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ABSTRACT
Schaefer’s theorem is a complexity classification result for
so-called Boolean constraint satisfaction problems: it states
that every Boolean constraint satisfaction problem is either
contained in one out of six classes and can be solved in poly-
nomial time, or is NP-complete.

We present an analog of this dichotomy result for the
propositional logic of graphs instead of Boolean logic. In
this generalization of Schaefer’s result, the input consists of a
set W of variables and a conjunction Φ of statements (“con-
straints”) about these variables in the language of graphs,
where each statement is taken from a fixed finite set Ψ of
allowed quantifier-free first-order formulas; the question is
whether Φ is satisfiable in a graph.

We prove that either Ψ is contained in one out of 17 classes
of graph formulas and the corresponding problem can be
solved in polynomial time, or the problem is NP-complete.
This is achieved by a universal-algebraic approach, which in
turn allows us to use structural Ramsey theory. To apply
the universal-algebraic approach, we formulate the compu-
tational problems under consideration as constraint satisfac-
tion problems (CSPs) whose templates are first-order defin-
able in the countably infinite random graph. Our method
to classify the computational complexity of those CSPs pro-
duces many statements of independent mathematical inter-
est.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
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1. MOTIVATION AND THE RESULT
In an influential paper in 1978, Schaefer [22] proved a

complexity classification for systematic restrictions of the
Boolean satisfiability problem. The way how he restricts the
Boolean satisfiability problem turned out to be very fruitful
when restricting other computational problems in theoreti-
cal computer science, and can be presented as follows.

Let Ψ = {ψ1, . . . , ψn} be a finite set of propositional
(Boolean) formulas.

Boolean-SAT(Ψ)
INSTANCE: Given a finite set of variables W and a propo-
sitional formula of the form Φ = φ1 ∧ · · · ∧ φl where each φi

for 1 ≤ i ≤ l is obtained from one of the formulas ψ in Ψ by
substituting the variables of ψ by variables from W .
QUESTION: Is there a satisfying Boolean assignment to the
variables of W (equivalently, those of Φ)?

The computational complexity of this problem clearly de-
pends on the set Ψ, and is monotone in the sense that if
Ψ ⊆ Ψ′, then solving Boolean-SAT(Ψ′) is at least as hard
as solving Boolean-SAT(Ψ). Schaefer’s theorem states that
Boolean-SAT(Ψ) can be solved in polynomial time if and
only if Ψ is a subset of one of six sets of Boolean formu-
las (called 0-valid, 1-valid, Horn, dual-Horn, affine, and bi-
junctive), and is NP-complete otherwise. We remark that
Schaefer’s theorem is usually formulated as a classification
result of Boolean constraint satisfaction problems, but the
formulation given above is easily seen to be equivalent.

We prove a similar classification result, but for the propo-
sitional logic of graphs instead for propositional Boolean
logic. More precisely, let E be a relation symbol which de-
notes an antireflexive and symmetric binary relation and
hence stands for the edge relation of a (simple, undirected)
graph. We consider formulas that are constructed from
atomic formulas of the form E(x, y) and x = y by the
usual boolean connectives (negation, conjunction, disjunc-
tion), and call formulas of this form graph formulas. A graph
formula Φ(x1, . . . , xm) is satisfiable if there exists a graph H
and an m-tuple a of elements in H such that Φ(a) holds in
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H. Let Ψ = {ψ1, . . . , ψn} be a finite set of graph formulas.
Then Ψ gives rise to the following computational problem.

Graph-SAT(Ψ)
INSTANCE: Given a set of variables W and a graph formula
of the form Φ = φ1 ∧ · · · ∧ φl where each φi for 1 ≤ i ≤ l
is obtained from one of the formulas ψ in Ψ by substituting
the variables from ψ by variables from W .
QUESTION: Is Φ satisfiable?

As an example, let Ψ be the set that just contains the
formula

(E(x, y) ∧ ¬E(y, z) ∧ ¬E(x, z))

∨ (¬E(x, y) ∧ E(y, z) ∧ ¬E(x, z)) (1)

∨ (¬E(x, y) ∧ ¬E(y, z) ∧ E(x, z)) .

Then Graph-SAT(Ψ) is the problem of deciding whether
there exists a graph such that certain prescribed subsets of
its vertex set of cardinality at most three induce subgraphs
with exactly one edge. This problem is NP-complete (the
curious reader can check this by means of our classification
in Theorem 17). There are also many interesting tractable
Graph-SAT problems, for instance when Ψ consists of the
formulas x 6= y ∨ y = z and

(E(x, y) ∧ ¬E(y, z) ∧ ¬E(x, z))

∨ (¬E(x, y) ∧ E(y, z) ∧ ¬E(x, z)) (2)

∨ (¬E(x, y) ∧ ¬E(y, z) ∧ E(x, z))

∨ (E(x, y) ∧ E(y, z) ∧ E(x, z)) .

It is obvious that the problem Graph-SAT(Ψ) is for all
Ψ contained in NP. The goal of this paper is to prove the
following dichotomy result.

Theorem 1. For all Ψ, the problem Graph-SAT(Ψ) is
either NP-complete or in P.

One of the main contributions of the paper is the gen-
eral method of combining concepts from universal algebra
and model theory, which allows us to use deep results from
Ramsey theory to obtain the classification result.

