(u))(L) by looking at
A′(u(L + L1)) − A′(u(L1)) for a randomly chosen L1. This will allow us to create
several other local constraints later. We now move to the constraint gadgets.

6.2. Enforcing quadratic constraints. Recall that our goal is to build “gad-
gets”, i.e., a collection of 4-uniform constraints on a 2-coloring of some variables,
that somehow verify that a 2-uniform constraint on a 2k-coloring of two variables.
Furthermore, we are assuming that the constraint is given by a collection of degree
two polynomials on the 2k variables representing the colorings of the two vari-
ables. For concreteness let us fix a constraint ce on the coloring of vertices u and
v. Let X1, . . . , Xk denote the Boolean variables representing the coloring of u and
Y1, . . . , Yk represent the Boolean variables representing the coloring of v. Further,
let P1(X, Y ), . . . , Pm(X, Y ) denote the polynomials representing the constraint ce

(i.e., ce is satisfied by the coloring a, b if Pj(a, b) = 0 for every j ∈ [m]).
It turns out that the Hadamard encoding brings us close to the goal of veri-

fying such constraints. Indeed if the constraint were given by a single, homoge-
neous, degree one polynomial on 2k variables, then we would be done, given the
Hadamard encoding gadget for the vertices u and v. To see this let P1(X, Y ) =
P11(X) + P12(Y ) where P11(X) and P12(Y ) are both linear. Now place con-
straints A′(u(L1)) + A′(u(L2)) = A′(u(L1 + L2)) for every pair of linear func-
tions L1, L2; similar collection of constraints for v; and then finally add constraints
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A′(u(L3 + P11)) − A′(u(L3)) + A′(v(L4 + P12) − A′(v(L4)) = 0 for every pair of
linear functions L3 and L4. If the decoding of a coloring A′ leads to a coloring A
that satisfies ce, then we are set; else we find ourselves in one of two cases: Either
〈A′(u(L))〉L is not 0.1-close to some encoding H(a) (or 〈A′(v(L))〉L is not 0.1-close
to some encoding H(b)), in which case 10% of the first class of constraints will re-
ject, or both are 0.1-close to encodings H(a) and H(b) with (a, b) not satisfying the
constraint ce, in which case P1(a, b) = P11(a)+P12(b) = 1. But by Lemma 6.8, with
probability at most 0.2 we have P11(a) 	= A′(u(L3 + P11)) − A′(u(L3)). Similarly
the probability that P12(b) 	= A′(v(L4 +P12))−A′(u(L4)) is at most 0.2. Thus with
the remaining probability of 0.6 we have A′(u(L3 + P11))−A′(u(L3)) + A′(v(L4 +
P12))−A′(u(L4)) = P1(a, b) = 1, and so the latter test will reject. Thus we get an
absolute constant fraction of the constraints in G′ corresponding to ce reject if the
decoding of A′ does not lead to a coloring satisfying ce.

In what follows we see how to extend this idea to include a collection of degree 2
polynomials. To do so we extend the Hadamard encoding to now include the values
of all degree 2 polynomials at some point a. We call this encoding the quadratic
encoding.

Definition 6.9. The quadratic encoding Q maps strings of length k to strings of
length 2(

k+1
2 ). Given a string a ∈ {0, 1}k let b ∈ {0, 1}(

k+1
2 ) be the string indexed

by pairs i ≤ j ∈ [k] with bij = aiaj . (Note that bii = a2
i = ai.) The quadratic

encoding Q(a) is simply the Hadamard encoding of b.

In the case of the quadratic function encoding it is possible to view the coordi-
nates as corresponding to homogeneous polynomials of degree 2 and thus Q(a) =
〈q(a)〉q where q ranges over all degree 2 homogeneous polynomials on k variables.

