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1. Introduction 

Decision trees are very useful in proving lower bounds for combinatorial problems 
[2, 5, 6, 10, 14, 15, 221. In particular, they have been extensively used to analyze 
sorting-type problems whose outcome depends on the relative order of the inputs. 
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One weakness of many results is the restriction on the type of queries that can 
be performed. It is only the information-theoretic lower bound that is valid with 
no restrictions on the type of queries used. However, the information-theoretic 
argument does not yield useful lower bounds for many problems, in particular, 
recognition problems that have only two outcomes. Examples of lower bounds that 
are not information theoretic are the n - 1 lower bound for maximum finding, the 
lower bounds for selection and merging, and the Q( n log n) lower bound for element 
uniqueness. 

Significant amount of work has been done in extending these lower bounds to 
decision trees with less restricted queries. Thus, Reingold [ 131 extended the n - 1 
lower bound for maximum finding to decision trees using linear comparisons; Yao 
[20] and Dobkin and Lipton [2] did the same for the selection problem and the 
element-uniqueness problem, respectively. Rabin [ 1 I] extended the lower bound 
for maximum finding to decision trees using comparisons of meromorphic func- 
tions. Ben-Or [l] extended lower bounds for several problems to bounded-degree 
algebraic decision trees (see also [ 191). Manber and Tompa [9] extended several 
lower bounds to nondeterministic and probabilistic models of decision trees (see 
also [8] and [ 181). 

All these results assume that the inputs are taken from R, the set of real numbers. 
This allows the authors to use sophisticated geometric tools. On the other hand, 
the purely combinatorial nature of the original problems is lost. 

In this paper we present combinatorial techniques for extending lower bounds 
for decision trees to general types of queries. At the heart of the techniques is the 
use of Ramsey’s theorem. We consider problems, which we call order invariant, 
that are defined by simple inequalities between inputs. These are precisely the 
problems that can be solved by decision trees using comparisons of the form xi: Xi. 
A query is order invariant if its outcome depends only on the relative order of the 
inputs occurring in it. The arity of a query is the number of inputs that the query 
depends on. We assume that inputs are drawn from a large finite (or infinite) 
totally ordered set. We make no further assumptions on the set of inputs or the 
type of queries. 

We prove the following result: Let T be a decision tree that solves an order- 
invariant problem over a large enough input domain. Then each query in T can 
be replaced by an order-invariant query of the same arity, such that the resulting 
decision tree still solves the original problem. 

A decision tree is called k-bounded if each query depends on at most k variables. 
The last result implies that decision trees that use only simple comparisons between 
inputs are as powerful as 2-bounded decision trees for solving order-invariant 
decision problems. Up to a constant factor, the same claim holds for k-bounded 
decision tree, where k is a constant. Thus, all existing lower bounds for comparison- 
based algorithms are valid for general k-bounded decision trees. 

Decision trees using linear comparisons are known to be more powerful than 
decision trees using simple comparisons in solving certain order-invariant problems 
(Snir, [ 161). The last result shows that the discrepancy is due uniquely to the fact 
that a linear comparison may involve many inputs, whereas a simple comparison 
involves only two inputs. 

We also prove lower bounds for specific problems allowing general queries with 
nonconstant arity. We use the combinatorial techniques developed in [9] for 
probabilistic decision trees and extend them by using Ramsey’s theorem. We prove 
an Q( n log n) lower bound for the element uniqueness problem for any k-bounded 
decision tree, such that k = O(n’) and c < i. This is a tight result in the sense that, 
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if k = n’l2 then there exist k-bounded decision trees of complexity O(n) that solve 
the element uniqueness problem. In proving this, we use Ramsey’s theorem in a 
more direct way. This makes the results valid for input domains that are much 
smaller than the input domains required for the more general results (although 
they are still quite large). The n(n logn) lower bound applies to other problems 
such as set equality, set disjointedness, and t-closeness [5]. 

Both results are extended to nondeterministic decision trees and probabilistic 
decision trees using the techniques of [9] and [ 181. 

Recently, Maass [7] independently found similar techniques using Ramsey’s 
theorem to prove lower bounds for random-access machines. 

