
Two lower bounds for branching programs

Mikt6s Ajtai
IBM Ahnaden Research
San Jose CA

Pave1 Pudhik
Czeclmslm'ak
Academy of Scienccs

Ldszl6 Babal
University of Chicago and
EStvSs University, Budapest

Vojt~ch R6dl
Departnlent of Mathematics
FJFI CVUT, Prague

Pdter Hajn al
University of Chicago mid
E6tvSs Uniw, rsity, Budapest

Endre Szemer&~i
University of Chicago and
Hungariau Academy of Sciences

Jinos Komlds
Univ. California San Diego and
Hungarian Academy of Sciences

GySrgy Tur5n
Univ. Illinois at Chicago and
Hungarian Academy of Sciences

Abstract.

The first result concerns branching programs having

width (log n) °{*). We give an f l (n log n~ log log n) lower

bound for the size of such branching programs com-

puting almost any symmetric Boolean fnnction and in

part icular the following explicit fnnction: "the sum of

the input variables is a quadratic residue mod p" where

p is any given prime between n 1/4 and n 1/3. This is

a strengthening of previous nonlinear lower bounds ob-

tained by Chandra, Furst, Lipton and by Pudlgk. We

mention that by i terat ing our method the result can be

further strengthened to lfl(nlog n).

The second result is a C " lower bound for read-once-

only branching programs computing an explicit Boolean

function. For n = (~), the function computes the par-

ity of the number of triangles in a graph on v ver-

tices. This improves previous exp(cx/n) lower bounds

for other graph functions by Wegener and Z£k. The

result implies a linear lower bound for the space com-

plexity of this Boolean function on "eraser machines",

i.e. machines that erase each input bit immediately af-

ter having read it.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 A C M 0 - 8 9 7 9 1 - 1 9 3 - 8 / 8 6 / 0 5 0 0 / 0 0 3 0 $00.75

1. Iutroduetion.

1.1. Branehing programs.

A Boolean function in n variables is a mapping from the

set of 2" (0,1) input strings to { 0, 1 }. Several models of

computat ion of such functions have been considered in

the l i terature (Turing machine, Boolean circuit, decision

tree, Boolean formula, etc.). Branching programs are

a model generalizing decision trees. The program is

a directed aeyclic graph. To avoid confusion we shall

use the terms nodes and arcs to refer to the elements

of this digraph. (We shall use branching programs to

do computat ion on graphs; these graphs (input objects)
will have vertices and edges.)

One of the nodes of the branching program is a

source (has fan-in zero) and is called START, some

other nodes are sinks (fan-out zero) and are called ter-
minal nodes. All non-terminal nodes have fan-out two.

The two arcs leaving a non-terminal node are labeled 0

and 1. Each non-terminal node is labeled by an input

variable and each terminal node is labeled 0 or I. We

shall assume that the program is leveled, START is on

level one and arcs go from each level to the next level

only. This causes no loss of generality to the result in

Section 3. We shall discuss the effect on the result in
Section 2 there.

Each input string a = a l . . . a , defines a unique path

from START to a terminal node: the computation path
determined by ~. This path, after entering a nontermi-
nal node labeled xi, proceeds along the arc labeled ai .

The path ends at a terminal node. The function f com-

puted by this branching program is defined by sett ing

f(c~) equal to the label of this terminal node.

30

The size of a branching program is the number of
nodes. The width of the program is the maximum num-
ber of nodes on any level. The length is the number
of levels. The multiplicity of reading is the maximum
number of times any particular variable is encountered
as a node label along any computation path.

An easy counting argument shows that most
Boolean functions require exponential size branching
programs. It is desirable to find nontrivial lower bounds

for explicit Boolean functions (functions that belong to
P or at least to NP).

The only known lower bound for the size of an
unrestricted branching program computing an explicit
Boolean function is due to Seeiporuk [Ne], [Sa] and is

l](n=/log 2 n). P. Beame and S. Cook observed [BC]
that Neeiporuk's technique actually applies to the "ele-
ment distinctness" problem in the following sense. Let
xl , . . . ,xrn be m integers between 1 and m ~. Writ-
ten in binary, they form the input string of length
n = 2mlogm. Then any branching program deciding
whether or not all the xi are distinct must have size
n (m =) = n(n=/ log ~ n).

Another approach that has recently gained popu-
larity is proving lower bounds for branching programs
with bounds on various "resources" (width, multiplicity
of reading). A similar approach to Boolean circuits has
been quite successful recently [Ya2], [An], [Ra], [tta],
[AB], [Be].

Our aim is to present two more results of this kind
- - one under each type of restriction.