Testing if a string Y ∈ 2(k+1
2 ) is close to the quadratic encoding of some a is a

little more complex than testing Hadamard codes, but not too much more so, given
the Hadamard encoding X of a. We first test to ensure Y is close to the Hadamard
encoding of some string b, and then we need to test if bij = aiaj . The main idea at
this point is to consider a degree 2 homogeneous polynomial of the form L1(a)L2(a)
and check to see that X and Y agree with respect to this polynomial. In the case
of X its value is given by X(L1)X(L2). On the other hand, Y ’s “opinion” for the
value of this polynomial is given by a majority vote over quadratic polynomial q of
the difference Y (q + L1L2)− Y (q). Analyzing this test carefully (and we will do so
in the coming subsections) shows that if Y is not close to the quadratic function
encoding of a when X is close to the Hadamard encoding of a, then a constant
fraction of these constraints is not satisfied.

We remark that over F2, homogeneous polynomials essentially capture all in-
teresting polynomials, since for every degree 2 polynomial P we can associate a
homogeneous degree 2 polynomial PH and a constant β ∈ F2 such that for every
a ∈ F

k
2 we have P (a) = PH(a) + β. Using this observation and the test described,

we can easily extend our earlier “gadget” to the case where the constraint ce is a
single degree 2 polynomial. The only remaining hurdle is that we are dealing with
a system of degree 2 polynomials, and we deal with this aspect next.

We now consider the case where ce is the conjunction of polynomials P1, . . . , Pm

where m is arbitrary. Note that one obvious strategy is to repeat the exercise of
testing if Pj(a, b) = 0 for every j ∈ [m]. But this could lead to situations where
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only a fraction 1
m of the constraints (corresponding to a single unsatisfied Pj) is

being unsatisfied when ce is not satisfied.
To avoid such scenarios we use once again the idea underlying the Hadamard

code. Fix a coloring a, b to the pair u, v and let zj = Pj(a, b). To test if z = 〈zj〉j = �0
we could enumerate all the j’s as above or adopt the “error-correcting” strategy,
where we check to see if the wth coordinate of H(z)(w) = z ·w is zero for a randomly
chosen index w. If z = 0, then certainly this is zero; on the other hand, if z 	= 0,
then the probability that this happens is equal to 1/2 (by the Schwartz-Zippel
lemma). But now we note that z ·w =

∑m
j=1 wjzj =

∑m
j=1 wjPj(a, b) is simply the

evaluation of a single degree 2 polynomial at a, b, a condition for which we already
know how to build a gadget.

Finally, while the above shows how to integrate m polynomials into one without
losing in the performance of the reduction, we still need to ensure that the size of
the reduction (i.e., the number of constraints) is not too large. In turn this requires
a bound on m. To get an upper bound, note that without loss of generality we
can assume that the Pj ’s are linearly independent. (If there exists λ2, . . . , λm ∈
{0, 1} such that P1 ≡

∑m
j=2 λjPj , then it follows that P1(a, b) = 0 is a redundant

constraint given Pj(a, b) = 0 for j ∈ {2, . . . , m}.) So we conclude that m ≤
(
k+2
2

)
.

This completes the motivation for our gadget, and now we describe this gadget
formally.

6.3. The actual transformation. We now give the transformation from G̃K

where K = 2k to G′ ∈ G̃(4)
2 .

Fix an instance G ∈ G̃K . Let V denote the vertices of G and E its edges.
For e ∈ E incident on u and v, let ce be the conjunction of degree 2 polynomials
Pe,1, . . . , Pe,m on the 2k variables corresponding to the coloring of u and v.

We start by describing the vertex set V ′ of G′. V ′ comprises the following:

• A vertex u(L) for every u ∈ V and every linear function L : {0, 1}k → {0, 1}.
• A vertex e(L) for every e ∈ E and every linear function L : {0, 1}2k →
{0, 1}.

• A vertex e(q) for every e ∈ E and every homogeneous degree 2 polynomial
q : {0, 1}2k → {0, 1}.

