SIAM J. COMPUT. © 1987 Society for Industrial and Applied Mathematics
Vol. 16, No. 1, February 1987 008

THE COMPLEXITY OF PARALLEL SORTING*
FRIEDHELM MEYER AUF DER HEIDE} AND AVI WIGDERSON#

Abstract. The model we consider is the (concurrent-write, PRIORITY) PRAM. It has n synchronous
processors, which communicate via an infinite shared memory. When several processors simultaneously
write to the same cell, the one with the largest index succeeds. We allow the processors arbitrary computational
power.

Our main result is that sorting n integers requires Q(v1og n) steps in this strong model. This bound is
proved in two stages. First, using a novel Ramsey theoretic argument, we “reduce” sorting on a PRAM to
sorting on a parallel merge tree. This tree is a generalization of Valiant’s parallel comparison tree from [V]
in which at every step n pairs of (previously ordered) sets are merged (rather then n pairs of elements
compared). The second stage is proving the lower bound for such trees.

The Ramsey theoretic technique, together with known methods for bounding the “‘degree” of the
computation, can be used to unify and generalize previous lower bounds for PRAM’s. For example, we can
show that the computation of any symmetric polynomial (e.g. the sum or product) on n integers requires
exactly log, n steps.

Key words. parallel computation, PRAM, sorting, lower bounds, Ramsey theory

AMS(MOS) subject classification. 68Q25

1. Introduction. The interest in parallel sorting is obvious. In the last few years
we have witnessed a multitude of upper bounds for parallel sorting on various models.
These results culminated in the remarkable O(n log n) sorting network of Ajtai, Komlos
and Szemeredi [AKS], and its beautiful adaptation to bounded degree n-node networks
by Leighton [L].

Surprisingly, there are essentially no lower bound results for sorting. The reason
seems to be that for many parallel models such bounds follow either from simple
considerations or from parallel lower bounds on simpler functions. Here are a few
examples.

1. Comparison trees and algebraic decision trees. The Q(n log n) sequential lower
bound for sorting (Paul and Simon [PS]) implies an Q(log n) lower bound on
the parallel versions of these trees with n processors.

2. Bounded degree n-node networks. An Q(log n) lower bound follows from
diameter considerations.

3. Polynomial size, unbounded fan-in circuits. The Q(vlog n) on depth for com-
puting the parity function, due to Ajtai from [A], yields a similar bound for
sorting.

4. Exclusive-write PRAM. The Q(log n) lower bound for computing the Or func-
tion, due to Cook, Dwork and Reischuk from [CDR] implies a similar bound
for sorting.

In all the parallel models mentioned above, there is a restriction on either the
computational power of the individual processors, or on the nature of communication
between them. Here we pose no such restrictions; we consider a concurrent-write
PRAM, in which n processors of arbitrary computational power communicate via an
infinite shared memory. Moreover, we use the strongest convention of resolving write
conflicts; the processor with the largest index succeeds.

The only nontrivial lower bound on this model appears in [FMRW]. It is a (tight)
Q(loglog n) bound on finding the maximum of n integers. As is almost traditional

* Received by the editors May 8, 1985; accepted for publication (in revised form) February 18, 1986.
+J. W. Goethe Universitdt, Frankfurt, West Germany.
+ Mathematical Sciences Research Institute, Berkeley, California 94720.

100

COMPLEXITY OF PARALLEL SORTING 101

with lower bounds for models in which the computation and communication behaviour
depend on the input in a complicated way, Ramsey theory is used to “clear the smoke”
and find some structure. Such an argument showed that, for finding the maximum, a
parallel comparison tree is essentially (i.e. for a large input set) as good as a PRAM.
Then Valiant’s Q(log log n) lower bound from [V] on such trees is applied.

The problem with the Ramsey theoretic argument in [FMRWT] is that input
variables are fixed to constants at a doubly exponential rate as the computation
proceeds, and hence it can never yield a lower bound bigger than Q(log log n).