1.2. ~ounded width branching programs for symmetric
functions

Bounded width branching programs have first been
promoted by Borodin, Dolev, Fich and Paul [BDFP].
Their main result, completed by Yao [Yal] , is a su-
perpolynomial lower bound for width-2 branching pro-
grams computing the majority function. Shearer [Sh] re-
cently proved an exponential lower bound for for width-
2 branching programs computing the "0 rood 3" func-
tion. These functions are symmetric (invariant under
permutations of the variables). Interest in such func-
tions was in part motivated by the conjecture stated
in [BDFP] that any bounded width branching program
computing the majority function would require expo-
nential size. This conjecture has been proved false
by David Barrington's surprising result [Bal] that the
class of Boolean functions computed by polynomial size,
width-5 branching programs coincides with nonuniform
NC 1 (log-depth, fan-in 2 Boolean circuits) and thus

contains all symmetric functions. This may be part of

the reason why it is so difficult to find even nonlinear

lower bounds for bounded width branching programs
for symmetric functions.

The first such lower bound was derived by a beau-
tiful Ramsey argument by Chandra, ~lrs t , and Lipton

[CFL] for the function ~in=~ xi = n/2. Unfortunately,
as it tends to be the case with Ramsey arguments, the

bound is barely nonlinear: it is fl(nw(n)) where w(n) is
the inverse function of van der Waerden numbers (see

[GRS]).
A more effective lower bound was obtained by P.

Pudl£k [Pu]. Using a different Ramsey argument,

he proves 12(n log log n~ log log log n) lower bounds for

threshold functions and separates (by the same amount)
the power of width k and width k + 1 branching

programs for each k. He also proves a nonlinear

lower bound under no width constraint for the majority

function as well as an 12(n log log n~ log log log n) lower

bound for bounded width branching programs for all
but a bounded number of symmetric Boolean functions.

The first result of this paper gives a more effective,

12(nlogn/loglogn) lower bound for bounded width

branching programs computing any member of a large
class of symmetric Boolean functions (Section 2). In this

range, Ramsey methods no longer seem to help and we

have to establish some "global" structure. The width

bound we impose is not a constant, only (logn) °{l).

We hope that it will be possible to eliminate this width

bound altogether.

1.3. Limited reading

A read-k-times-only branching program is allowed to
encounter each variable at most k times along any com-
putation path. This hierarchy of classes of branching
programs was introduced by Masek [Ma]. Wegener [We]
conjectures an exponential gap between the levels of
this hierarchy and gives candidate Boolean functions
computable with polynomial size read-k-times-only pro-
grams but conjectured to require exponential size read
(k - 1)-times-only programs.

No superpolynomial lower bounds are known, how-

ever, even for read-twice-only branching programs com-
puting an explicit Boolean function, and no such bound
will appear in this paper.

In connection with the history of read-once-only
branching programs we should mention a paper by For-
tune, ttopcroft and Schmidt [FHS]. In the context of
program schemes, they gave an exp(ex/-n) lower bound
for computing an explicit function by read-once-only
branching programs satisfying the additional restriction

that the variables have to be examined in precisely the
same order along each computation path. Without this

31

restriction, however, their function is computable by a

read-once-only branching program of polynomial size

and is indeed defined by such a program.

Wcgener [We] and Zbk [Za] independent]y prove

an exp(cx/'n) lower bound for read-once-only branching

programs computing certain, clique related graph prop-

erties. Wegener's property is NP-colnple te (presence

of a clique of size v/2 where v is the number of ver-

tices), Z~ik's is polynomial t ime decidable (recognizing

the graphs that consist of a clique of size v/2 and v/2

isolated vertices.) We shall improve the lower bound

to C" (for a different function, also a polynomial t ime

decidable graph property) (Section 3).

1.4. Space-complexity: the eraser RAM

It h~s been noted ([Ma], [BFKLT], [Pu]) that a lower

bound S(n) on the size of the smallest branching pro-

gram computing a Boolean function fn of n variables

implies an fl(log S(n)) lower bound on the space com-

plexity of the family { fn : n = 1, 2 , . . . } on any reason-

able model of computation.

The Fortune-Hopcroft-Schmidt result mentioned

above corresponds to on-line space complexity: the in-

put bits are read once and in a given order only. The

[FHS] result provides an fl(,v/~) space lower bound for

such computat ion (independently of the given order of

input bits).
General read-once-only branching programs suggest

the following machine model which we call eraser RAM.

This is a RAM with a special read-only input tape. The

machine decides in the course of the computat ion in

what order to read the input but once an input cell
has been read, it is erased. Let us measure the space
required by a computat ion by the number of bits stored

at any given t ime on the worktape.