2. Definitions 
Let S be a totally ordered set and n a positive integer. Let S” denote the set of all 
ti-tuples of elements of S, and let [S]” denote the set of all n-subsets of S. A decision 
problem A is a partition D,, . . . , D,, of S” (the problem is to determine to which 
set Di an input belongs). Two tuples x and y are order equivalent, x = y, if for each 
i and j, X; < Xj * yi < yj. We call the equivalence class of x the order type of x. If 
‘K is a permutation of n elements, then the order type of P in S, denoted by S,, is 
the set of all tuples (a,, . . . , a,) E S” in which ai < aj iff r(i) c r(j). A decision 
problem A is order invariant if each set D; of the partition is closed under the 
equivalence relation =; A is order invariant iff each set Di can be defined by 
Boolean combinations of assertions of the form xi < x,. 

A deterministic decision tree T is a labeled binary tree. Each internal node v of 
T is labeled with a query QY, which is a predicate defined on S”. The two outgoing 
edges of v are labeled by T(rue) or F(alse). Each leaf is labeled by one of the sets of 
the partition A. The predicates are defined on the whole set S” for simplicity of 
notation. We associate with each predicate Q a set of indices ZQ = (ii, i2, . . . , &I, 
such that, given an input (xi, x2, . . . , x,), the value of Q depends only on (Xi,, Xi*, 
. . . , xi,). The parameter r above is the arity ofQ. 

The evaluation of T on an input x proceeds downward from the root. If the 
node v is reached, then the predicate QY is evaluated on x, and one of the outgoing 
edges is chosen according to the outcome of the evaluation. The path x follows is 
called the computation path for x. The tree T solves A on C if, for each x E C, x 
reaches a leaf with label Di iff x E Di; T solves A if it solves it on S”, the domain 
of the problem. 

We consider, in particular, recognition problems, that is, decision problems that 
have two outcomes only. In that case we label the leaves with accept and reject; 
the set accepted by T consists of the elements of S” whose computation path 
terminates in an accepting leaf, and such a path is an accepting path. 

A probabilistic decision tree with one-sided error [9] is a decision tree that also 
has some internal nodes that are coin-tossing nodes. When a computation path 
reaches such a node, it takes either of the emanating edges with probability :. The 
set accepted by such a tree is the set of inputs with a positive probability of being 
accepted. We require that, if an input is accepted, then it is accepted with probability 
2:. A probabilistic decision tree with two-sided error is a probabilistic decision tree 
with a slightly different accepting rules. The accepted set is the set of inputs with 
probability r: of reaching an accepting leaf, and we also require that all the other 
inputs have probability r$ of reaching a rejecting leaf. 

A predicate Q is order invariant if its truth set is order invariant, that is, x = y 
:+ Q(x) iff Q(y); Q is order invariant on C if x, y E C, x = y + Q(x) iff Q(y). The 
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decision tree T is order invariant on C if each predicate occurring in T is order 
invariant on C. 

T is called k-bounded if the maximal arity of a predicate occurring in T is k. The 
height of a tree T, denoted by h( 7’), is equal to the length of the longest path in T; 
the k-complexity &(A) of A is equal to the least height of a k-bounded binary 
decision tree that solves A; the k-restricted complexity Crk(A) of A is equal to the 
least height of a k-bounded binary decision tree that is order invariant and solves 
A. It was shown in [9] that it is sufficient to consider the height as a measure for 
time complexity for probabilistic decision trees as well. 

3. Lower Bounds for Constant-Bounded Decision Trees 
We prove in this section that order-invariant decision trees are as powerful as 
general-decision trees in solving order-invariant problems. The proof consists of 
two parts. The first (easy) part, consists of showing that, if an order-invariant 
decision tree solves an order-invariant decision problem on a set of inputs that 
contains representatives of each order type, then it solves the problem correctly for 
any input. In the second (harder) part, we show that, if T is a decision tree that 
solves an order-invariant problem A defined on S”, and S is large enough, then 
there exist a subset C C S such that C contains at least n elements, and T is order 
invariant for inputs from C”. Ramsey’s theorem is used to prove that claim. It 
follows that the predicates labeling the nodes of T can be replaced by order- 
invariant predicates so that the resulting decision tree still solves the initial decision 
problem on C. As each order type is represented in C”, the new decision tree solves 
the problem A correctly for any input. 

LEMMA 3.1. Crk(A) 5 %(A) 5 O(klogk)Crk(A). 