We prove an Q(vlog n) on sorting n integers. We use a new Ramsey theoretic
argument in which variables are not fixed, but instead some information about their
ordering is given to the algorithm as the computation proceeds. With this argument
we show that essentially all a processor can do in a step is to merge two ordered sets
(chains) of variables. It is natural now to define a parallel (m, n)-merge tree, in which
at every node n pairs of chains of size m each are merged. (Note that for m =1 this
tree is simply Valiant’s parallel comparison tree.)

We prove a general lower bound, parametrized by m, for such trees. Then we
combine it with the dependency of m on the time of the PRAM computation to obtain
our Q(Vlog n) lower bound. We believe that our lower bound on PRAM’s can be
improved to Q(log n).

As mentioned, our Ramsey theoretic argument gives information about the order-
ing of input variables to the algorithm. For sorting, we had to take care to give as little
information of this type as possible. For symmetric functions, however, applying this
argument becomes much simpler, since we can assume that the input variables are
sorted to begin with. Using this idea, combined with known techniques to making the
“degree” of the computation finite (albeit the infinite address space), we get a simple
proof of the following result. The computation of any symmetric polynomial of n
integers (e.g. the sum or the product) requires exactly log, n steps.

This result was independently obtained (at least for addition) by Israeli and Moran
in [IM]. It unifies and generalizes similar bounds on models that restrict either the
computational power of processors (Meyer auf der Heide and Reischuk [MR]) or the
interprocessor communication (Parberry [P]).

2. Formal definitions and statements of results. The two important models in this
paper are the PRAM and the parallel merge tree. We start with the (standard) definition
of the PRAM.

A (PRIORITY) PRAM M consists of n processors (RAM’s) P, P,,- -, P,, and
infinitely many shared memory cells (which we abbreviate “cells”), indexed by the
integers N. We say that M computes a function f: N" > N™ in T steps, if initially P;
has the value a; of the ith input variable in its local memory, all cells are initialized
to “0”, and after T steps the first m cells contain the m values of f(a,, a5, -, a,).

Every step of the computation consists of two phases, synchronously performed
by all processors. In the write phase, each processor writes some value into some cell.
In the read phase, each processor reads some cells to its local memory. (These addresses
and this write value depend on the processor’s local memory, but we place no restriction
on the complexity of computing them.) If a cell is written into by several processors
at one step, its contents will be the value written by the highest index processor among
them.

For the definition of the merge tree, we need some notation for partial orders.
Let V be a set of elements {x,, x,, * * *, x,}. A directed acyclic graph Q = (V, E) defines
a partial order <,, in the natural way. Q =(V, E) is the transitive closure of Q. A set

102 FRIEDHELM MEYER AUF DER HEIDE AND AVI WIGDERSON

U < V is a chain (or a total order) in Q if the elements of U belong to a directed path
in Q. A set U is an antichain in Q if U is an independent set in Q.

Let U,, U,= V and Q,=(U,, E,), Q,=(U,, E,) be partial orders. Q, and Q, are
consistent if there is no pair a, b€ V such that (a, b) € E, and (b, a) e E,. A family of
partial orders on subsets of V, Q,, Q,, - -+, Qy is consistent if every pair is consistent.
The union of two consistent orders Q, and Q, is Q,U Q,=(V, E,U E,). Similarly we
define U¥_, Q..

We say that Q'=(V, E’) is an extension of Q=(V, E) iff Ec E'. If Q' is a total
order, we say that it is a linear extension of Q.

Let C,, C;c V be two chains in Q=(V, E). A merge of C, and C, in Q is any
total order Q'=(C,U C,, E’), consistent with Q.

Now we are ready to define the model. An (m, n)-merge tree (for sorting) is a
rooted tree with labels on the nodes and on the edges. The label of an internal node
v is a partial order Q on V, together with n pairs of chainsin Q, (C;;, Cy5),i=1,2, - -, n,
satisfying |C;|=m for all i=1,2,--,n, j=1,2. Every branch e out of v is labeled
with a different consistent family of merges C; of C;; and C;,, i=1,2,---,n If u is
the child of » connected by e, then the partial order in u is QU U[_; C;. The root is
labeled with the empty partial order on V. The cost of an (m, n)-merge tree H, denoted
c¢(H), is the length of the longest root-leaf path in H. H sorts n numbers, if each leaf
is labeled with a total order. The cost of sorting on (m, n)-merge trees is c(m, n), the
minimum cost ¢(H) of an (m, n)-merge tree H which sorts n numbers.