2. DISCUSSION OF OUR STRATEGY
We establish our result by translating Graph-SAT prob-

lems into constraint satisfaction problems (CSPs) with in-
finite domains. More specifically, for every set of formulas
Ψ we present a relational structure ΓΨ such that Graph-
SAT(Ψ) is equivalent to CSP(ΓΨ) (in a certain sense, Graph-
SAT(Ψ) and CSP(ΓΨ) are one and the same problem). The
relational structure ΓΨ has a first-order definition in the ran-
dom graph G, i.e., the (up to isomorphism) unique countably
infinite universal homogeneous graph. The random graph
belongs to one of the most fundamental ω-categorical struc-
tures, and is an important structure in model theory that
appears also in many other areas of mathematics (see [14]).
This perspective allows us to use the so-called universal-
algebraic approach, and in particular polymorphisms to clas-
sify the computational complexity of Graph-SAT problems.
In contrast to the universal-algebraic approach for finite do-
main constraint satisfaction, our proof relies crucially on
strong results from structural Ramsey theory; we use such
results to find regular patterns in the behavior of polymor-
phisms of structures on G, which in turn allows us to find

analogies with polymorphisms of structures on Boolean do-
mains.

We call structures with a first-order definition in G reducts
ofG. While the standard definition of a reduct of a relational
structure ∆ is a structure on the same domain obtained by
forgetting some relations of ∆, a reduct of ∆ in our sense is
really a reduct of the expansion of ∆ by all first-order defin-
able relations. It turns out that there is one class of reducts
Γ for which CSP(Γ) is in P for trivial reasons; further, there
are 16 classes of reducts Γ for which CSP(Γ) (and the corre-
sponding Graph-SAT problems) can be solved by non-trivial
algorithms in polynomial time.

The presented algorithms are novel combinations of infi-
nite domain constraint satisfaction techniques (such as used
in [16, 7, 3]) and reductions to the tractable cases of Schae-
fer’s theorem. Reductions of infinite domain CSPs in artifi-
cial intelligence (e.g., in temporal and spatial reasoning [17])
to finite domain CSPs (where typically the domain consists
of the elements of a so-called ‘relation algebra’) have been
considered in the more applied artificial intelligence litera-
ture [27]. Our results shed some light on the question when
such techniques can even lead to polynomial-time algorithms
for CSPs.

The global classification strategy of the present paper is
similar in spirit to the one from a recent result in [6] on CSPs
of structures which are first-order definable in (Q;<). But
while in [6] the proof might still have appeared to be very
specific to constraint satisfaction over linear orders, with
the present paper we demonstrate that in principle such a
strategy can be used for any class of computational problems
C that satisfies the following:

• All problems in C can be formulated as a CSP of a
structure which is first-order definable in a single ω-
categorical structure ∆;

• the class of finite substructures of ∆ has the Ramsey
property (as in [20]).

While in [6], the classical theorem of Ramsey and its product
version were sufficient, the Ramsey theorems used in the
present paper are deeper and considerably more difficult to
prove [21, 1].

3. TOOLS FROM UNIVERSAL ALGEBRA
AND MODEL THEORY

In this section we develop in detail the tools from universal
algebra and model theory needed for our approach. We start
by translating the problem Graph-SAT(Ψ) into a constraint
satisfaction problem for a reduct of G.

We denote the random graph by G = (V ;E). The graph
G is determined up to isomorphism by the two properties
of being homogeneous (i.e., any isomorphism between two
finite induced subgraphs of G can be extended to an auto-
morphism of G), and universal (i.e., G contains all count-
able graphs as induced subgraphs). Moreover, it satisfies
the extension property, which often is useful in combinato-
rial arguments: For all disjoint finite U,U ′ ⊆ V there exists
v ∈ V such that v is adjacent in G to all members of U
and to none in U ′. Up to isomorphism, there exists only
one unique countably infinite graph which has this exten-
sion property, and hence the property can be used as an
alternative definition of G. The name of the random graph
is due to the fact that if for a countably infinite vertex set,
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one chooses independently and with probability 1
2

for each
pair of vertices whether to connect the two vertices by an
edge, then with probability 1 the resulting graph is isomor-
phic to the random graph. For the many other remarkable
properties of G and its automorphism group Aut(G), and
various connections to many branches of mathematics, see
e.g. [14, 15].

Let Γ be a structure with a finite relational signature τ . A
first-order τ -formula is called primitive positive if it is of the
form ∃x1, . . . , xn. ψ1∧· · ·∧ψm where the ψi are atomic, i.e.,
of the form y1 = y2 or R(y1, . . . , yk), where R ∈ τ a k-ary
relation symbol and the yi are not necessarily distinct. A
τ -formula is called a sentence if it contains no free variables.

Definition 2. The constraint satisfaction problem for Γ,
denoted by CSP(Γ), is the computational problem of deciding
for a given primitive positive τ -sentence Φ whether Φ is true
in Γ.

Let Ψ = {ψ1, . . . , ψn} be a set of graph formulas. Then
we define ΓΨ to be the structure with the same domain V
as the random graph G which has for each ψi a relation Ri

consisting of those tuples in G that satisfy ψi (where the
arity of Ri is given by the number of variables that occur in
ψi). Thus by definition, ΓΨ is a reduct of G. Now given any
instance Φ = φ1 ∧ · · · ∧ φl with variable set W of Graph-
SAT(Ψ), we construct a primitive positive sentence Φ′ in
the language of ΓΨ as follows: In Φ, we replace every φi,
which by definition is of the form ψj(y1, . . . , ym) for some
1 ≤ j ≤ m and variables yk fromW , by Rj(y1, . . . , ym); after
that, we existentially quantify all variables that occur in Φ′.
It is then easy to see that the problem Graph-SAT(Ψ) has
a positive answer for Φ if and only if the sentence Φ′ holds
in ΓΨ. Hence, every problem Graph-SAT(Ψ) is in fact of
the form CSP(Γ), for a reduct Γ of G in a finite signature.
We will thus henceforth focus on such constraint satisfaction
problems in order to prove our dichotomy.