The following is immediate.

Proposi t ion. H a language L can be recognized by an
eraser RAM in space S(n) then the set L , = LN{ 0, 1 }"

can be recognized by a read-once-only branching pro-

gram of size exp(O(S(n)).

The results of Wegener and Zbk thus imply an

fl(x/-6.) lower bound for the eraser RAM space complex-

ity of their respective Boolean functions. Our result

implies a linear lower bound on the same model.

Z. Bounded width branching programs: the result

The value of a symmetr ic Bolean function f is fully de-

termined by the sum of the input variables. Let N (f)

denote the set of those integers from zero to n corre-

sponding to output 1.

The term "almost all symmetric Boolean functions"

refers to a (1 - o(1)) fraction of the 2" possible choices

of the set N(f) .

We shall prove a lower bound for a class of of sym-

metric Boolean functions. This class includes almost all

symmegric functions as well as the following construc-

tive example: Let p be a prime, n 1/4 < p < n 1/3, and

let N (f) consist of the quadratic residues mod p.

Theorem. Let f be almost any symmetric Boolean func-

tion or the example given above. Suppose a leveled

branching program of width < (log n) c computes f

where c is an arbitrary constant. Then the size of

this branching program is at least n log n / C log log n for

some positive constant C.

Comments . CI . In a more complete version of this

paper, we shall improve the lower bound to f l (n l o g n) ,

using the method of the present proof iteratively.

C2. The constraint that a program of width w is

leveled can be elinfinated at the cost of reducing the

size bound by a factor of w. This makes no difference

for bounded width programs but is not permissible in

our more general case.

C3. We hope that it will be possible to eliminate

both the width constraint and the restriction of]ev-

eledness and still obtain a reasonable lower bound (say

~ C n , , / r f f~)) .
Proof. For a contradiction, we shall assume that a

branching program of size N < en log n / l o g log n com-

putes our Boolean function, where e is a small constant

to be specified later.

At the cost of adding at most 2 to the width and at

most tripling the size, we may assume that all terminal

nodes are on the last level.
We say that two sets A, B of variables are levelwise

disjoint if no xi 6 A and x./ 6 B appear on the same

level of the program. (In particular, these sets must be

disjoint.) Given such a pair of sets, we define A-levels

and B-levels inductively: a level is an A-level if it has

no B-nodes and either it has at least one A-node or

it is the first level or the preceding level is an A-level.

Otherwise it is a B-level. An alternation occurs at level

L if L is either the first level or the last level or L is an

A-level followed by a B-level or conversely.

Lemma 1. There exist levelwise disjoint sets A, B of
variables such that [A[= [B[> n *-So, and the num-

ber of alternations is less than 2e log n~ log log n.

Proof. Let H be the set of those variables which ap-

pear as node labels no more than 2N/n times. Clearly,

IHI _> n/2.
Let us now divide the levels of the branching pro-

gram into k = log 2 n blocks B l , . . . , Bk such that each

block contains at most 2N/k nodes. With each vari-

able xi E H we associate a (0, l)-str ing code(x/) = a =

a l . . . ~-k where c~ i = 1 precisely if zi appears as a node
label in 'block Bj . For each variable in H, the number of

32

l ' s in a code string is at most 2N/n < 2e log n~ log log n,

therefore the number of distinct code strings for H is at
most k eN/" = n 4~. Let a be the most frequent code

string for H and let A ~ C H be the set of those vari-

ables with code a. We have fall > n l -4~/2 ; let A C A ~

have cardinality fAt = n 1-5~.

A block Bi is an a-block if a i = 1. The number of

nodes in the union of the a-blocks is at most

4N2/nk < 4¢2n/(loglog n) 2 < n/4.

Let K be the set those variables appearing in a-blocks.
(K D a .)

Now, let us consider the codes of those, at least n/4,

variables not in H U K. They will all be disjoint from

a. Using the most frequent code/3 we obtain, as before,

a set B of variables,]B I = n I-5~, queried in/3-blocks

only. Tile number of alternations between A-blocks and

B-blocks is at most 2N/n. I

Let m = IAI : IBI = n ' -5~ . Let us set all the

variables not in A u B to zero. We are left with a set of

2 T M possible t ruth assignments.

Let g = ¢c/(1 - 6s).

Lemma 2. There exist a set E of _> m-62 m+l truth

assigmcnts to A and a set F of > m-~2 'n+l truth as-

signments to B such that all truth assignments from the

set E × F assign the same value to f .