The main result of this paper is the following.

MaAIN THEOREM. Any PRAM needs Q(v1og n) steps to sort n integers.

The main Theorem follows directly from the Theorems 1 and 2 below.

THEOREM 1. Let M be a PRAM sorting n integers in T steps. Then there is a
(27, n)-merge tree which sorts n numbers in T steps.

THEOREM 2.
log n)
=Q ————|.
c(m, n) (log (mlogn)

As a corollary to the proof method of Theorem 1, we get a general tight bound
for a family of symmetric functions. For Sc N let Sy ={(a,, -+, a,)eS" la; # a; for
i#j}. A function f: N"- N is strongly nonconstant, if for each infinite Sc N, f
restricted to S} is nonconstant.

THEOREM 3. A PRAM needs exactly log, n steps to compute a symmetric, strongly
nonconstant function.

Example. Every nonconstant, symmetric polynomial on n variables (e.g. the sum
or the product) is a symmetric, strongly nonconstant function.

3. Simulating PRAM’s by merge trees.

THEOREM 1. Let M be a PRAM sorting n integers in T steps. Then there is a
(27, n)-merge tree which sorts n elements in T steps.

We simulate M by a computation tree. We want to maintain at each node v of
this tree in depth t the following property: Let I be the set of inputs arriving at v.
Then, for inputs from I, each processor P, only knows variables with indices from
some set X; < [n] at time t. ([n]={1,2, - -, n}.) The exact meaning of this is that for
inputs from I, the configuration of P, after ¢ steps (considered as a function in I') only
depends on the variables with indices from X;. In the sequel we shall refer to them
as the variables from X; for short.

Clearly, because of its arbitrary computational power, P; can now sort the variables
it knows in one step and can proceed dependent on their order. We shall see that this

COMPLEXITY OF PARALLEL SORTING 103

is essentially the only property of the input which can influence the behaviour of P,
if we restrict the input set suitably. Namely, if the orders of the sets of variables the
processors know are fixed, the next “communication pattern” is fixed, too, in the
following sense. For each i€[n], P; reads the value that was written by some fixed
processor P, at some fixed time #;. Thus it is fixed which new variables P; gets to know
in this step, namely just those which P, knew before. As they also were already sorted
before, the behaviour of P, in the next step only depends on the outcome of the merging
of the two ordered sets of variables it now knows. Thus M behaves like a merge tree.

In the sequel we only consider inputs which consist of distinct numbers. Recall
that for a set Sc N S, ={(a,,"*+,a,)eS"|a;#a; for i#j}. For ic[n] let X;,<[n]
and ; be a total order on X;. Let X =(X,, -, X,), m=UJ_, m;. We always assume
that the =;’s are consistent. Then, following the above intuition, the set of inputs
arriving at a node of the merge tree should be of the form I(X,w, S)=
{(ay,- -, a,)eSt|a,<a, for all p, g such that p <, q}.

The following lemma is the heart of the proof of the theorem.

MaAIN LEMMA 1. Suppose that at time t, for inputs from I =1(X, m, S), P; only
knows variables from X;. Then there are j,,- - -, j, €[n] and an infinite S' < S, such that
after step t, for inputs from I' = I(X, m, S'), P; only knows variables from X;U X, .

Before we prove this lemma we first conclude Theorem 1 from it. For this purpose
we define inductively a (2, n)-merge tree H of depth t. We shall show that finally,
when H has depth T, it sorts n numbers. For the inductive construction to work, we
keep extra information at the nodes.

The set of inputs at the root is Ni=I(({1},--{n}), (¢, -, ¢), N), where ¢
denotes the trivial order on one element. At this time P; only knows x;. So the assumption
in the lemma holds for ¢t =0.