The following lemma has been first stated in [19] for finite
structures Γ only, but the proof there also works for arbitrary
infinite structures. It shows us how we can slightly enrich
structures without changing the computational complexity
of the constraint satisfaction problem they define too much.

Lemma 3. Let Γ = (D;R1, . . . , Rl) be a relational struc-
ture, and let R be a relation that has a primitive positive
definition in Γ. Then CSP(Γ) and CSP(D;R,R1, . . . , Rl)
are polynomial-time equivalent.

The preceding lemma makes the so-called universal-algebraic
approach to constraint satisfaction possible, as exposed in
the following. We say that a k-ary function (also called op-
eration) f : Dk → D preserves an m-ary relation R ⊆ Dm

iff for all t1, . . . , tk ∈ R the tuple f(t1, . . . , tk) (calculated
componentwise) is also contained in R. If an operation f
does not preserve a relation R, we say that f violates R.
If f preserves all relations of a structure Γ, we say that f
is a polymorphism of Γ (it is also common to say that Γ is
closed under f). A unary polymorphism of Γ is also called
an endomorphism of Γ.

Conversely, for a set F of operations defined on a set D
and a relation R on D, we say that R is invariant under F
if R is preserved by all f ∈ F , and we write Inv(F ) for the
set of all finitary relations on D that are invariant under F .

The set of all polymorphisms Pol(Γ) of a relational struc-
ture Γ forms an algebraic object called a clone [24], which

is a set of operations defined on a set D that is closed under
composition and that contains all projections. Moreover,
Pol(Γ) is also closed under interpolation (see Proposition
1.6 in [24]): we say that a k-ary operation f on D is interpo-
lated by a set of k-ary operations F on D if for every finite
subset A of Dk there is some operation g ∈ F such that
g agrees with f on A. We say that F locally generates an
operation g if g is in the smallest clone that is closed under
interpolation and contains all operations in F . Clones with
the property that they contain all functions locally gener-
ated by their members are called locally closed, local or just
closed.

We thus have that to every structure Γ, we can assign the
closed clone Pol(Γ) of its polymorphisms. For certain Γ, this
clone captures the computational complexity of CSP(Γ): A
countable structure Γ is called ω-categorical if every count-
able model of the first-order theory of Γ is isomorphic to Γ.
It is well-known that the random graph G is ω-categorical,
and that reducts of ω-categorical structures are ω-categorical
as well.

Theorem 4 (from [8]). Let Γ be an ω-categorical struc-
ture. Then the relations preserved by the polymorphisms of Γ
(i.e., the relations in Inv(Pol(Γ))) are precisely those having
a primitive positive definition in Γ.

Clearly, the theorem implies that if two ω-categorical struc-
tures with finite relational signatures have the same clone of
polymorphisms, then their CSPs are polynomial-time equiv-
alent. Recall that we have only defined CSP(Γ) for struc-
tures Γ with a finite relational signature. But we now see
that it makes sense (and here we follow conventions from fi-
nite domain constraint satisfaction, see e.g. [13]) to say that
CSP(Γ) is (polynomial-time) tractable if the CSP for every
finite signature structure ∆ with the same polymorphism
clone as Γ is in P, and to say that CSP(Γ) is NP-hard if
there is a finite signature structure ∆ with the same poly-
morphism clone as Γ whose CSP is NP-hard.

The following proposition is the analog to Theorem 4 on
the “operational side”.

Proposition 5 (Corollary 1.9 in [24]). Let F be a
set of functions on a domain D, and let g be a function on
D. Then F locally generates g if and only if g preserves all
relations that are preserved by all operations in F (i.e., if
and only if g ∈ Pol(Inv(F ))).

For some reducts, we will find that their CSP is equivalent
to a CSP of a structure that has already been studied, by
means of the following basic observation.

Proposition 6. Let Γ,∆ be homomorphically equivalent,
i.e., they have the same signature and there are homomor-
phisms f : Γ→ ∆ and g : ∆→ Γ. Then CSP(Γ) = CSP(∆).

The following general lemma allows one to restrict the
arity of functions violating a relation. For a structure Γ
with domain D and a tuple t ∈ Dk, the orbit of t in Γ is the
set {α(t) | α ∈ Aut(Γ)}.

Lemma 7 (From [6]). Let Γ be a relational structure
with domain D, and suppose that R ⊆ Dk consists of m
orbits of k-tuples in Γ. Suppose that an operation f on D
violates R. Then {f} ∪Aut(Γ) locally generates an at most
m-ary operation that violates R.
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4. OVERVIEW OF THE PROOF
Throughout the text, Γ denotes a reduct of the random

graph G = (V ;E). The proof of Theorem 1 can be organized
in three steps as follows.

The first step is providing hardness proofs for certain rela-
tions. More precisely, we define three relations P (3), T , and
H which have first order-definitions in G, and show hardness
for the CSP defined by each of these relations by reducing
known NP-hard problems to this CSP. We then know from
Lemma 3 that if the CSP for a reduct Γ is not NP-hard,
then there is no primitive positive definition of any of these
relations in Γ. This implies that there are polymorphisms
of Γ which violate the NP-hard relations, by Theorem 4.

We then analyze the polymorphisms of Γ which violate
P (3), T , and H. The first, rather basic tool here is Lemma 7,
which we use in order to get bounds on the arity of such
polymorphisms. The deeper part of our analysis is the sim-
plification of the polymorphisms by means of Ramsey the-
ory. It turns out that the polymorphisms can be assumed to
behave regularly in a certain sense with respect to the base
structure G (the technical term for functions showing such
regular behavior will be canonical), making them accessible
to case-by-case analysis.