PROOF. The left inequality is immediate. To prove the right inequality, note 
that the order type of a k-tuple can be determined in O(klog k) comparisons (e.g., 
by sorting the tuple, next checking for equalities between successive items). But 
the value of an order-invariant predicate is uniquely determined by the order type 
of its argument. Thus, if T is a k-bounded, order-invariant decision tree, then we 
can replace each node v of T by a 2-bounded, order-invariant tree of height 
O(klogk), suitably replicating the left and right subtrees at v, so that the resulting 
tree T’ yields the same answers as T. The decision tree T’ is a 2-bounded, order- 
invariant tree, and h(T’) = O(klogk)h( T). Cl 

LEMMA 3.2. Let A = {D,, . . . , D4) be an order-invariant problem defined on 
S”, and let F c S” be a set that contains a representative for each order type. Let T 
be an order-invariant decision tree that solves A on F. Then T solves A. 

PROOF. Let x E S”, and assume x E D;. Let y E F be order equivalent to x. 
Then x E Di, and y reaches in T a leaf labeled with D;. But y reaches the same leaf 
of T as x. Hence, x reaches in T a leaf with label D;. Cl 

We make use of the following well-known theorem [ 121. 

RAMSEY’S THEOREM. For any n, m, and q, there exists a number N(n, m, q) 
such that the following is true: Let S be a set of size at least N( n, m, q); if we divide 
[Sin into q parts, then at least one part contains all of [Cj” for some set C C S of 
size m. 

The following theorem is also due to Ramsey [ 121. 
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THEOREM 3.3. For any k, m, and n, there exists a number N(k, m, n) such that 
the following is true: Let S be a totally ordered set of size at least N(k, m, n); let 
P I,. . ., Pk be k predicates defined on S”. Then there exists a subset C c S of size 
at least m such that each predicate Pi is order invariant on C”. 

PROOF. Let {xl, . . . , x,) and (y,, . . . , yr) be two r-element subsets of S, indexed 
in increasing order. We say that (x,, . . . , x,) is congruent to {y,, . . . , yr) if, for each 
mappinga: 1 . ..n+l . ..r.andeach 1 sjsk 

P,&(I), . . . , x,(,)> iff Pj(Yo(lh . * * T Ydn)). 
It is easy to see that this is indeed an equivalence relation on [Sir. The number 

G of equivalence classes of this relation is bounded by 2kr”. According to Ramsey’s 
theorem, for any s there is a number N = N(k, s, G) such that, if ( S ] L N, then S 
contains a subset S’ such that ] S’ ] z s and all elements of [S’lk belong to the 
same congruence class. 

If S is large enough, we can repeat this process for k = 1, . . . , n, thus building a 
sequence of sets S = CO > CI > . . . > C,, = C, such that ] C I z m, and all elements 
of [ Cklk are congruent, k = 1, . . . , n. 

Let x and y be two order-equivalent tuples in C”. Let xi, . . . , xi be the distinct 
components of x, indexed in increasing order, and let yj, . . . , yi be similarly 
tlefinedfory.Leta:l...n--,l...kbesuchthatxi=x~(,,,i=l,..., n.Since 
x = y, it follows that yi = y&,, i = 1, . . . , n. Since (xi, . . . , xi) is congruent to 
Iv;, * . . > YL), P,(x) iff Pi(y), forj = 1, . . ., k. 0 

COROLLARY 3.4. For each m, n, and t, there exists a number M = M(m, n, t) 
such that the following holds: Let T be a binary decision tree of height t defined on 
inputs from S”, where ) S 1 z M. There exists a set C C S such that ( C 1 2 m, and 
YT is order invariant on C”. 

PROOF. Follows immediately from the previous theorem. 0 

THEOREM 3.5. For each m, n, k, and t, there exists a number M = M(m, n, 
k, t) such that the following holds. Let A be an order-invariant decision problem 
defined on S” and let T be k-bounded decision tree of height t that solves A. Let 
S ( z M. Then the predicates labeling the nodes of T can be modified so that the 

resulting decision tree T’ is order invariant and solves A. 

PROOF. According to Corollary 3.4, if S is large enough, then there exists a set 
C such that ) C I 2 n and T is order invariant when restricted to inputs from C”. 
Each tuple x E S” is order equivalent to a tuple y E C” (since ] C I 2 n). Replace 
each predicate Q occurring in T by the predicate Q’ defined as follows: Q’(x) = 
Q(y), where y E C” is order equivalent to x. By the previous remark, such tuple y 
exists. As Q is order invariant on C”, the definition does not depend on the choice 
of y, and Q’ is order invariant. Also, if Q depends only on k variables, then so 
does Q’. 