Now let €[T] and assume that we have constructed a (2', n)-merge tree of depth
t for inputs from S}, such that the set of inputs arriving at a node v in depth ¢ is of
the form I =I(X, 7, S), and for inputs from I, P; only knows variables from X; at
time . Furthermore we maintain that although X and 7 depend on v, S is the same
set for all nodes in depth t.

For each node v in depth ¢ successively perform the construction below.

Let I = I(X, m, S) be the set of inputs arriving at v, and S’, j;, - - -, j, be as in the
main Lemma I. Now we define a son v’ of v for each consistent tuple of mergings
7'=U{_, 7} of the sets in X'= (X1, -+, X}) with X|= X, U X, Then the set of inputs
arriving at v’ is I'=(X', #", S"). As I'c I(X, m, S’), we know by main Lemma I that,
for inputs from I', P; only knows variables from X at time ¢+ 1, Now for the already
defined sets of inputs arriving at nodes replace S by S'. Finally, after having performed
this construction for all nodes in depth t, we get a (2'*", n)-merge tree of depth ¢+1.

Now suppose that we have constructed H up to depth T. We finally have to verify
that H sorts n numbers, i.e. to prove that for each set of inputs I = I(X, =, S) arriving
at a leaf of H the order on [n] induced by = is total. Suppose it is not. Then, as for
inputs from I each P; only knows variables from X; at time 7, M cannot distinguish
between the different possible total orders and would compute the wrong output for
some inputs. Thus H is a merge tree as demanded in the theorem.

Before we prove main Lemma I, we introduce some notations and useful Ramsey
theoretic results. For an infinite set S N and a total order Q on [n] let S5 =
{(a,, - -,a,)eS"|a;<a; if i <o j}. Such a set is called a fixed order type. If Q is the
natural order on [n], we write S for S§.

We apply the following ‘“canonical” Ramsey theorem due to Erdos and Rado
from [ER] (see also [GRS]).

104 FRIEDHELM MEYER AUF DER HEIDE AND AVI WIGDERSON

THeEOREM [ER] (Erdds-Rado Theorem). Let f: S5~ N. Then there is Sc S, S
infinite, such that f'=f [gg, is 1-1 on the variables it depends on. Precisely, there is a
J < [n] such that f'(a,, -, a,)Zf (b, ", b,) if and only if a; # b; for some i€ J. In
particular, if f has a finite range, ' is constant

LEMMA 1. Let f:S2> N and g: S” > N be 1-1 functions. Then there is S S, S
infinite, such that, restricted to s , fand g either have dlS]Olnt ranges or are identical.
Precisely, ettherf(S")ﬂ g(S") & orn=n'and f|s gn.

Proof. Assume without loss of generality that n = n’. Add dummy varlables such
that also g is defined on S, but only depends on the first n’ variables. We first consider
the 2-coloring ¢ on S” with c(a@)=1 if f(a)=g(a), and c(a)=0 otherwise. By the
Erdos-Rado Theorem there is S< S, S infinite, such that ¢ is constant on S”. If c=
then f|s» = g|s» and we are done. If c=0, then let G be the directed graph on S” with
(a,b)e E(G) if f(a) = g(b). G has no self-loops because c=0 on S”. G has indegree
1, because f is 1-1. Therefore it is easy to see that the underlying undirected graph is
3-colorable. Color it with 3 colors. By the Erdos-Rado Theorem there is an infinite
S < S such that §” is monocromatic. Thus, f(.§l)ﬂ g(S‘Z) =. Q.E.D.

Proof of Main Lemma 1. Let I =I(X, w, S) be such that P, only knows variables
from X, at time t. Consider what P; has done until time . At each time d €[t], it wrote
some value v¢ to some cell w?. Furthermore P, read cell r; at time . These values are
functions of the input set N". But, as P, only knows variables from X;, they only
depend on the variables from X;. Our goal now is to restrict the input set I to a set
I' in such a way that, for inputs from I', P, reads what some P, wrote at some time
d, only if r; and w}' are the “‘same functions”, and are applied to the “same arguments’’.