We now describe the (hyper)edges and constraints of G′. For every e ∈ E
incident to u and v with ce being the conjunction of the polynomials Pe,1, . . . , Pe,m

and for every pair of linear functions L1, L2 : {0, 1}k → {0, 1}, linear functions
L3, L4 : {0, 1}2k → {0, 1}, every pair of homogeneous degree 2 polynomials q1, q2 :
{0, 1}2k → {0, 1}, every vector w ∈ {0, 1}m and every index i ∈ [7], we have an
edge e′ = e(L1, L2, L3, q1, q2, w, i) in E′ where the vertices incident to e′ and the
constraint ce′ depend on the value of i as follows:

i = 1: (Hadamard test for u(L)’s): e′ is incident to u(L1), u(L2) and u(L1 + L2)
and is satisfied if A′(u(L1)) + A′(u(L2)) = A′(u(L1 + L2)).

i = 2: (Hadamard test for v(L)’s): e′ is incident to v(L1), v(L2) and v(L1 + L2)
and is satisfied if A′(v(L1)) + A′(v(L2)) = A′(v(L1 + L2)).

i = 3: (Hadamard test for e(L)’s): e′ is incident to e(L3), e(L4) and e(L3 +L4) and
is satisfied if A′(v(L3)) + A′(v(L4)) = A′(v(L3 + L4)).

i = 4: (Hadamard test for e(q)’s): e′ is incident to e(q1), e(q2) and e(q1 + q2) and
is satisfied if A′(e(q1)) + A′(e(q2)) = A′(e(q1 + q2)).
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i = 5: (Consistency of u(L)’s, v(L)’s and e(L)’s): Let L12 denote the linear function
given by L12(X, Y ) = L1(X) + L2(Y ). Then e′ is incident to u(L1), v(L2),
and e(L12) and is satisfied if A′(u(L1)) + A′(v(L2)) = A′(e(L12)).

i = 6: (Consistency of e(L)’s and e(q)’s): e′ is incident to e(L3), e(L4), e(q1) and
e(q1 + L3L4) and is satisfied if A′(e(L3))A′(e(L4)) = A′(e(q1 + L3L4)) −
A′(e(q1)).

i = 7: (Satisfaction of ce): Let PH be a homogeneous degree 2 polynomial and β ∈
{0, 1} be such that for every a, b ∈ {0, 1}k

∑m
j=1 wjPj(a, b) = PH(a, b) + β.

e′ is incident to vertices e(q1 + PH) and e(q1) and is satisfied if A′(e(q1 +
PH)) − A′(e(q1)) + β = 0.

This completes the description of the gadget. While normally a gadget of such
complexity would entail extremely complex analysis, in our case the analysis turns
out to be quite streamlined as we see below.

6.4. Analysis. We start by taking care of the more obvious elements needed to
show that the transformation from G to G′ is (ε3, 1)-linear.

Proposition 6.10. In the transformation of Section 6.3 from G to G′, we have:

(1) The size of G′ is linear in the size of G. Specifically |G′| ≤ 2O(k2) · |G|.
(2) The constraints of G′ are degree 2 polynomials in at most 4 variables.
(3) If G is satisfiable, then so is G′.

Proof. For Part 1, we inspect the construction above. It is easy to see that the size
of G′ is only linearly large in the size of G since every vertex/constraint of G leads
to 2O(k2) vertices/constraints in G′. (Note that this would be an enormous blowup
even for k = 10; however, it is a fixed constant for any constant k.)

For Part 2, note that each constraint depends on at most 4 variables, and each
constraint of them expects some polynomial of degree 1 or 2 to be zero. Indeed
except for the constraints corresponding to the indices i = 6, all the constraints are
of degree 1.

For Part 3, let A : V → {0, 1}k be an assignment satisfying G. Then consider
the following coloring A′ to the vertices of G′:

• A′(u(L)) = H(A(u))(L).
• A′(e(L)) = H((A(u), A(v)))(L), where e is incident to u and v, and (A(u),

A(v)) is viewed as an element of {0, 1}2k.
• A′(e(q)) = Q(A(u), A(v))(q) where Q(·) denotes the quadratic encoding

function.

It can be verified by inspection that this assignment satisfies every constraint ce′ .
�

We now move to the crucial part of the analysis, namely the analysis of the
soundness of the transformation. The following lemma argues this by showing that
if G′ has a coloring which leaves only a small fraction of the clauses unsatisfied,
then G has a coloring which also leaves a small fraction unsatisfied.