Let T’ be the decision tree obtained from T by that substitution. Then T’ is k- 
bounded and order invariant on C. Also, if x E C”, then x reaches a leaf v in T’ 
iff it reaches it in T. Thus T’ solves D on C”, and by Lemma 3.2, solves (all) A. 0 

COROLLARY 3.6. Let A be an order-invariant problem. Then 
(i) Crk(A) = Ck(A); 
(ii) Crk(A) I C,(A) 5 O(k/ogk)Crk(A). 

PROOF. The first claim follows immediately from the last theorem. The second 
claim follows from the first claim and from Lemma 3.1. Cl 
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COROLLARY 3.7. The results in Corollary 3.6 hold for probabilistic and non- 
deterministic decision trees as defined in [9]. 

We discuss probabilistic decision trees in more detail in the next section. 

4. Lower Bounds for General k-Bounded Decision Trees 

In this section we prove lower bounds for specific problems allowing general queries 
with nonconstant arity. We mainly consider the problem of element uniqueness 
(EU), which is to decide, given n elements of S, whether they are pairwise distinct. 
The same technique applies to several other problems. We start with the determinis- 
tic model and then extend the results to the probabilistic model. 

4.1 DETERMINISTIC DECISION TREES. Let p be a computation path in a deter- 
ministic decision tree T, and let x be a permutation. S, is the set of all input 
tuples whose computation path is p. S, is the set of all inputs of order type 7~. S,,,, 
is the set of all inputs in S, n S, and Z’(r) is the minimal set of paths such that 
U pEP(r) &I,, = ST. 

A computation path p is complete for x if, for every pair (i, j) such that r(i) + 1 
= a(j), there is a node v in p such that i, j E IQ, (i.e., QY depends both on Xi and 
Xi). Intuitively, this means that every pair of consecutive elements in 7r is compared 
in p. p is incomplete for a at i if no node on p satisfies the above for i. 

LEMMA 4.1. Let p be a computation path such that, for some i and j (1 5 i < j 
5 n), there is no query in p that involves both xi and xi. Assume further that the 
sequences 

and 

SI = (al, . . ., ai-1, b, a;+], . . ., aj-1, C, aj+l, . . ., a,) 

~2 = (aI, . . ., at-l, 4 ai+,, . . ., +I, e, aj+l, . . ., a,) 

are in S,,. Then the sequence 

~3 = (aI, . . ., ai-1, d, a;+,, . . ., +I, C, aj+l, . . ., a,) 

is also in S,. 

PROOF. Let s be an input tuple. Then s E S,, iff Q(s) = Q(si) for every Q in p. 
In particular, Q(si) = Q(s2) for every Q in p. We prove that Q(s3) = Q(s,) for every 
Q in p. 

Let Q be a query in p. There are two cases to consider: 

(1) i is not in Ia. Then Q(s,) = Q(s3) since Q involves only variables that get in s3 
the same value they get in sl. 

(2) i is in IQ. Then j is not in la, . hence, Q(s2) = Q(sj) by the same argument as in 
(1) and the claim holds since Q(s,) = Q(s2). Cl 

THEOREM 4.2. Assume that 1 S 1 2 N(n, n + 1, n!). Zfthe decision tree T accepts 
EU and T has at most n! accepting paths, then, for every permutation r, there is a 
path p in T that is complete for K. 

PROOF. Let r be a given permutation. There is a natural 1- 1 mapping P from 
S, onto [Sin, which maps each sequence of n (distinct) elements in S, on the set 
containing these elements in [Sin. Using this mapping, we associate with each 
decision tree T and with each permutation ?r a x-coloring of [Sin, where x is the 
cardinality of P(r), in the following way: Let pl, . . . , px be the paths in P(X). (Note 
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that if the set accepted by the decision tree is EU, then all these paths are accepting 
paths.) Color each set (a,, . . . , a,) by the integer i such that ~-‘((a,, . . . , a,)) is in 
S,,. Since, by the definition of P(r), 

u s,,, = ST, 
Pep(r) 

this coloring is a x-coloring of [Sin. Thus, by Ramsey’s theorem, there is a subset 
S0 of S such that ] So ] 2 yt + 1 and all the sets of [SO]” are colored by the same 
color, which means that all the sequences in SO,, are in the set S,, for some path Pk. 
Let pk = p; then we claim that p is complete for ?r. For simplicity, assume that f = 
(l,Z .--, n) (the identity permutation), and, for contradiction, assume that p is 
incomplete for K at some i < IZ. Let (d,, d2, . . . , d,,, 1 be y1 + 1 distinct elements in 
So, di < d;,, for 1 5 i 5 n. Then since both 