We refer to the functions w¢ and r, as address functions. The clean form of such
a function fis derived by fixing all variables f does not depend on to arbitrary constants.
Thus a clean form of a function always depends on all its variables. Let f” be the clean
form of some address function f. If f was used by P, (i.e. is r; or w{ for some d), then
it only depends on some (not necessary all) variables from X;. As they are totally
ordered according to ;, f' is defined on a set of fixed order type. Thus we may apply
the Erdos-Rado theorem successively to the clean forms of all address functions. The
result is an infinite set S < S such that, on i=1n §", all address functions are 1-1 on
the variables they depend on.

From now on we assume that the domain of all address functions is I. Note that
the clean form of the address functions can now depend on fewer variables than before
we applied the Erdos-Rado theorem.

We know that the clean form of an address function is defined on a set of fixed
order type. The function derived from it by reordering these variables such that it is
defined on §” is called the standard form of f.

As we now know that the standard forms of address functions are 1-1 functions
and are defined on SZ, we may apply Lemma 1 successively to all pairs of them. As
a result we get an infinite set S< S with the following property (*). Assume from now
on that the domain of all address functions is I'= 1N S".

*) Two address functions either have disjoint ranges or have the same standard form.

Now let f and g be two address functions. Recall that they are defined on I'.

LEMMA 2. fand g are either identical or f(a)# g(a) forallael'.

Proof. Suppose f(a)=g(a) for some acI'. Then, by (*), they have the same
standard form h. Thus they are identical if they depend on the same variables. Assume
that f and g depend on different sets of variables. Let @’ and a@” be the subvectors of
the above a of those variables f and g depend on, increasingly ordered. These vectors

COMPLEXITY OF PARALLEL SORTING 105

are different, because they contain values of different variables, and the a,’s are distinct.
On the other hand, we know that h(a') =f(a), h(a")=g(a). But as h is 1-1, h(a') #
h(a"), which contradicts the supposition we started with. Q.E.D.

Now consider what P, reads in step t. If r, was never used for writing (i.e. r; # w,‘-”
for all j and d), then we know by Lemma 2 that P, reads 0. Otherwise, because of the
PRIORITY write conflict resolution and Lemma 2, P; reads v}, the value P; wrote at
time d, where (d, j) is lexicographically maximal such that w}i =r,. Thus, as v}’ only
depends on variables from X, after this step P; only knows variables from X; U X; for
inputs from I', which proves the lemma. Q.E.D.

4. A lower bound for sorting on merge trees. In this section we complete the proof
of our main theorem by showing the demanded lower bound on (m, n)-merge trees.
THEOREM 2.

B log n
c(m, n) _Q<log (mlog n))'

Proof of Theorem 2. 1t is sufficient to prove that c¢(m, n) =Q(log n/log m) for
m =9 log n. Let H be any (m, n)-merge tree which sorts n numbers. We shall inductively
exhibit a long path from the root in H. Intuitively, the argument is as follows. Suppose
that we constructed the last node in the path, v, s.t. the partial order in v has many
linear extensions. We shall look for a child u of v with the same property. To do that,
we must show that there is a way of merging the n pairs of chains given at v, s.t. as
few as possible transitive implications are added to the partial order.

To this end, we shall define a “nice” class of partial orders, in which we can get
a handle on the quantities mentioned above. We will show that for each node in the
path we construct, its partial order has an extension which is a partial order in the
nice class.

We now describe the “nice” partial orders. Let n = kl+ a for positive integers k,
I, a. A (k, I, a)-graph is obtained as follows. Take a chain on k + a vertices. Then choose
some k of the vertices, and replace each by I copies of itself (each having the same
in and out neighbours).

A (k, I, a)-partial order is a partial order Q s.t. Q is isomorphic to the transitive
closure G of some (k, I, a) graph G.