Lemma 6.11. There exists a constant ε3 > 0 such that the following holds for
every τ ≥ 0: Let A′ be a coloring of the vertices of G′ satisfying 1− ε3 ·τ fraction of
constraints of G′. Let A be the coloring obtained by setting A(u) = D(〈A′(u(L))〉L),
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where L ranges over all linear functions from {0, 1}k to {0, 1} and D : {0, 1}2k →
{0, 1}k denotes the Hadamard decoding function. Then A satisfies 1− τ fraction of
the constraints of G.

Proof. We prove the lemma for ε3 = 0.001. (Note that we don’t attempt to optimize
the constant here.)

For e ∈ E let pe denote the probability (over random choices of L1, L2, L3, L4,
q1, q2, w, i from the appropriate domains) that the constraint e′ = e(L1, L2, L3, L4,
q1, q2, w, i) is not satisfied by the assignment A′. By an averaging argument, we
note that the fraction of e’s for which pe ≥ ε3 is at most τ . We show below that
for every e such that pe < ε3, the coloring A satisfies the constraint ce. This will
suffice to prove the lemma.

Fix e such that pe < ε3. Let e be incident to u and v and let ce be the conjunction
of constraints Pj(A(u), A(v)) = 0 for j ∈ [m]. For i ∈ [7], let pe,i denote the
probability (now over the remaining parameters L1, L2, L3, L4, q1, q2, w) that e′ =
e(L1, L2, L3, L4, q1, q2, w, i) is not satisfied by A′. Note that we have pe,i ≤ 7ε3 for
every i ∈ [7].

Linearity: Using the fact that pe,1, pe,2, pe,3, and pe,4 are all at most 7ε3 = 0.007 <
0.01, we conclude (using Lemma 6.8) that there exist strings a, b ∈ {0, 1}k, c ∈
{0, 1}2k, and d ∈ {0, 1}(

2k+1
2 ) such that 〈A′(u(L))〉L is .01-close to H(a), 〈A′(v(L))〉L

is .01-close to H(b), 〈A′(e(L))〉L is .01-close to H(c), and 〈A′(e(q))〉q is .01-close to
H(d). Furthermore, by the definition of the Hadamard decoding and the uniqueness
of this decoding (Proposition 6.7), we have that A(u) = a and A(v) = b. It suffices
to prove that Pj(a, b) = 0 for every j ∈ [m], and we will do so below. This will
involve relating a, b, c, d to each other and then using the constraints corresponding
to i = 7.

Consistency of a, b, c: Suppose c 	= (a, b). We will show that in this case the
probability that the constraint ce′ for e′ = e(L1, L2, L3, L4, q1, q2, w, 5) is unsatisfied
is at least .47 > 7ε3, which contradicts our bound on pe,5. Recall that ce′ is satisfied
if A′(u(L1)) + A′(v(L2)) = A′(e(L12)). Since 〈A′(u(L))〉L is 0.01 close to H(a), we
have that the probability (over L1) that A′(u(L1)) 	= H(a)(L1) is at most .1.
Similarly we have that the probability (over L2) that A′(v(L2)) 	= H(b)(L2) is also
at most .01. Finally since L12 is a random function chosen uniformly among all
linear functions mapping {0, 1}2k to {0, 1}, we also have that the probability (over
L12) that A′(e(L12)) 	= H(c)(L12) is at most .01. Finally we note that if c 	= (a, b),
then the probability (over L12) that H(c)(L12) = H(a, b)(L12) is at most 1/2. By
the union bound the probability that at least one of the above events occurs is at
most .53. Thus with probability at least .47 none of the events listed above occur,
and then we have

A′(u(L1)) + A′(v(L2)) = H(a)(L1) + H(b)(L2)
= H(a, b)(L12)
	= H(c)(L12)
= A′(e(L12)

and the constraint e′ rejects, as claimed. We conclude thus that c = (a, b).

Consistency of c and d: Again suppose dij 	= cicj for some i ≤ j. We now
claim that the probability (essentially over L3, L4 and q1) that the constraint ce′ ,
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for e′ = e(L1, L2, L3, L4, q1, q2, w, 6), is unsatisfied is at least 0.21 > 7ε3. Recall
that ce′ is satisfied if

A′(e(L3))A′(e(L4)) = A′(e(q1 + L3L4)) − A′(e(q1)).