Finally, the presence of canonical polymorphisms is used
in two ways: in the case of canonical unary polymorphisms,
the image under such a polymorphism sometimes is a struc-
ture ∆ for which the CSP has already been classified, and
then one can refer to Proposition 6 to argue that the CSP(Γ)
is polynomial-time equivalent to the CSP of this structure
∆. The second, and in our case more important way of
employing canonical polymorphisms is to prove tractability
of CSP(Γ) by transforming the polymorphism into an algo-
rithm. Here, we adapt known algorithms showing that cer-
tain polymorphisms on a Boolean domain imply tractability
of Boolean CSPs in order to prove that the same holds for
their canonical counterparts on the Random graph.

It turned out convenient to split our proof into two cases,
the first one dealing with the case where either E or the rela-
tion N(x, y), which is defined by the formula ¬E(x, y)∧x 6=
y, has no primitive positive definition in Γ, and the sec-
ond one dealing with the case where both E and N are
primitive positive definable in Γ. In theory, both cases fol-
low the steps described above. However, the assumption
for the first case implies the presence of endomorphisms of
Γ which violate either E or N , and in turn allows for the
use of known results on such endomorphisms, in particular
from [26] and [10]. These older results have been obtained
using Ramsey theory, and thus by building on them we“out-
source” the Ramsey-theoretic analysis of polymorphisms of
Γ in this case. In the second case, all endomorphisms of
Γ will be trivial in the sense that they preserve E and N
(which means that they locally look like automorphisms of
G), and thus the higher arity polymorphisms of Γ must be
considered to a level of detail not present in the literature
(although we do also draw on earlier results on such higher
arity polymorphisms from [10]) . It is here where we apply
Ramsey theory directly in our paper.

The following two sections correspond to these two cases,
and outline our proof in more but far from full detail. The
full proof can be found in the long version of the paper which
is available on the arxiv [11], and is equally divided into two
sections corresponding to the two cases described above.

Before starting out we add the following convention: since
all our polymorphism clones contain the automorphism group
Aut(G) of the random graph, we will abuse the notion of
generates from the preceding section, and use it as follows:
For a set of functions F and a function g on the domain V ,
we say that F generates g when F∪Aut(G) locally generates
g; also, we say that a function f generates g if {f} generates
g.

5. ENDOMORPHISMS
The goal of this section is Proposition 10, which allows us

to reduce the classification task to the classification of those
structures Γ where the relations E, N and 6= are primitive
positive definable. We first define two hard relations on G.

Definition 8. Let P (3) denote the ternary relation that
holds for (x1, x2, x3) ∈ V 3 if x1, x2, x3 are pairwise distinct,
and the graph induced by {x1, x2, x3} in G is neither an
independent set nor a clique.

Definition 9. Let T be the 4-ary relation that holds for
a tuple (x1, x2, x3, x4) ∈ V 4 if x1, x2, x3, x4 are pairwise dis-
tinct, and induce in G one of the following

a single edge and two isolated vertices

a path with two edges and an isolated vertex

a path with three edges

the complement of one of those structures.

Proposition 10. Let Γ be a reduct of G. Then at least
one of the following holds.

(a) Γ has a constant endomorphism, and CSP(Γ) is tractable
(it is in fact trivial).

(b) Γ is homomorphically equivalent to a countably infinite
structure that is preserved by all permutations of its
domain; in this case the complexity of CSP(Γ) has been
classified in [5], and is either tractable or NP-hard.

(c) There is a primitive positive definition of P (3) or T in
Γ, and CSP(Γ) is NP-hard.

(d) The relations N , E, and 6= have primitive positive def-
initions in Γ.

The idea of the proof of this proposition is to first show
hardness of the relations P (3) and T , and then work under
the assumption that neither (c) nor (d) hold. This assump-
tion implies the presence of polymorphisms of Γ violating
P (3), T , and either E or N (the relation 6= has a primi-
tive positive definition from E and N , and is irrelevant in
this section). We then use a result due to Thomas [26] (also
see [10]) about endomorphism monoids of reducts of G. The
result states that if Γ is any reduct of G, then either Γ has a
constant endomorphism or an endomorphism whose image
induces a clique or an independent set in G, or all endomor-
phisms of Γ are locally generated by the automorphisms of
Γ. In the first case, i.e., if Γ has one of the mentioned endo-
morphisms, then either (a) or (b) of Proposition 10 hold, and
we are done. Otherwise, we know that the endomorphisms
of Γ locally look like automorphisms, and apply a classifica-
tion of all automorphism groups of reducts of G from [25]
(see also [10]) – there are only 5 such groups (observe that
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distinct reducts can have identical automorphism groups;
in fact, this is the case if and only if the reducts first-order
define one another). By our assumption above, Γ has a poly-
morphism violating either E or N ; since E and N consist of
just one orbit of pairs over G and since Aut(Γ) ⊇ Aut(G),
they consist of at most one orbit of pairs over Γ. Hence,
by Lemma 7 there is an endomorphism of Γ violating E
or N , and since this endomorphism is locally generated by
Aut(Γ), there is even an automorphism of Γ that violates
E or N . In particular, Aut(Γ) ) Aut(G). We then argue
similarly using the existence of polymorphisms that violate
P (3) and T together with the above-mentioned classification
of automorphism groups of reducts of G to conclude that all
permutations of V are automorphisms of Γ, putting us back
into Case (b) of Proposition 10.

We mention that the proof of the two results from [25, 26]
(our own proof of both results can be found in [10]) naturally
involves Ramsey-theoretic methods; these methods are ap-
plied in order to find patterns of regular behavior in unary
functions on G. In the next section, we consider the case
where it will be necessary to refine these methods in order
to understand higher arity functions on G.