Let Q=(V, E) be a (k, I, a)-partial order. It has k antichains, each of size I Call
them S, S,, - - -, Sk. Clearly, to “sort” Q, it is necessary and sufficient to sort all the
S.’s. Consider a merge operation on Q. It involves two chains, C, and C,(|C,|, |C,| = m).
Clearly, we may assume that C,, C,= U¥ | S, (as the rank of the elements outside
those antichains is known). Moreover, by the structure of Q, |q NS|=1forallj=1,2
and i=1,2, -,k Hence, merging C, and C, reduces to performing at most m
comparisons, at most one in each S;.

Main LEmMaA I1. Let v be a node in H whose partial order Q, is contained in a
(k, I, a)-partial order, with a=n/2 (hence kl=n/2). Then there is a child u of v whose
partial order Q, is contained in an (k',I',a’) partial order, with k'=km* and a'=
a+(3n/m)+km*. ‘

Before we prove main Lemma II, let us see how it implies Theorem 2. Clearly,
the empty partial order at the root of H is a (1, n, 0) partial order. Apply the lemma
t times with ¢ =log n/5log m. We reach a node whose partial order is contained in a
(k, I, a)-partial order with k=m* and a =3tn/m+m*. (Note that since m=9logn,
and because of the choice of ¢, the assumption in the lemma holds at every step.) But
for this choice of t, k=n/4, a=n/2, and therefore I/ =2. So this partial order cannot

106 FRIEDHELM MEYER AUF DER HEIDE AND AVI WIGDERSON

be a total order, and this node at depth ¢ cannot be a leaf. Hence, ¢(H)=
Q(log n/log m).

Before we proceed to prove Lemma 2, we need the following technical lemma.

LemMaA 3. Let G=(V, E) be an undirected graph, and b a positive number. Then
one can remove a set V'< 'V of vertices, with |V'|=(2|V|/b)+ (2|E|b/|V]), s.t. the
remaining graph on V — V' can be colored with (2|E|b/|V|) colors, with each color class
of the same size.

This lemma is based on the following result, due to Hajnal and Szemeredi from
[HS].

THEOREM [HS]. Any graph G =(V, E) with maximum degree A can be colored
with A+1 colors s.t. each color class has size (|V|/A+1) or (|V|/A+1)+1.

Proof of Lemma 3. Remove the 2|V|/b vertices of highest degree from G. Then
the maximum degree is at most (2|E|b/|V|) — 1. Apply the previous theorem, and then
remove one vertex from each of the larger color classes (at most 2|E|b/|V]), to make
them all of equal size.

Proof of Main Lemma 11. Assume without loss of generality that Q, is a (k, I, a)-
partial order, and let S, S,, - - -, Sk be its antichains of size I. Consider the n pairs
of chains, (C,, C;), i=1,2,- -, n, that are merged at v. Each such pair gives rise to
at most m comparisons. So we have a total of nm comparisons, distributed among the
S;’s. By averaging, at most k/m of the S;’s have more than nm?*/k comparisons. For
each such S, arbitrarily choose a total order (hence resolving all comparisons within
it). We obtain an extension Q, of Q, which is a (k,, [, a,)-partial order, with k, =k
and q,;=a+(k/m)l=a+(n/m).

So each of the remaining S;’s has at most nm*/k comparisons. Think of these
comparisons as edges in an undirected graph with vertex set S;. Now we use Lemma
3 on each of these graphs. From each S; remove = 21/ m+ (2(nm?*/k)m/ 1) vertices as
in the lemma, make them all (say) bigger than the rest of S;, and arbitrarily totally
order them. This resolves all comparisons involving these vertices. The result is an
extension Q, of Q,, which is a (k,, [, a,) partial order, with k,=k; =k and a,=
a,+k(2l/m)+Q2nm?®/kl)) = a,+2n/m+4km>=a+3n/m+ km®.

Finally, the remaining graph on each S; can be colored with = 2nm*/kl=4m>= m*
colors each color class of equal size. Totally order the color classes arbitrarily, thus
resolving the remaining comparisons in each ;. The result is a (k', I, a’) partial order
Q', with k'=km* and a'=a+3n/m+km®. Since we resolved all comparisons in a
consistent way, there must be a child u of v s.t. Q' is an extension of Q,,.