As in the previous case, we conclude that the probability of at least one of the events
A′(e(L3)) 	= H(c)(L3), A′(e(L4)) 	= H(c)(L4), A′(e(q1+L3L4)) 	= H(d)(q1+L3L4),
or A′(e(q1)) 	= H(d)(q1) is at most .04. We show next that the probability that
H(d)(L3L4) = H(c)(L3) · H(c)(L4) is at most 3/4. To see this define the polyno-
mial f(X1, . . . , X2k, Y1, . . . , Y2k) =

∑
i≤j(dij − cicj)XiYj . Let L3(Z1, . . . , Z2k) =∑2k

i=1 αiZi and L4(Z1, . . . , Z2k) =
∑2k

i=1 βiZi. Then note that H(d)(L3L4) =
H(c)(L3) · H(c)(L4) exactly when f(α, β) = 0. We first note that f is not identi-
cally zero (since dij 	= cicj for some i, j). Viewing f as a polynomial in only the
X’s (with coefficients from the field of rational functions in Y ), we see that f is of
degree 1. Hence by Lemma 6.6 we have that f(α, Y ) is non-zero with probability
at least 1/2. Furthermore, if so, then f(α, Y ) is a degree 1 polynomial in Y and
so (again using Lemma 6.6) f(α, β) is non-zero with probability at least 1/2. Thus
putting the two together we get that f(α, β) is non-zero with probability at least
1/4, or equivalently it is zero with probability at most 3/4. Thus with probability
that any of the events listed above occurs is at most .79. Thus the probability that
none of the events occur is at least .21, and in such case we have

A′(e(L3))A′(e(L4)) = H(c)(L3)H(c)(L4)
	= H(d)(L3L4)
= H(d)(q1 + L3L4) − H(d)(q1)
= A′(e(q1 + L3L4)) − A′(e(q1))

and the constraint ce′ is unsatisfied. We conclude thus that dij = cicj . As
a consequence we have that for a random homogeneous degree 2 polynomial q,
A′(e(q)) 	= Q(c)(q) with probability at most .01.

Satisfaction of ce: We move to the last step of our analysis. Assume for contra-
diction that Pj(a, b) = Pj(c) 	= 0 for some j ∈ [m]. Consider a random constraint
e′ = e(L1, . . . , w, 7). Note that ce′ is satisfied iff A′(e(q1 +PH))−A′(e(q1))+β = 0
where PH and β were chosen so that

∑
j wjPj(c) = PH(c) + β. First note that the

probability that
∑

j wjPj(c) = 0 is at most 1/2 (over the choice of w). We also have
A′(e(q1)) 	= q1(c) with probability at most .01 and A′(e(q1 + PH)) 	= (q1 + PH)(c)
is also at most .01. Thus the probability that none of the above events happen is
at least .48, and in such case we have

A′(e(q1 + PH)) − A′(e(q1)) + β = (q1 + PH)(c) − (q1)(c) + β

= PH(c) + β

	= 0

and the constraint ce′ is unsatisfied. Thus we have that the colors a = A(u) and
b = A(v) satisfy the constraint ce whenever pe < ε3, and this holds for 1−τ fraction
of the edges e as desired. �

Proof of Lemma 6.3. The lemma holds for ε3 as given by Lemma 6.11. The trans-
formation is the one given in Section 6.3. The fact that it is satisfiability-preserving
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and linear-size-preserving follows from Proposition 6.10. Finally, Lemma 6.11 im-
plies that if the unsatisfiability of the source instance G is at least τ , then the
unsatisfiability of the transformed instance G′ is at least ε3 · τ . �

7. Conclusion

We hope the reader finds the above description to be somewhat useful and mo-
tivating when reading Dinur’s new approach to construction of PCPs. We remark
that the earlier algebraic approaches, while technically much more complicated,
do have some appealing high level views. The reader is pointed to the work of
Ben-Sasson and Sudan [15] to get a sense of some of the work in the older stream.