6. HIGHER ARITY POLYMORPHISMS
In this section we assume that Γ = (V ;E,N, 6=, . . . ) is

a reduct of G for which (d) in Proposition 10 applies, and
which therefore contains the relations E, N and 6=. While
the result of the last section was based on an analysis of
the endomorphisms and automorphisms of reducts of G, the
remaining cases require the study of higher arity polymor-
phisms of such reducts. It turns out that the relevant poly-
morphisms proving tractability have, in a certain sense, reg-
ular behavior with respect to the structure of G. Combina-
torially, this is due to the fact that the set of finite ordered
graphs is a Ramsey class: for structures ∆ which can be ex-
panded by a linear order in such a way that the set of finite
induced substructures of this expansion is a Ramsey class,
one can find “regular patterns” in any arbitrary function on
∆. A survey of this general method is [9] (see also [12]). We
now make this notion of regularity more precise.

Definition 11. Let ∆ be a structure. The type tp(a)
of an n-tuple a of elements of ∆ is the set of first-order
formulas with free variables x1, . . . , xn that hold for a in ∆.
Types of n-tuples in ∆ are also called n-types.

If a is an n-tuple, we write ai for the i-th component of a.

Definition 12. Let ∆,Λ be structures, and let k ≥ 1.
A k-ary type condition between ∆ and Λ is a pair (t, s),
where t is a k-tuple (t1, . . . , tk) of n-types ti in ∆, and s
is an n-type in Λ. A k-ary function f : ∆k → Λ satisfies
a type condition (t, s) if for all n-tuples ai of type ti in ∆
the n-tuple (f(a1

1, . . . , a
k
1), . . . , f(a1

n, . . . , a
k
n)) is of type s in

Λ. A behavior is a set of k-ary type conditions between
two structures ∆ and Λ, where k ≥ 1 is fixed. A k-ary
function has behavior B if it satisfies all type conditions of
the behavior B.

Definition 13. Let ∆,Λ be structures. An operation f :
∆k → Λ is canonical if for all n ≥ 1 and all k-tuples t of n-
types in ∆ there exists an n-type s in Λ such that f satisfies
the type condition (t, s).

Observe that if f : ∆k → Λ is canonical, then for each n
it defines a function from the set of k-tuples of n-types in
∆ into the set of n-types in Λ. In the case where ∆ and Λ
have only finitely many n-types (in particular if ∆ = Λ = G,
since G is homogeneous in a finite language – see [18]), these
functions are finite objects, and there are only finitely many
such functions for each n. Moreover, since G has only binary
relations, a function f : Gk → G is canonical iff it satisfies
the condition of the definition for types of 2-tuples (i.e., for
n = 2). Thus, its behavior is determined by a function from
the set of k-tuples of 2-types in G to the set of 2-types in G
– a finite object.

It follows easily from the homogeneity of G and by local
closure that if two canonical functions f, g : V k → V have
the same behavior, then they generate one another. Thus,
for our purposes canonical functions on G can really be con-
sidered as finite objects (namely, as the functions on 2-types
they define).

The polymorphisms proving tractability of reducts of G
will be canonical (with respect to the structure G, not the
reduct). We now define different behaviors that some of
these canonical functions will have. For relatonsQ1, . . . , Qk ∈
{E,N,=, 6=}, we will in the following write Q1 · · ·Qk for
the binary relation on V k that holds between two k-tuples
x, y ∈ V k iff Qi(xi, yi) holds for all 1 ≤ i ≤ k (here xi
and yi denote the i-th component of the k-tuples x and y,
respectively).

If we flip edges and non-edges of G, then the resulting
graph is isomorphic to G (it is straightforward to verify the
extension property). Let − be such an isomorphism. The
dual of an operation f on G is the operation

(x1, . . . , xn) 7→ −f(−x1, . . . ,−xn) ,

and can be imagined as the function obtained from f by
exchanging the roles of E and N .

We start by behaviors of binary functions.

Definition 14. We say that a binary injective operation
f : V 2 → V is

• balanced in the first argument if for all u, v ∈ V 2 we
have that E=(u, v) implies E(f(u), f(v)) and N=(u, v)
implies N(f(u), f(v));

• balanced in the second argument if (x, y) 7→ f(y, x) is
balanced in the first argument;

• balanced if f is balanced in both arguments, and un-
balanced otherwise;

• E-dominated (N -dominated) in the first argument if
E(f(u), f(v)) (N(f(u), f(v))) for all u, v ∈ V 2 with
6==(u, v); and E-dominated (N -dominated) in the sec-
ond argument if (x, y) 7→ f(y, x) is E-dominated (N-
dominated) in the first argument;

• E-dominated (N -dominated) if it is E-dominated (N-
dominated) in both arguments;

• of type min if for all u, v ∈ V 2 with 6=6=(u, v) we have
E(f(u), f(v)) if and only if EE(u, v); and of type max
if the dual of f is of type min.

• of type p1 if for all u, v ∈ V 2 with 6=6=(u, v) we have
E(f(u), f(v)) if and only if E(u1, v1), and of type p2

if (x, y) 7→ f(y, x) is of type p1;
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• of type projection if it is of type p1 or p2.

Note that, for example, being of type max is a behavior of
binary functions that does not force a function to be canon-
ical, since the condition only talks about certain 2-tuples of
2-types, but not all such 2-tuples; however, being both of
type max and balanced does imply for a function that it is
canonical.

The next definition contains some important behaviors of
ternary functions.