Proof. Let L 0 , . . . , L s be those levels where alter-
nation occurs (including the first and the last levels).

Select nodes li EL i inductively as follows.

Let lo be the START node. To define li, consider

the set T(i - 1) of all t ruth assignments defining com-

putat ion paths which pass through Io , . . . , l i - l . Let li

be a node in Li to which at least I T (i - 1)[/]Lil of these

t ruth assigmnents lead.

If w denotes the width of the program then T(i) >

w-i22m. Moreover, the set T(i) is clearly a Cartesian

product T(i) = E(i) x F(i) where E(i) is a set of t ruth

assignments A ~ {0, 1} and F(i) is a set of t ruth as-

signme~ts B ---~ (0,1}. Let E = E(s), F = F(s).

Clearly, [E] ,]FI _> w-('+')/22 m. Now, w < (logn) c

and s < 2e log n / log log n therefore w ~ _< n 2ec and

[E],[F[> n-2e~2m > re- 's2 m+l. The node l~ deter-

mines the value of f on E x F. |

The independence of assigning truth values to the

variables in A and in B is our main structural tool. Let

N(E) stand for the set of those integers which occur

as the number of A-variables evaluated to 1 by some

truth a~signment in E. We define N(F) similarly. By

possibly interchanging f with its negation, we obtain:

Observation 3. N(E) + N(F) is a subset of N(f) . |

Let q be an integer, n 114 < 2q + 1 < n 113.

We observe that in some interval of length q, the

set N(E) cannot be too sparse, and the same holds for

N(F). This is a consequence of the following observa-
tion.

Lemma 4. Let Uo < . . . _< ud be a nondecreasing see-
d quence of positive numbers and a : ~i=o ui • Let

further A > 0 and e0, . . . , ed be nonnegative coefficients
d

such that ~ i = 0 eiui > 2An. Then, for each positive
integer k _< a/Ud, there exists an interval I of k consec-

utive integers such that ~ i e l ei > Ak.

Proof. Let us extend the definitions of the ui and

the ¢i to all integral subscripts, setting ui = ei = 0 for
c o subscripts i < 0 and i > d. Let ai = ~t=o(Ui_kt --

i ui -k t - l) . Clearly, ~ j= i - k+ l aj = ui, and for j < d we

h a v e n j > 0 . F o r j < 0 , a j = 0 .

Assume, for a contradiction, that y- . i+k-i L.~i=y ei <

Ak for every j . It follows that A k ~ = o %. >
~ o o a • ~.-..,j+k--1 d i

3"=--oo J Z..M:j £i = ~ i : 0 Ci a 3" = ~ 3 " = i - k + l
d F~=o eiui > 2An and therefore ~ j = 0 aj_> 2a/k.

On the other hand,
d ~-'~oo ~-~d--tk o o

~ . i = 0 aS" = L. , t=0 Z - . , j = d - (t + l) k + l a j = ~ t = 0 U d - t k <

ud + a/k.

A combination of the last two inequalities yields k >

a/u,l, a contradiction. |

Corollary 5. Let M be the set of integers { 1 , . . . , m }
and let G be a subset of 2 M. Suppose [G] _> A2 m+x

where 0 < A < 1. Let k < xfrn/2 be a positive integer.

Then there exists an interval I of length k in M such
that N(G) contains at least Ak members of I. Here

N(G) is the set of cardinalities of sets in G.

Proof. Without loss of generality we may assume

that sets of size _< m/2 comprise the greater half of [G[.

Let us now apply Lemma 4 to the sequence ui = (m),

i _< m/2, with coefficients ei = i if IX[= i for some

X E G; ei = 0 otherwise. I

An application of Corollary 5 with A = m -~ to both

E and F yields intervals I , J of length q in M such that ,

sett ing P = I n N(E) and Q = J n N (F) , we obtain

(a) Ie l , [Ol > q ' - ~ ;
(b) P + Q is a subset of N(f) .

Assuming 6 < 1/2 (i.e. e < 1/(2c + 6)), one can

show, using the method of tr igonometric sums, that this

situation is impossible for most sets N (f) and in par-

t icular in the case hen p = 2q - 1 is a prime and N (f)

consists of the quadratic residues (nonresidues) rood p.

(See [Va] or [Vi] as general references for the method of

tr igonometric sums.)

33

Let R = N (f) o (I + J). Note that I + d is an

interval of length p.

According to (b), the equation

(1) z + y = z , x E P , y E Q , z E R

has [PIIQ[solutions. We show that the actual num-

ber of solutions is substantially less: approximately
[P[[Q[[R[/p only, assuming certain bound for the dis-

crete Fourier coefficients of R. This bound is valid for

most sets including such random-looking explicit ones

as quadratic residues mod p.