5. A general lower bound for a family of symmetric functions. In this section we
prove Theorem 3. Recall that for S= N we defined S, ={(a;, -, a,)e S"|a; # a; for
i #j}. Afunctionf: N" > N is strongly nonconstant, if for each infinite S = N, f restricted
to S is nonconstant.

THEOREM 3. A PRAM needs exactly log, n steps to compute a symmetric, strongly
nonconstant function.

Proof. The upper bound is obvious because of the computational power of the
processors: in log, n steps one processor can get to know all variables and then compute
the function in one step.

In order to show the lower bound, we shall again apply the Erdos-Rado theorem
to find an infinite S< N such that M is oblivious to inputs from SZ.

We first describe what we mean by oblivious. Let X € N" be an input for M. Then
it is well defined which processor writes to or reads from which memory cell at a given
time, if M is started with x. Thus we can define the following communication pattern

COMPLEXITY OF PARALLEL SORTING 107

for x: For each t€[T], ie[n], P, reads at time ¢t what P, has written at time d, where
de[t] and je[n] depend only on i and t. M is oblivious to inputs from I < N", if
the communication patterns of all inputs from I are the same. The following lemma
is often proved in similar forms in literature, e.g. in [MR], [CDR].

LemMA 4. Let I = N" such that f: I > N depends on all its variables. If the PRAM
M computing f is oblivious to inputs from I, then M needs at least log, n steps to
compute f.

LEMMA 5. If M computes f: N" > N then there is an infinite S < N, such that M is
oblivious to inputs from SZ.

The lower bound in Theorem 3 now follows directly from the above lemmas and
the definition of strongly nonconstant functions. As we only deal with symmetric
functions, if such a function is nonconstant on S, then it is so even on SZ.

Proof of Lemma 5. We restrict f to inputs from NZ. As the number of processors
and the number of steps M executes are finite, there are only finitely many different
communication patterns. Thus, by the Erd6s-Rado theorem, we find an infinite S= N
such that all inputs from SZ have the same communication pattern, i.e. M is oblivious
for inputs from S2. Q.E.D.

REFERENCES
[A] M. AJTAlL }-formulae on finite structures, Ann. Pure Appl. Logic, 24 (1983), pp. 1-48.
[AKS] M. AiTAl, J. KoMLOS AND E. SZEMEREDI, Sorting in c log n parallel steps, Combinatorica, 3

(1983), pp. 1-19.

[CDR] S. Cook, C. DWORK AND R. REISCHUK, Upper and lower time bounds for parallel random
access machines without simultaneous writes, preprint, 1983.

[ER] P. ERDOsS AND R. RADO, A combinatorial theorem, J. London Math Soc., 25 (1950), pp. 249-255.

[FMRW] F. FicH, F. MEYER AUF DER HEIDE, P. RAGDE AND A. WIGDERSON, One, two,
three - - - infinity: Lower bounds for parallel computation, 16th ACM STOC, Providence, 1985,

to appear.

[GRS] R. L. GRAHAM, B. L. ROTHSCHILD AND J. H. SPENCER, Ramsey Theory, John Wiley, New
York, 1980.

[HS] A. HAJNAL AND E. SZEMEREDI, Proof of a conjecture of P. Erdos, Combinatorial Theory and
its Applications, 2 (1970), pp. 601-623.

[IM] A. ISRAELI AND S. MORAN, private communication.

[L] T. LEIGHTON, Tight bounds on the complexity of parallei sorting, 16th ACM STOC, Washington
DC, 1984, pp. 71-80.

[MR] F. MEYER AUF DER HEIDE AND R. REISCHUK, On the limits to speed up parallel machines by
large hardware and unbounded communication, 25th IEEE FOCS, Miami, 1984, pp. 56-64.

[P] I. PARBERRY, A complexity theory of parallel computation, Ph.D. dissertation, Warwick, 1984.

[PS] W. J. PAUL AND J. SIMON, Decision trees and random access machines, Symposium ueber Logik

und Algorithmik, Ziirich, 1980, pp. 331-339.
[V] L. VALIANT, Parallelism in comparison problems, this Journal, 4 (1975), pp. 348-355.