Moving on beyond the specific proofs and constructions used to get probabilisti-
cally checkable proofs, we hope that the notion itself is appealing to the reader. The
seemingly counterintuitive properties of probabilistically checkable proofs highlight
the fact that the “format” in which a proof is expected is a very powerful tool to
aid the person who is verifying proofs. Indeed for many computer-generated proofs
of mathematical theorems, this notion may ease verifiability, though in order to
do so, PCPs need to get shorter than they are and the verification scheme simpler
than it is. Dinur’s work helps in this setting, but much more needs to be done.

And finally, moving beyond the notion of proofs, we also hope this article reminds
the reader once more of a fundamental question in logic and computation, and
indeed for all mathematics: Is P=NP? Can we really replace every mathematician
by a computer? If not, would it not be nice to have a proof of this fact?

Appendix

A. Analysis of linearity testing.

Proof of Lemma 6.8. Recall that we wish to show that if a string X ∈ {0, 1}K

indexed by linear functions L : {0, 1}k → {0, 1} satisfies PrL1,L2 [X(L1) + X(L2) 	=
X(L1 + L2)] ≤ δ, then there exists a string a such that δ(H(a), X) ≤ δ, where
K = 2k.

For the proof it will be convenient to view all strings as elements of {−1, 1}K ⊆
R

K , using the transformation 0 �→ 1 and 1 �→ −1. We will also use the inner
product 〈Y, Z〉 = EL[Y (L)Z(L)]. Note that since Y (L)Z(L) = 1 if they agree on
the Lth coordinate and −1 when they disagree, we have 〈Y, Z〉 = EL[Y (L)Z(L)] =
1 − 2δ(Y, Z). Thus our goal is to prove that there exists a string a such that its
encoding H(a) (also viewed as an element of {−1, +1}K) satisfies 〈X, H(a)〉 ≥
1 − 2δ. On the other hand, the hypothesis can be reinterpreted to be saying that
EL1,L2 [X(L1)X(L2)X(L1 + L2)] ≥ 1 − 2δ.

The crux of the proof is the observation that the strings H(a) form an orthonor-
mal basis of R

K . It is obvious that 〈H(a), H(a)〉 = 1. On the other hand, we also
have 〈H(a), H(b)〉 = 1 − 2δ(H(a), H(b)) = 0 (whenever a 	= b). Finally we have
K = 2k distinct a’s making the H(a)’s a basis. Thus we can express any string
X =

∑
a X̂aH(a) where X̂a = 〈X, H(a)〉 is the ath Fourier coefficient of X. By

Parseval’s identity, we have that
∑

a X̂2
a = 〈X, X〉 = 1, while our goal is to show

that maxa X̂a ≥ 1 − 2δ.
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We now express the quantity EL1,L2 [X(L1)X(L2)X(L1 + L2)] in terms of the
Fourier coefficients. We have

EL1,L2 [X(L1)X(L2)X(L1 + L2)]

= EL1,L2 [(
∑

a

X̂aH(a)(L1))(
∑

b

X̂bH(b)(L2))(
∑

c

X̂cH(c)(L1 + L2))]

=
∑
a,b,c

X̂aX̂bX̂cEL1,L2 [H(a)(L1)H(b)(L2)H(c)(L1 + L2)]

=
∑
a,b,c

X̂aX̂bX̂cEL1 [H(a)(L1)H(c)(L1)]EL2 [H(b)(L2)H(c)(L2)]

=
∑
a,b,c

X̂aX̂bX̂c〈H(a), H(c)〉〈H(b), H(c)〉

=
∑

c

X̂3
c

where the last equality uses the fact that 〈H(a), H(c)〉 = 0 if a 	= c and is 1 if a = c
(and similarly with b and c).

Thus the hypothesis yields
∑

c X̂3
c ≥ 1−2δ. But then we have 1−2δ ≤

∑
c X̂3

c ≤
maxa X̂a

∑
c X̂2

c = maxa X̂a, yielding maxa X̂a ≥ 1 − 2δ as required. �

B. Expanders, eigenvalues and random walks. The main goal of this section
is to prove Proposition 5.11. A version of this proposition appears in the original
paper of Dinur [19]. Our version differs only in that we work with walks on di-
rected graphs. The proof involves algebraic properties of expander graphs, which
we describe next.