Note that by our definition of the sets P, Q and

R, the solutions of (1) are precisely the solutions of the

congruence

(2) x + y ~ _ z m o d p , z E P , y E Q , z E R .

For a finite set T of integers mod p, let

(3) PT(J) = ~ w t j (j = O, . . . ,p - - 1)
t E T

where w = exp(2~ri/p) is a primitive pth root of unity.

Let

(4) Cr = max [~oT(j)[. l _<./_<p- 1

Although the method of trigonometric sums has

been widely used in additive number theory, the fol-

lowing simple lemma does not seem to have been stated
explicitly. A similar lemma (with a similar comment)

appears in Ruzsa [Ru].

Lemma 6. Let v denote the number of solutions of (2)
where P, Q and R are arbitrary sets of rood p residue
classes for a positive integer p (not necessarily prime).
Then

(5) lu IPIIQIIRII-<¢R~I.
p

Proof. The number of solutions of (2) is precisely

l p - I
(6) ~ ~ ~Op(j)~OQ(j)~R(--j).

j = 0

The dominant term here corresponds to j = 0 and
gives the expected number [P[[QI[R[/p. In order to es-
timate the error term, we observe that for any set T,

p--1

(7) ~ I~or(J)l 2 = plTI
j=O

(because the matrix (w'i/./~)p×p is unitary).

The error term is

1 p-I ~ p--I

I~opCj)~oqCj)~oRC--J)l _< OR ~ I~oP0)ll~o~0)l.
"= j = 0

We estimate the right hand side using the Cauchy

inequality and the above identity. We obtain that the
error term is

p--1 p--1

<_ - ~ % ((~ I~o.,,(j)l:~)(~ I~%(j)l~)) '/~ = ¢#(IPIIQI)'/~.
P j=:0 3'=0

It is easy to see that ~a = O (p l y) for almost
every set R and CR _< (1 + x/~)/2 when p is a prime and
R is the set of quadratic residues (non-residues). There-
fore Lemma 6 implies that the contribution of the error
terms is indeed negligible, thus completing the proof of

the Theorem. |

3. Read-once-only branching programs: the result

Let n = (~) and let us fix a bijeetion between the set
{ 1 , . . . , n } and the set of pairs from { 1 , . . . , v } . Each
string x = x l . . . x n E {0,1}n can be thought of as
representing a graph G(x) on the vertex set { 1 , . . . , v }.
The value of each input variable corresponds to the pres-

ence or absence of an edge between a given pair of ver-
tices in G(x).

Let fn(x) denote the number of triangles in G(x)
modulo 2.

Theorem. There exists a positive constant a such that
every read-once-on!y branching program computing fn
has size at least 2 an.

First we outline the idea of the proof.
We shall use the term %dge" to mean any of the (~)

pairs of vertices. (These are the edges of the complete
graph K,.) Let P be a path in a branching program.
We shall say that an arc of P labeled 1 from a node
labeled x~ has the effect of accepting the edge e; the

arc labeled 0 from the same node rejects e. The edges
accepted by P form the graph A(P), the rejected edges
form the graph R(P). The union of these two edge sets

constitutes the set D(P) of edges determined by P.
Assume f . is computed by a read-once-only branch-

ing program of size less than 2 en for some appropriately
selected small positive constant ~. From this assump-
tion we shall derive

(8) the existence of a node w in the program, two paths
Po and P1 both leading from START ~o w, and an edge
e not determined by either t~, such that the parity of
the number of triangles containing e in the graph A(Pi)
isi .

34

The read-once-only property implies that after w,

the program follows the same path of computation for
input graphs A(Po)we and A (P i) u e and thus leads to
the same terminal node. This means these two graphs
have the same number of triangles mod 2; the same
holds for A(Po) and A(Pl). This contradicts the choice

of the Pi and e.
We proceed to showing how w, e, Po, and Pl satis-

fying (8) are found.
The depth of a node is its distance from START.

Proposition 1. Let P be a path from START to a termi-
nal node. If three edges are undetermined by this path,

they cannot form a triangle.

Proof. Suppose, to the contrary, that the edges
el, e2, e3 of a triangle are left undetermined by P. Then
the parity of the number of triangles in each graph
A(P) u ei must agree with the parity of the number of
triangles in A(P). But then adding all the three edges
at once will change the parity, a contradiction.]

Corollary 2. The depth of each terminal node is at least
v(v - 2)/4.