Definition 15. An injective ternary function f : V 3 →
V is of type

• majority if for all u, v ∈ V 3 with 6=6=6=(u, v) we have
that E(f(u), f(v)) if and only if EEE(u, v), EEN(u, v),
ENE(u, v), or NEE(u, v);

• minority if for all u, v ∈ V 3 with 6=6=6=(u, v) we have
that E(f(u), f(v)) if and only if EEE(u, v), NNE(u, v),
NEN(u, v), or ENN(u, v).

While the tractability results of this section are shown by
means of a number of different canonical functions, all hard-
ness cases are established by the following single relation.

Definition 16. We define a relation H(x1, y1, x2, y2, x3, y3)
on V by ∧

i,j∈{1,2,3},i6=j,u∈{xi,yi},v∈{xj ,yj}

N(u, v)

∧
(
((E(x1, y1) ∧N(x2, y2) ∧N(x3, y3))

∨ (N(x1, y1) ∧ E(x2, y2) ∧N(x3, y3))

∨ (N(x1, y1) ∧N(x2, y2) ∧ E(x3, y3))
)
.

The following theorem together with Proposition 10 proves
Theorem 1.

Theorem 17. Let Γ = (V ;E,N, 6=, . . . ) be a reduct of G.
Then one of the following holds:

(a) There is a primitive positive definition of H in Γ, and
CSP(Γ) is NP-hard.

(b) Γ has a canonical polymorphism of type minority, as
well as a canonical binary injection which is of type p1

and E-dominated or N-dominated in the second argu-
ment, and CSP(Γ) is tractable.

(c) Γ has a canonical polymorphism of type majority, as
well as a canonical binary injection which is of type p1

and E-dominated or N-dominated in the second argu-
ment, and CSP(Γ) is tractable.

(d) Γ has a canonical polymorphism of type minority, as
well as a canonical binary injection which is balanced
and of type projection, and CSP(Γ) is tractable.

(e) Γ has a canonical polymorphism of type majority, as
well as a canonical binary injection which is balanced
and of type projection, and CSP(Γ) is tractable.

(f) Γ has a canonical polymorphism of type max or min,
and CSP(Γ) is tractable.

The proof of Theorem 17 splits into two tasks: we have
to show that if (a) does not hold, then Γ has the polymor-
phisms of one of the other cases; the second task is to prove
that these polymorphisms imply tractability of the CSP de-
fined by Γ. The former is achieved by applying structural
Ramsey theory to polymorphisms to find canonical behav-
ior; the latter by adapting algorithms for polymorphisms on
Boolean domains.

We now outline our method for the first task in more
detail. If (a) does not hold, then by Theorem 4 there exists
a polymorphism of Γ which violates H. Since H consists of
3 orbits of 6-tuples with respect to G, there exists a ternary
polymorphism f violating H, by Lemma 7.

In spirit, the idea then is to analyze f by means of Ramsey
theory. (We remark that in the full proof of the long version
of this paper [11], we employ a more sophisticated strategy in
order to simplify f before this analysis.) In order to be able
to apply Ramsey theory, we expand G by a linear order < on
V in such a way that (V ;E,<) is the ordered random graph,
i.e., the unique countably infinite homogeneous graph which
contains all countable linearly ordered graphs as induced
subgraphs. Since the set of finite linearly ordered graphs is
a Ramsey class, we can then apply the following proposition
(see [9], [10], [12]).

Proposition 18 ([10], [12]). Let ∆ be a homogeneous
structure with a linear order which has the property that its
set of finite induced substructures is a Ramsey class, and
let g : ∆k → ∆. Let moreover constants c1, . . . , cj in ∆
be given, and denote by (∆, c1, . . . , cj) the expansion of ∆
by these constants. Then g generates together with Aut(∆)
a k-ary operation h on ∆ which is canonical as a func-
tion from (∆, c1, . . . , cj)

k to ∆ and which agrees with g on
(c1, . . . , cj)

k.

This implies that we can fix finitely many constants c1, . . . , cj
in G such that f violates H on {c1, . . . , cj}, and then by the
preceding proposition assume that f is canonical as a func-
tion from (V ;E,<, c1, . . . , cj)

3 to (V ;E,<), making it ac-
cessible to case-by-case analysis. This analysis finally gives
us the canonical functions of the cases of Theorem 17.

We remark that the description just given only shows the
rough idea of the proof, and that in fact the proof deviates
quite a bit from this description. The main reason for this
is that there are too many possible behaviors of canonical
functions from (V ;E,<)3 to (V,E,<) for simple case-by-
case analysis. In our proof, we avoid cases in particular
by composing f with functions from the following theorem,
which helps us to reduce the task significantly; this theorem
has, however, been proven by the same Ramsey-theoretic
methods.

Theorem 19 ([10]). If Γ = (V ;E,N, 6=, . . .) is a reduct
of G that has an essential polymorphism, it must also have
one of the following binary injective canonical polymorphisms:

• a balanced operation of type p1;

• a balanced operation of type max;

• an E-dominated operation of type max;

• an E-dominated operation of type p1;

• a binary operation of type p1 that is balanced in the
first and E-dominated in the second argument;
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or one of the duals of the last four operations (the first op-
eration is self-dual).

We now come to the second task mentioned for the proof
of Theorem 17: we have to present a polynomial-time al-
gorithm for each of the Cases (b), (c), (d), (e), and (f) in
Theorem 17. The algorithms for Case (b) and (c) will be
simple reductions to Cases (d) and (e), and will not be dis-
cussed further in the extended abstract. For the remaining
cases, our algorithms use the fact that a relation R with
a first-order definition in G is preserved by the operations
specified in (d), (e), or (f) if and only if R can be defined by
a first-order formula over G that satisfies certain syntactic
restrictions. This syntactic form can then be exploited by
an algorithm.