s, = (d,, . . ., dl-1, 4, di+l, d/+3, . . -7 dn+l) 

and 

s2 = (d,, . . . . di-,, di+,, d;+2, dr+3, . . .) dn+,) 

are in So,, both are also in S,. Thus, we can apply Lemma 4.1 with j = i + 1, 
(6, C) = (d;, di+,), and (d, e) = (di+,, di+2) to conclude that 

s3 = (d,, . . . , d-1, di+l, d+l, 4+3, . . . , &+I) 

is also in S,,. But this contradicts the assumption that T accepts EU, since p is an 
accepting path and s3 should be rejected. q 

LEMMA 4.3. For each c there is an n, such that, if n > n,, then log(n!) > 
(1 - t)nlogn. 

PROOF. Straightforward from Stirling’s formula. 0 

The following definitions and Lemmas are similar to those in [9] and are outlined 
here. Given a computation path p, G(p) = (I’, E) is an undirected graph such that 
v= (l,..., n) and E = ((i, j) ] there is a query in p that involves both Xi and Xj 1. 
A Hamiltonian path in G(p) is a sequence of edges [(r(l), 7r(2)), . . . , (a(n - I), 
n(n))], where P is any permutation of (1, . . . , n). (By defining the path as a 
sequence, we distinguish between the start node and the end node.) If a path p is 
complete for t permutations, then G(p) contains t Hamiltonian paths. 

LEMMA 4.4. The number of Hamiltonian paths on a graph on n vertices 
(n > 1) and m edges is at most n(m/(n - l))“-‘. 

PROOF. Denote by h(n, m) the maximal possible number of Hamiltonian paths 
starting at a given vertex in a graph on n vertices and m edges. We prove by 
induction on n that h(n, m) 5 (m/(n - I))“-‘, which clearly implies the Lemma. 
For n = 2, h(n, m) = m, and equality holds. Assume that the Lemma holds for all 
graphs with IZ nodes, and let G = ( V, E) be a graph with ] V ] = n + 1, ] E I = m. 
Let v E V be of degree d (d > 0). Then G( V - (v)), the graph induced by G on 
1’ - 1~1, has n vertices and m - d edges. The number of Hamiltonian paths 
beginning with a given edge emanating from v is at most h(n, m - d). Thus, the 
total number of Hamiltonian paths starting at v is at most d. h(n, m - d), which 
by the induction hypothesis is at most 

(4.1) 
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For a fixed n and m, (4.1) attains its maximum when d = (m - d)/(n - I), that is, 
when d = m/n (this is easily verified by differentiating with respect to d). Thus, the 
number of Hamiltonian paths starting at v is at most (m/n)“. The Lemma 
follows. 0 

THEOREM 4.5. There exists a function N = N(t, n) such that any n”2-e-bounded 
decision tree T that recognizes EU on a set S such that I S) z N has height 
0(n logn). 

PROOF. Let T be a decision tree that solves EU. If T is k-bounded and of height 
h, then, for each p, G(p) contains at most h(i) edges. Let x denote the number of 
computation paths in T and let t be a bound on the number of permutations for 
which a single path p in T is complete. By Theorem 4.2, x-t L n!. Taking into 
account that x I 2h, and using Lemma 4.4 to bound t, we obtain 

2hn W [ 1 ‘-’ > n, 

1 -*. 

Taking logarithms, we get that for all t and for large enough n’s 

h+logn+(n- 1)[2log.:~~&~~zlog(n!)>(l -t)nlogn. 

Assume now that logk = (: - e)logn. By rearranging terms we get 

h + (n - 1)log > c(n - 2)logn, 

which can be shown to imply (for large enough n) that h > &I log n. The Theorem 
follows. cl 

THEOREM 4.6. There exist n ‘12-bounded deterministic decision trees of height 
O(n) that solve the element-uniqueness problem. 

PROOF. Divide the n elements into 2rn1/21 blocks of size $rn”21, and check 
for every pair of blocks whether their union is pairwise distinct. There are O(n) 
pairs of blocks, and it is easy to see that each pair of elements is contained in one 
such union. q 

COROLLARY 4.7. The complexity of k-bounded deterministic decision trees, 
where k 5 n’12+, for the following problems is Q(n logn): set equality, set disjoint- 
ness, t-closeness. 