Proof: by TurAn's Theorem in graph theory (of. [Lo,
Probl.10.30,34]). Any path of length less than v (v - 2) / 4
leaves more than v2/4 edges undetermined, forcing the
graph of undetermined edges to contain a triangle. |

It follows that for any constant c < 1/4, there are
precisely 2 Cn computation paths of length cn beginning
at START. Consequently there exists a node w such
that at least 2 (~-~)" paths of length cn connect START
to w.

Let us fix c at a quite small value; any c < 10 - s
will be safe. Then, ¢ must be even smaller; let us set
g == C 3 / 2 ,

Usi~lg w as a "checkpoint", we shall classify the
edges according to their status at the time various com-
putation paths pass through w. We shall see that these
classes exhibit a strong structure.

Let D denote the set of edges determined by at least
one path from START to w. Let U denote the set of
the remaining (undetermined) edges; [DI +]u[= n .

Proposition 3. Let P be any path from START to w. It
is impossible that three edges ex, e~, e3 form a triangle,
where el E D - OFF), e2, e3 ~ D(P).

Proof. The proof is similar to that of Proposition
1. Suppose the contrary. The read-once-only property

implies that ex is not tested along any path starting

at w and therefore the parity of the number of trian-
gles in A(P) and A(P) t.j {el } is the same. In other
words, el is contained in an even number of triangles
in A(P) u { ex }. Similarly we infer that the number of

triangles containing e, in the graph A(P) u { e,, e2, ea }
is even. But this nmnber is precisely one greater than
the number just shown to be even, a contradiction. I

Let A R denote the set of those edges which are ac-
cepted along some path from START to w and are re-
jected along some other. Clearly, A R C D.

Proposit ion 4. There is no triangle el, e2, e3 with e, 6

AR, e~, e3 C U.

Proof: a parity argument similar to the proofs of
Propositions 1 and 3. |

One can deduce from Proposition 3 that most edges
determined along any path between START and w are
actually determined along P, i.e. the set D - D(P) is
small. Moreover, most edges determined by some path
to w are both accepted and rejected along paths to w,
i.e. D - AR is a small set. More specifically:

Lemma 5. (a)]D - D(P)] < 3c3/2n.

(b) IVl > (1 - c - 3 ~ / ~) ~

(c) IARI _> (c - ~)n.
(d) ID - AR I < 4c3/2n.

Proo£ For a set A of edges, let dega(p) denote the
degree of p with respect to the graph formed by A.

(a) Let e = pq be any edge in D - D(P). By Propo-
sition 3, every vertex is adjacent in D(P) to at least one
end of e. Therefore,

degDiP)(p) + degD(p)(q) ..> (v - 2).

Adding up these inequalities for all pq E D - D(P) we
obtain

(9) ZdegD_D(p)(p)degD(p)(p) > (v - 2) [D - D(P)[.
P

On the other hand, also by Proposition 3, the neighbor-

hood in D - D(P) of any vertex p induces a clique in
D(P). Therefore

degD- (P}(P < D(P)I = c n = c 2 "

Consequently,

(10) degD_D(p)(p) < 1 + CI]2v.

Colnbining (9) and (10),

I D - D (P)] < 1 + d / 2 v - ~ - -~ Z degv(p)(P)
P

2 + 2c112v
- v - 2 [D(P)[< 3c3/2n.

35

(b) follows immediately from (a) since]U I = n - [D] .
(c) Clearly, the logarithm of the number of START-

to-w paths is a lower bound for [AR[.

(d) By (a), [D[<_ [D-D(P)[+]D(P)] _< 3cS/2n+cn.

Combining this inequality with (c) we obtain [D - A R [
(~ + 3C3/2)n = 4c3/2n. |

Lemma 5(b) implies that the graph U has a vertex
Po of degree greater than d = (1 - ¢ - 4c3/2)v. Let S
be a set of precisely d neighbors of P0 in U and let T be
the complement of S (]T[+ IS] = v).

Proposition 4 implies that no edge in A R has both
of its endpoints in S. From this, it follows that A R

is "mostly" bipartite, with bipartition (S, T). We can
actually deduce even more structure: most vertices in
T are adjacent in A R to either almost all or to ahnost
no vertices in S (about half of the vertices will satisfy
each alternative). More precisely, let us divide T into
three classes, To, Tl, T2. We shall refer to a moderately
large constant K, 20 < K _< 1/(8c112).

Let To consist of those p 6 T which have more than
Kc~/2v neighbors in S in the graph D - AR. We put
p E T - To into T1 or T2 according to whether p has
more AR-neighbors in S than U-neighbors or not. Let
deg~R(p) denote the number of AR-neighbors of p in S
and analogously for other classes.