For operations of type max or min, such a syntactic de-
scription and a corresponding algorithm is already known [3];
for example, a relation is preserved by a binaryN -dominated
injection of type min if and only if it has a quantifier-free
Horn definition over the structure (V ;E,=), that is, a defi-
nition over (V ;E,=) in conjunctive normal form where ev-
ery clause contains at most one negative literal (of the form
¬E(x, y) or of the form x 6= y).

When a relation R with a first-order definition over G
has the additional property that all its tuples contain only
pairwise distinct entries, we have an analogy to the known
tractable classes of Schaefer’s classification:

• when R as above is preserved by a function of type
majority, then it can be defined by a conjunction of
formulas of the form u 6= v or of the form X(u1, v1) ∨
Y (u2, v2) where X,Y ∈ {E,N} (resembling the class
of 2-SAT formulas in the classification of Schaefer).

• when R as above is preserved by a function of type
minority, then it can be defined by a conjunction of
formulas of the form u 6= v or of the form E(u1, v1)⊕
· · · ⊕E(ul, vl) = p where p ∈ {0, 1} and ⊕ denotes the
Boolean exclusive-or connective (resembling the class
of affine formulas in the classification of Schaefer).

In the general case, when the relation might also contain
tuples with equal entries, our syntactic form is more intri-
cate; we only present it here for balanced operations of type
minority (Case (d)); the situation in case of operations of
type majorities (Case (e)) is similar (but the corresponding
proofs are different). A graph formula is called edge affine
if it is a conjunction of formulas of the form

x1 6= y1 ∨ . . . ∨ xk 6= yk

∨
(
u1 6= v1 ∧ · · · ∧ ul 6= vl

∧ E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p
)

∨ (u1 = v1 ∧ · · · ∧ ul = vl) ,

where p ∈ {0, 1}, variables need not be distinct, and each of
k and l can be 0.

Proposition 20. Let R be a relation with a first-order
definition over G. Then the following are equivalent:

1. R can be defined by an edge affine formula;

2. R is preserved by an injection of type minority, and a
balanced binary injection of type p1.

When all constraints in the input have a definition by an
edge affine formula, this can be exploited by an algorithm as
follows. The central idea is to compute an additional graph
on unorderd pairs of vertices of the given CSP instance. Two
such pairs {a, b} and {c, d} are connected in this graph if
there is a constraint whose definition has a conjunct(

u1 6= v1 ∧ · · · ∧ ul 6= vl ∧ (E(u1, v1)⊕ · · · ⊕ E(ul, vl) = p)
)

∨ (u1 = v1 ∧ · · · ∧ ul = vl)

such that {a, b} = {ui, vi} and {c, d} = {uj , vj} for some
i, j ∈ {1, . . . , l}. Conjuncts of this form (that is, conjuncts
as in the definition of edge affine formulas where the leading
disjunction of inequalities is empty, k = 0) are called basic.
For each connected component C of the graph, the algorithm
tries to find a solution for the subset of basic conjuncts where
each pair {ui, vi} is contained in C. If the algorithm finds
such a solution for each component, it is straightforward to
patch together those solutions to obtain a solution to all
constraints. Otherwise, if for component C we do not find
such a solution, then the syntactic form tells us that in all
solutions, for all pairs {a, b} in C, the variables a and b must
have the same value, and so we contract all pairs in C, and
restart the algorithm. For details of this sketch we have to
refer to the full version.

7. CLASSIFICATION
By Theorem 1, each reduct of the random graph with

finitely many relations defines a CSP which is either tractable
or NP-complete. We now give a list of 17 reducts Γ with the
following properties (assuming that P 6= NP): (1) For any
reduct ∆ with finitely many relations, CSP(∆) is in P if and
only if the relations of ∆ are a subset of one of the reducts
of our list, and (2) the list is minimal, i.e., if one reduct Γ is
removed from our list, then the list loses property (1).

Clearly, if we add relations to a reduct Γ, then the CSP
of the structure thus obtained is computationally at least as
complex as the CSP of Γ. On the other hand, by Lemma 3,
adding relations with a primitive positive definition to a
reduct does not increase the computational complexity of
the corresponding CSP more than polynomially. In this
section, we consider the lattice of reducts of G which are
closed under primitive positive definitions (i.e., which con-
tain all relations that are primitive positive definable from
the reduct), and describe the border between tractability
and NP-completeness in this lattice. We remark that the
reducts will, since we expand them by all primitive positive
definable relations, have infinitely many relations, and hence
do not define a CSP; however, as already stated earlier, con-
sider a reduct Γ tractable if and only if all structures with
domain V which have finitely many relations, all taken from
Γ, have a tractable CSP. Similarly, we consider a reduct Γ
to be hard if it has at least one hard relation. With this con-
vention, it is interesting to determine the maximal tractable
reducts, i.e., those reducts closed under primitive positive
definitions which do not contain any hard relation and which
cannot be further extended without losing this property.

By Theorem 4 and Proposition 5, the lattice of primi-
tive positive closed reducts of G and the lattice of locally
closed clones containing Aut(G) are antiisomorphic via the
mappings Γ 7→ Pol(Γ) (for reducts Γ) and C 7→ Inv(C) (for
clones C). We refer to the introduction of [4] for a detailed
exposition of this well-known connection. Therefore, the
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maximal tractable reducts correspond to minimal tractable
clones, which are precisely the clones of the form Pol(Γ)
for a maximal tractable reduct. Determining these minimal
tractable clones is the goal of this section.

Definition 21. Let B be a behavior for binary functions
on G. A ternary injection f : V 3 → V is hyperplanely of
type B if the binary functions (x, y) 7→ f(x, y, c), (x, z) 7→
f(x, c, z), and (y, z) 7→ f(c, y, z) have behavior B for all
c ∈ V .