PROOF. The proofs are very similar to the proof of Theorem 4.5 and will be 
omitted here. The reader is referred to [9] for more details. q 

4.2 PROBABILISTIC DECISION TREES. We now consider probabilistic decision 
trees and show that the results obtained in Theorem 4.5 hold for this model as 
well. The next theorem is an extension of [9, Theorem 81, where the same lower 
bound was proved for probabilistic decision trees with only simple comparisons. 

THEOREM 4.8. There exists a function N = N(E, n) such that any n “2-‘-hounded 
two-sided probabilistic decision tree T that recognizes EU on a set S, such that 1 S 1 
I N, has height Q(n logn). 

PROOF. Let T be two-sided error probabilistic decision tree that solves EU. A 
path p in T is called half-complete for a permutation ir if the number of pairs (i, j), 
7r( j) = r(i) + 1, such that there is a node v in p whose query Qy depends both on 
.x; and Xj is at least $( n - 1). 
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We first show (following the line of proof in [9]) that every permutation 7r has a 
half-complete path in T. To prove this, let 7r = (1, 2, . . . , n) (the identity 
permutation) for simplicity, and associate with each input x of S, the set of all 
paths x can follow. This defines a coloring of the elements in S, with at most 2”! 
colors (if there are more than n! paths the theorem follows immediately). By 
Ramsey’s theorem, if 1 S 1 2 N(n, n + 1, 2”!), then there is a set of yt + 1 elements 
so = (a,, . . .) a,+~) (the ai’s are in increasing order) such that all the elements in 
So, have the same color, that is, they all correspond to exactly the same set of 
paths. Denote this set of paths by P. Using Lemma 4.1, one can show that for each 
pair (i, i + 1) the probability that a query node that depends on both xi and xi+1 
occurs in a path in P must be at least 4; otherwise, either (a,, . . . , ai, ai+i, Qi+3, . . . , 
L!,,+,) is accepted with probability <: or (ai, . . . , ai-1, ai+i, ai+i, . . . , a,,+,) is rejected 
with probability <i. As a result, the expected number of distinct pairs (i, i + 1) in 
a. path is at least $n - l), which implies that there exists at least one path with 
:(n - 1) distinct pairs. 

Given a half-complete path p and its associated graph G(p), we define a half- 
Humiltonian path in G(p) [9] as a Hamiltonian path in the complete graph K, 
such that at least half of its edges are in G(p). It is easy to see that, if p is half- 
complete for t permutations, then G(p) contains t half-Hamiltonian paths. We now 
estimate the number of half-Hamiltonian paths in a graph G with n nodes and m 
edges. 

With each sequence B = (b,, . . . , b,-i), bi E (0, I), such that at least half of the 
hi’s are l’s, we associate a set HB of all half-Hamiltonian paths in which the ith 
edge is in G(p) iff bi = 1. To bound the size of each such HB, let vl, . . . , v, be an 
arbitrary path in HB. Let di be the degree of vi. There are n possibilities of choosing 
vl. The number of ways to choose v- ,+, is at most d, if bi = 1 and at most n - i, 
otherwise. Let q 2 :(n - 1) be the number of l’s in B, then 

where bi,, bi2, . . . , biq are the only l’s in B, and the d,,‘s are the largest degrees in G. 
0bviously, C&i di, I 2m. Under the constraints on the d,‘s and q it is not hard to 
verify (assuming that m < n”/8) that the right-hand side of the inequality above 
attains a maximum when all the di/‘s are equal and q is minimized. Thus, 

2m 
( ) 

(1/2)n 
lHsl sn - 

(n - l)! 
n r:(n - l)l!’ 

and since there are less than 2” distinct such B’s, the total number of half- 
Hamiltonian paths in G is less than 

2m (I’*)’ 
n2” T i ) (n - I)! 

r$n - l)l!’ (4.2) 

Now let T be a k-bounded probabilistic decision tree that recognizes EU, where 
ic I n’/*-‘, and let h be the height of T. Then, for each computation path p in T, 
G(p) contains at most h(i) edges. Let s be the number of distinct paths in T. There 
are n! permutations; hence, we need to account for n! half-Hamiltonian paths. 
Using (4.2), we get 
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Rearranging terms, this yields 
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sn2” (h k’ki ‘))i”‘* 2 nTi(n - l)l!. 