Definition B.1 (Eigenvalues of a graph). Let G be a d-regular graph with n
vertices. The adjacency matrix of G is the matrix A(G) = (avw) whose rows and
columns are indexed by elements of V (G) and avw is the number of edges of the
form (v, w). Then, A(G) is a symmetric n × n matrix and has n real eigenvalues.
The largest eigenvalue of A(G) is d (corresponding to all the 1s eigenvector 1), and
all eigenvalues are bounded by d in absolute value. We denote these eigenvalues by
λ1(G), λ2(G), . . . , λn(G), where d = λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) ≥ −d. Then,
the second eigenvalue of G is defined to be

λ(G) = max{|λ2|, |λn|}.

Also, there is an orthonormal basis {v1, v2, . . . , vn} of R
n, where vi is an eigenvector

of A(G) corresponding to λi(G).

Remark. If we assume that each vertex of the d-regular graph has at least d
2 self-

loops, then all eigenvalues of G are non-negative and the second eigenvalue of G is
λ2(G).

Theorem B.2 (Eigenvalues versus expansion, Dodziuk [21] and Alon [3]). Let G
be an (η, d)-positive expander. Then

λ2(G)2 + η2 ≤ d2.
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Remark. The proof below is essentially the same as the one presented by Hoory,
Linial and Wigderson [27] for showing that λ2(G) ≤ d − η2

2d . The proof actually
shows the stronger bound stated above. (Note that

√
d2 − η2 ≤ d − η2

2d .)

Proof. We consider vectors in R
n indexed by elements of V (G). The matrix A(G)

acts on such vectors in the natural way. It will be convenient to talk of these vectors
as functions from V (G) to R. Let 〈f, g〉 =

∑
v f(v)g(v) and ‖f‖2 = (〈f, g〉)1/2. �

Let R
+ denote the set of non-negative real numbers. We say that a function

f : V (G) → R
+ is proper if |{v : f(v) > 0}| ≤ |V (G)|

2 . We have two claims.

Claim B.3. If f is a proper function, then η2‖f‖4
2 ≤ d2‖f‖4 − 〈f, Af〉2.

Claim B.4. There exists a non-zero proper f such that 〈f, Af〉 ≥ λ2‖f‖2
2.

The theorem follows immediately by combining these claims.

Proof of Claim B.3. First we introduce some notation to simplify the presentation.
Rename the vertices of G as 1, 2, . . . , n, such that

f(1) ≥ f(2) ≥ · · · ≥ f(s) > f(s + 1) = f(s + 2) = · · · = f(n) = 0,

for some s ≤ n
2 . Recall that in our definition of a graph each edge e of the form

(i, j) has a reverse edge e− of the form (j, i). Let E+ be the set of edges in E of
the form (i, j) where j ≥ i. Consider the expression

∑
(i,j)∈E+

f(i)2 − f(j)2 =
∑

(i,j)∈E+

j−1∑
k=i

f(i)2 − f(i + 1)2

=
s∑

i=1

|E{1,...,i}|
(
f(i)2 − f(i + 1)2

)

≥
s∑

i=1

ηi ·
(
f(i)2 − f(i + 1)2

)

= η
s∑

i=1

f(i)2

= η‖f‖2
2.

(9)
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On the other hand,

∑
(i,j)∈E+

f(i)2 − f(j)2 =
∑

(i,j)∈E+

(f(i) − f(j))(f(i) + f(j))

≤

⎛
⎝ ∑

(i,j)∈E+

(f(i) − f(j))2

⎞
⎠

1/2

×

⎛
⎝ ∑

(i,j)∈E+

(f(i) + f(j))2

⎞
⎠

1/2

=

⎛
⎝ ∑

(i,j)∈E+

f(i)2 + f(j)2 − 2f(i)f(j)

⎞
⎠

1/2

×

⎛
⎝ ∑

(i,j)∈E+

f(i)2 + f(j)2 + 2f(i)f(j)

⎞
⎠

1/2

=

⎛
⎝d‖f‖2

2 − 2
∑

(i,j)∈E+

f(i)f(j)

⎞
⎠

1/2

×

⎛
⎝d‖f‖2

2 + 2
∑

(i,j)∈E+

f(i)f(j)

⎞
⎠

1/2

= (d2‖f‖4
2 − 〈f, Af〉2)1/2.