Letup . 6. (a) IT01 < 2c~/g.
(b) For each p 6 T, , deg~(p) _< 5c3/2v.

(c) For each p e T2, deg~R(p) _< 5c3/2v.

Proofi By Lemma 5(d),

ITolKc~/2v _< ID - ARI _< 4c 3/2n.

Claim (a) is now immediate.
To prove (b) and (c) , le t p 6 T - T o . Let N1 and

N2 denote the sets of U-neighbors and AR-neighbors of
p in S, resp.; let ni = [Ni[. Since p ~ To, we have

(11) nt + n2 > I S] - g c l / 2 v > 6v/7.

On the other hand, by Proposition 4, all edges be-
tween Nl and N2 belong to D - AR. By Lemma 5(d)
it follows that nxn2 < 4c3/2n < 2c3/2v 2. Consequently,

rain{ha,n2} <_ 2nan2 < 5c3/2v. I
nx + n2

Let X denote the set of AR-edges between Tl and

S.

Corollary ~. (a) (1 - -~)cv/2 _< IT, I < (1 + 4c' /2)cv/2.
3c 2 (b) l a R - X l < ~ v .

Proof. We begin with (b). Clearly,

JAR - X] < IT} 2 + IT2[maxveT, deg~R(p) + ITo[ISI.

By definition, [TI _< (c + 4c3/2)v. We use Lemma 6(c)
to estimate the second term and Lemma 6(a) and the
fact IS] < v for the last term.

For the upper bound in (a), we obtain from Lemma
6(5) that

IDI IDI
IT, I <_ _<

minveT, deg~(p) [S] -- 5c3/2v"

Lemma 5(a) provides the bound ID] < (c + 3c3/2)n.

By the definition of S (after the proof of Lemma 5),
[S[= (1 - c - 4c3/2)v. A combination of these estimates
yields the desired upper bound.

For the lower bound we first observe that [X I >
(c - e - 7c /K)v2 /2 > (1 - 8 / K) c v : / 2 . This follows
from Lemma 5(e) and part (b) of this Corollary. On
the other hand, trivially, IT~I > [XI/v. |

The structural consequence of Lemma 6 and Corol-
lary 7 for the A R graph is that the subgraph X induced
between T1 and S is a nearly complete bipart i te graph,
and X contains almost all edges of AR.

In order to focus on X, let us make a decision on the
value of each input variable (edge) in A R - X . There are

2 jAR-X[< 2 (3/g)cv~ possible outcomes (by Corollary

7(b)). Let us choose the one that is the most frequent
among the START to w computation paths. Having
fixed these values,we still have at least

(12) 2 (c-e)"-(3/K)c'J2 > 2 ~v~(1-7/g)

computation paths left. Let H denote the set of these
paths:

(13) log [HI _> 2 v 2 (1 - 7 / K) .

(The base of the log is 2.)

Let t = [Tl] and s = IS]. We see, that logllI [is
nearly ts. In order to complete the proof, we show, that,
unless situation (8) arises, the number of subgraphs of
X arising from paths P 6 H must be substantially less
than 2t": only about 2 t~/2. This is impossible because
different paths define different subgraphs of X. (This in
turn is true since the possible branchings on variables
in A R - X have been eliminated.)

The proof is based on a counting lemma in mod 2

linear algebra.
Let A, B, C be (0, 1)-matrices of tim same dimen-

sions.
We shall say that A ~ C rood B if for every i , j ,

B[i,jl = 0 implies A[i,j] = C[i,j].

Lemma 8. Let A l , . . . , AN be t x s matrices over the

two-element field GF(2). Let further B and C be s x s
matrices over GF(2). Let fl be the number of l ' s in B.
Assume that A~T Ai _= C mod B for every i. Then

t
(14) log N < fl + ~(s + t + logs).

36

Proof. First we estimate the nmnber of t × s matrices
of rank _< t /2 over GF(2). There are less than 2 t~/~
possible choices of the colunm space. Given the colunm
space of dimension < t/2, there are < 2 t/2 choices for
each column, giving a total of < 2 t{*+t}/2 matrices.

Next, we estimate the number of those Ai hav-
ing rank > t/2. Such a matrix has a set of t /2 lin-
early independent columns; they are positioned in any
of (t~2) < st/~ ways. Let us fix their positions, say

colunms 1 , . . . , t / 2 , and decide their entries. Let us
estimate, how many ways the remaining columns can
be filled. For each pair (i , /) where 1 <_ 1' <- t /2 <
i < s ~nd B[i,j] = O, we have a linear condition

t ~ k = ~ xik A[k, j] = eli , j] for the prospective entries zik.
All these equations are linearly independent and their
number is > t(2s - t)/4 - [3. This reduces the number
of candidates (2 t*) by a f ~ t o r of 2 -t{2~-t}/4+#. The

number of those Ai of rank > t/2 is thus

(15) < st~22 ts-t{2s-t)14+# = 2 #+~{s+~+l°gs}.