Taking logarithms and rearranging terms again yields 

logs + n + &(logh + 210gk - logn) z log(l’:(n - l)l!) I (1 - t)$tlogn 
(for large enough n). 

Since k 5 n(‘/*)-‘, 2 log k I (1 - 2c)log n. Thus, 

logs + n + $zlogh r (1 + t)$tlogn. 

If logs 2 $n logn - n, then, since h z logs, the theorem follows. Assume that log 
s 5 &n log n - n; we get 

nlogh 2 (1 + :c)nlogn, 

which implies that 
log h 1 (1 + &)logn. 

Thus, we actually get that, unless there are many leaves (namely, s is large enough), 
the height of the tree must satisfy h = Q(n”‘). 0 

Note that the part of the proof using Ramsey’s theorem can also be achieved by 
the technique of Section 3; however, this more direct application yields smaller 
constants. 

5. Conclusion and Further Research 
We have presented techniques for extending lower bound results for decision trees 
using simple comparisons to decision trees using general queries. The only restric- 
tion we impose on the queries is the number of inputs involved. In some cases we 
show that this restriction is also necessary. The techniques are purely combinatorial. 
As a result, the lower bounds apply to any large enough computational domain. 

The first use of Ramsey’s theorem we made here was inspired by a previous 
work of Yao [21]. The same technique has already been used to extend lower 
bounds proved for comparison-based algorithms to more general ones: Snir used 
it in [ 171 for parallel computations, and Frederikson and Lynch used it in [3] for 
distributed computations. All these applications of Ramsey’s theorem share a 
common framework. 

The result of Theorem 3.3 can be reformulated as follows (this formulation is 
also due to Ramsey [ 121). 

THEOREM 5.1. For each j, k, m, n, there is a number N(j, k, m, n) such that 
the following holds: Let F be a universal formula of size j in first-order predicate 
calculus, with predicates PI, . . . , Pk, and n variables. Then, tf this formula can be 
satisfied by a model of size N(j, k, m, n), it can be satisfied by a model of size m, 
where the predicates Pi are order invariant. 

Assume a computational model where the assertion “Algorithm A solves cor- 
rectly an order-invariant problem A in t steps” can be formally expressed by a 
universal formula of first-order predicate calculus using predicates <, Pi, . . . , Pk. 
The previous theorem implies that, if this formula is satisfied on a sufhciently large 
domain (with < interpreted as a total order), then it is satisfied on a domain of size 
at least n, where P,, . . . , Pk are order invariant. Thus, lower bounds proved for 
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“order-invariant algorithms” (e.g., algorithms that are represented by order-invar- 
iant predicates) are valid with no restriction on the predicates. 

Our use of Ramsey’s theorem and the other uses we mentioned all follow from 
that observation. 

This general formulation also shows the limitations of this method: The claim is 
not valid if function symbols are used; thus, we can only model computations 
where each operation has a fixed number of possible outcomes (in the case of a 
decision tree-two). Also, the domain in which the problem is solved must be large 
enough for Ramsey’s theorem to be applied. 

The constraints of the k-bounded decision tree model can be weakened in several 
ways. We have explored in this paper one direction, namely, allowing the bound k 
to grow with the number of inputs. When k = n, the number of inputs, then the 
information-theoretic bound is correct. In general, one would like to establish 
trade-offs between the widths of the queries and the height of the decision tree. In 
this context, note that Theorem 4.6 can be extended to show that for every r E 
[OS, l] there is an n’-bounded decision tree of height 0(nze2’) that recognizes EU. 

The number of distinct input values (i.e., the size of S) has to be very large, 
especially in the general case, owing to the repeated use of Ramsey’s theorem. In 
fact, it seems that Q(n log n) steps are needed to solve EU, even when the number 
of distinct values is O(n). Is it possible to avoid the use of Ramsey’s theorem, and 
give a combinatorial proof of the Q(nlogn) lower bound, when the domain has 
size O(n)? 

The results of this paper can be interpreted as closure theorems, in the following 
sense. Given a problem that is defined using the order structure of its domain S, 
then an optimal solution exists that uses only the order structure; imposing 
additional structure (i.e., defining additional predicates) does not help. Note that 
the element-uniqueness problem is defined in terms of the equality relation. 
However, a decision tree that uses only tests for equality requires Q(n2) steps to 
solve EU. Adding a (arbitrary) total-order structure on S helps to solve the problem. 