We now define some more behaviors of binary functions
which will appear “hyperplanely” in ternary functions in our
classification.

Definition 22. A binary injection f : V 2 → V is of type

• E-constant if the image of f is a clique;

• N -constant if the image of f is an independent set;

• xnor if for all u, v ∈ V 2 with 6=6=(u, v) the relation
E(f(u), f(v)) holds if and only if EE(u, v) or NN(u, v)
holds;

• xor if for all u, v ∈ V 2 with 6=6=(u, v) the relation
E(f(u), f(v)) holds if and only if neither EE(u, v) nor
NN(u, v) hold.

Theorem 23. The following 17 distinct clones are pre-
cisely the minimal tractable local clones containing Aut(G):

1. The clone generated by a constant operation.

2. The clone generated by a balanced binary injection of
type max.

3. The clone generated by a balanced binary injection of
type min.

4. The clone generated by an E-dominated binary injec-
tion of type max.

5. The clone generated by an N-dominated binary injec-
tion of type min.

6. The clone generated by a function of type majority
which is hyperplanely balanced and of type projection.

7. The clone generated by a function of type majority
which is hyperplanely E-constant.

8. The clone generated by a function of type majority
which is hyperplanely N-constant.

9. The clone generated by a function of type majority
which is hyperplanely of type max and E-dominated.

10. The clone generated by a function of type majority
which is hyperplanely of type min and N-dominated.

11. The clone generated by a function of type minority
which is hyperplanely balanced and of type projection.

12. The clone generated by a function of type minority
which is hyperplanely of type projection and E-dominated.

13. The clone generated by a function of type minority
which is hyperplanely of type projection and N-dominated.

14. The clone generated by a function of type minority
which is hyperplanely of type xnor and E-dominated.

15. The clone generated by a function of type minority
which is hyperplanely of type xor and N-dominated.

16. The clone generated by a binary injection which is E-
constant.

17. The clone generated by a binary injection which is N-
constant.

It follows from Theorem 23 that the so-called meta-problem
of deciding for a given finite set of graph formulas Ψ whether
Graph-SAT(Ψ) is in P or NP-hard, is decidable. Under the
assumption that a formula in Ψ with k variables is given
as a disjunction of formulas each of which defines a distinct
orbit of k-tuples over the random graph, this problem is in
fact even in P. It is clear that every graph formula can be
transformed into an equivalent formula satisfying this as-
sumption (sometimes this transformation might lead to an
exponential blow-up).

The algorithm for deciding whether Graph-SAT(Ψ) is in
P then works as follows. We test whether all formulas ψ
in Ψ are preserved by one of the canonical operations im-
plying tractability of Graph-SAT(Ψ) from the statement of
the main result. To do so, we apply the canonical opera-
tion to orbit representatives from tuples satisfying ψ in all
possible ways; since the operations we have to consider are
at most ternary, the number of possibilities is at most cu-
bic in the number of orbits satisfying ψ (which equals the
representation size of ψ, by the assumption made above).

We also obtain the following. Define a relation E6 by

{(x1, x2, y1, y2, z1, z2) ∈ V 6 | (x1 = x2 ∧ y1 6= y2 ∧ z1 6= z2)

∨ (x1 6= x2 ∧ y1 = y2 ∧ z1 6= z2)

∨ (x1 6= x2 ∧ y1 6= y2 ∧ z1 = z2)} .

This relation has the property that the clone Pol(E6) con-
tains precisely all unary injective operations, and no other
operations.

Corollary 24. For all reducts Γ of G, CSP(Γ) is tractable,
or one of the following relations has a primitive positive def-
inition in Γ: the relation E6, or the relation T , H, or P (3).

Figure 1 shows the border between the hard and the tractable
clones. The picture contains all minimal tractable clones as
well as all maximal hard clones, plus some other clones that
are of interest in this context. When two clones are con-
nected by a line, we do not mean to imply that there are
no other clones between them. Clones are symbolized with
a double border when they have a dual clone (generated by
the dual function as defined before, whose behavior is ob-
tained by exchanging E with N , max with min, and xnor
with xor). Of two dual clones, only one representative (the
one which has E and max in its definition) is included in the
picture. The numbers of the minimal tractable clones refer
to the numbers in Theorem 23. “E-semidominated” refers
to “balanced in the first and E-dominated in the second ar-
gument”.
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To conclude, we would like to mention an elegant universal-
algebraic formulation of our main result, which lines up with
recent conjectures and results on finite domain CSPs [23, 13].

Corollary 25. Let Γ be a reduct of G. Then exactly one
of the following applies.

• The structure ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}) has
a primitive positive interpretation (see e.g. [2, 9]) in
Γ. In this case, CSP(Γ) is NP-hard.

• Γ has a canonical 4-ary polymorphism f and α1, α2 ∈
Aut(Γ) so that for all x, y ∈ V

f(y, y, x, x) = α1(f(x, x, x, y)) = α2(f(y, x, y, x)) .

In this case, CSP(Γ) is is tractable.

8. REFERENCES
[1] Fred G. Abramson and Leo Harrington. Models

without indiscernibles. Journal of Symbolic Logic,
43(3):572–600, 1978.

[2] Manuel Bodirsky. Constraint satisfaction problems
with infinite templates. In Heribert Vollmer, editor,
Complexity of Constraints (a collection of survey
articles), pages 196–228. Springer, LNCS 5250, 2008.

[3] Manuel Bodirsky, Hubie Chen, Jan Kára, and Timo
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Figure 1: The border: Minimal tractable and maximal hard clones containing Aut(G).
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