(10)

The claim follows by combining (9) and (10). (End of Claim B.3.) �

Proof of Claim B.4. Let g be an eigenvector corresponding to the second eigenvalue
λ2 = λ2(G). Since g is orthogonal to 1 (all ones, the eigenvector corresponding
to the eigenvalue λ1 = d), g takes both positive and negative values. We may
assume that |{v : g(v) > 0}| ≤ |V (G)|

2 by, if necessary, replacing g by −g. Let
f : V (G) → R

+ be defined by

f(v) =
{

g(v) if g(v) > 0
0 otherwise .

Then, for all v ∈ V (G) such that f(v) > 0, we have

(Af)(v) ≥ (Ag)(v) = λ2g(v) = λ2f(v).

Thus,

〈f, (Af)(v)〉 =
∑

v∈V (G)

f(v) · (Af)(v) ≥
∑

v∈V (G)

λ2f(v)2 = λ2‖f‖2
2.

(End of Claim B.4.) �

Proof of Proposition 5.11. Consider the infinite walk, where the verifier does not
stop. It is enough to show that for this walk, and for all j ≥ 2,

Pr[ej ∈ F | e1 ∈ F ] ≤ |F |
|E| +

(
λ(G)

d

)j−2

,

where λ is the second eigenvalue of G. (The factor
(
1 − 1

t

)j−i in our claim accounts
for the fact that we stop the walk after each step with probability 1

t .) We will
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establish a slightly more general statement: for any two sets of (directed) edges F1

and F2,

Pr[ej ∈ F2 | e1 ∈ F1] ≤
|F2|
|E| +

(
λ

d

)j−2
√

|F2|
|F1|

.

Let πi be the distribution of the vertex vi conditioned on the event e1 ∈ F1. For
v ∈ V (G), let D1(v) be the number of edges in F1 coming into v and let D2(v) be
the number of edges of F2 leaving v. Then, π1(v) = D1(v)/|F1| and

Pr[ej ∈ F2 | e1 ∈ F1] =
1
d

∑
v∈V (G)

D2(v)πj−1(v) =
1
d
〈D2, πj−1〉.

If M is the transition matrix corresponding to the walk, then

πj−1 = M j−2π1 = M j−2

(
D1

|F1|

)
.

We may write π1 = D1
|F1| = 1

n1 + D′
1

|F1| , where D′
1 is the orthogonal projection of

D1 on the subspace orthogonal to the eigenvector 1 (n = |V (G)|). Then, we have

Pr[ej ∈ F2 | e1 ∈ F1] =
1
d
〈D2, πj−1〉

=
1
d
〈D2, M

j−2π1〉

=
1
d
〈D2,

1
n
1 + M j−2

(
D′

1

|F1|

)
〉

=
1
d
〈D2,

1
n
1〉 +

1
d
〈D2, M

j−2

(
D′

1

|F1|

)
〉

≤ |F2|
|E| +

1
d|F1|

· ‖D2‖2 · ‖M j−2D′
1‖2

≤ |F2|
|E| +

1
d|F1|

· ‖D2‖2 ·
(

λ

d

)j−2

‖D1‖2

≤ |F2|
|E| +

(
λ

d

)j−2

· 1
d|F1|

·
√ ∑

v∈V (G)

D2(v)2 ·
√ ∑

v∈V (G)

D1(v)2

≤ |F2|
|E| +

(
λ

d

)j−2

· 1
d|F1|

·
√

d
∑

v∈V (G)

D2(v) ·
√

d
∑

v∈V (G)

D1(v)

≤ |F2|
|E| +

(
λ

d

)j−2

·

√
|F2|
|F1|

.

�
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