The same question, namely, finding a minimal extension of the structure for 
which a computational problem is defined, such that an optimal solution exists, 
can be raised for other structures. For example, can one show that if a problem is 
defined in R” using polynomial inequalities of degree k, then an optimal solution 
exists that uses only comparisons with degree k polynomials? We conjecture this 
result to be true when the length of a path in the decision tree is defined to be the 
sum of the degrees of the polynomials occurring on it. 

REFERENCES 

1. BEN-OR, M. Lower bounds for algebraic computation trees. In Proceedings of the 15fh Annual 
ACM Symposium on the Theory of Computing (Boston, Mass., Apr. 25-27). ACM, New York, 
1983, pp. 80-86. 

2. DOBKIN, D. P., AND LIPTON, R. J. On the complexity of computations under varying sets of 
primitives. J. Comput. Syst. Sci. 18 (1979), 86-9 1. 

3. FREDERIKSON, G., AND LYNCH, N. A. The impact of synchronous communication on the problem 
of electing a leader in a ring. In Proceedings of the 16th Symposium on Theory of Computing 
(Washington, D.C., Apr. 30-May 2). ACM, New York, 1984, pp. 493-503. 

4. FREDMAN, M. L. How good is the information theory bound in sorting? Theor. Comput. Sci. 1 
(1976), 355-361. 

5. FREDMAN, M. L., AND WEIDE, B. On the Complexity of computing the measure of U[ai, bi]. 
Commun. ACM 21, 7 (July 1978) 540-544. 

6. KUNG, H. T., Luccro, F., AND PREPARATA, F. P. On finding the maxima of a set of vectors. J. 
ACM 22,4 (Oct. 1975) 469-476. 

7. MAASS, W. On the use of inaccessible numbers and order indiscernibles in lower bound arguments 
for random access machines. In preparation. 



Applications of Ramsey’s Theorem 949 

8. MANBER, U. A probabilistic lower bound for checking disjointness of sets. I/: Proc. Left. 19 (July 
1984), 5 i-53. 

9. MANBER, U., AND TOMPA, M. The complexity of problems on probabilistic, nondeterministic, 
and alternating decision trees. In Proceedings ofthe 14th Annual ACM Symposium on the Theory 
of Computing (San Francisco, Calif., May 5-7). ACM, New York, 1982, pp. 234-244. 

IO. MANBER. U., AND TOMPA, M. The effect of number of Hamiltonian paths on the complexity of 
a vertex-coloring problem. SIAM J. Comput. 13 (1984), 109-I 15. 

1 I. RABIN, M. Proving simultaneous positivity of linear forms. J. Comput. Syst. Sci. 6 (1972), 639- 
650. 

12. RAMSEY, F. P. On a problem of formal logic. Proc. London Math. Soc., 2nd ser, 30 (l930), 264- 
286. 

13. REINGOLD, E. M. Computing the maxima and the median. In Proceedings of the IEEE 12th 
Symposium on Switching and Automata Theory. IEEE, New York, I97 1, pp. 2 16-2 18. 

14. REINGOLD, E. M. On the optimality of some set algorithms. J. ACM 19, 4 (Oct. 1972), 649-659. 
15. SHAMOS, M. I. Geometric complexity. In Proceedings of the 7th Annual ACM Symposium on the 

Theory of Computing (Albuquerque, N.M., May 5-7). ACM, New York, 1975, pp. 224-233. 
16. SNIR, M. Comparisons between linear functions can help. Theor. Comput. Sci. 19 (1982), 321- 

330. 
17. SNIR, M. On parallel searching. Siam J. Comput., To appear. 
18. SNIR, M. Lower bounds on probabilistic linear decision trees. Theor. Comput. Sci., To appear. 
19. STEELE, J. M., AND YAO, A. C. Lower bounds for algebraic decision trees. J. Algorithms 3 (1982), 

l-8. 
20. YAO, A. C. On the complexity of comparison problems using linear functions. In Proceedings oJ 

the 16th Symposium on Foundations of Computer Science. IEEE, New York, 1975, pp. 85-89. 
21. YAO, A. C.-C. Should tables be sorted? J. ACM 28, 3 (July 1981), 616-628. 
22. YAO, k. C.-C. A lower bound to finding convex hulls. J. ACM 28, 4 (Oct. 198 I), 780-789. 

RECEIVED SEPTEMBER 1984; REVISED MARCH 1985; ACCEPTED MARCH 1985 

Journal of the Association for Computing Machinery, Vol. 32, No. 4, October 1985. 