Add the bound 2 t{~+t}/2 on the number of low rank
matrices to this; the figure in (14) is a generous overes-
timate of logarithm of the sum. |

Let now s = IS[, t = IT1[and for each P e II let Ap
be the t × s adjacency matrix of the bipartite subgraph
of X defined by P. (This graph is the restriction to
Tl x S of A(P).) Let B be the s x s adjacency matrix of
the induced subgraph of D - AR on S. (Recall that the
complement, relative to S, of this graph belongs entirely
to U by Proposition 4.) Observe that the entries of
A~ Ap count the number of common neighbors of each
pair of vertices in S. The falsity of (8) is thus precisely
the statement that all the AFAR ~ C rood B rood 2
for some fixed s × s matrix C. The number of l ' s in B
is fl = ID - AR I < 4c3/2n < 2c3/2v2 by Lemma 5(b).
Using the upper bound of Lemma 7(a) for t we now infer
from Lemma 8 that

log [HI I < f l+~(s+t+logs) < f l+~(v+logv)

(16)
c ~ 1~2 21ogv,

< -V {1+12c / + _ _ _ _) .
4 v

This contradicts (13) for large v, completing the proof

of the Theorem. |

References

[AS] N. Alon and R. Boppana, The monotone circuit
complexity of Boolean functions, Combinator-
lea, to appear

[An] A. E. Andreev, On a method of obtaining lower
bounds for the complexity of individual mono-
tone functions (in Russian), Dokl. Akad. Nauk
SSSR 282/6 (1985), 1033-1037

[Bali D. A. Barrlngton, Bounded-width polynomial
size branching programs recognize exactly those
languages in N C l, draft, MIT 1985

[Ba2] D. A. Barrington, Width-3 permutation branch-

ing programs, draft, MIT 1985
[Be] P. Beame, Limits on the power of concurrent-

write parallel machines, Proc. 18th ACM
STOC, Berkeley CA 1986
P. Beame and S. Cook, 1985, private communi-
cation

A. Borodin, D. Dolev, F. E. Fich and W. Paul,
Bounds for width-2 branching programs, Proc.
15th ACM STOC, 1983, pp. 87-93.

A. Borodin, M.J. Fischer, D.G. Kirkpatrick,
N.A. Lynch and M. Tompa, A time-space
tradeoff for sorting on nonoblivlous machines,
J.C.S.S. 22 (1981) 351-364.

[CFL] A. K. Chandra, M. L. Furst and R. J. Lipton,
Multiparty protocols, Proc. 15th ACM STOC,
1983, pp. 94-99.

[FMP] M. J. Fischer, A. Meyer and M. S. Paterson,
f l (n logn) lower bounds on length of Boolean
formulas, SIAM J. Computing 11 (1982) 416-

427
[FHS] S. Fortune, J. Hopcroft, E. M. Schmidt, The

complexity of equivalence and containment free

single variable program schemes, Cornell Univ.
TR 77-310

[GRS] R. L. Graham, B. Rothschild and J. Spencer,
Ramsey Theory, Wiley, New York 1980.

[Ha 1 J. I-Iastad, Improved lower bounds for small
depth circuits, Proc. 18th ACM STOC, Berke-
ley CA 1986

[Le] C. Y. Lee, Representation of switching functions
by binary decision programs, Bell Syst. Tech.
Journal 38 (1959), 985-999.

[Lo]L. Lov~sz, Combinatorial Problems and Exer-
cises, North-Holland 1979.

[Ma] W. Masek, A fast algorithm for the string
editing problem and decision graph complexity,
M.Sc. Thesis, MIT 1976

[BC]

[BDFP]

[BFKLT]

37

[Ne] E. I. Ne~iporuk, On a Boolean function, Dokl.

Akad. Na~zk SSSR 169 No. 4 (1966), 765-766.
English translation: Soviet Math. Doklady 7

(1966), pp. 999-1000.
[Pu] P. Pudl£k, A lower bound on complexity of

branching programs, Proc. Conf. on the Mathe-

matical Foundations of Computer Science 1984,

Springer Lecture Notes in Computer Science 176
(1984), 480-489.

[Ral] A. A. Razborov, Lower bounds for the mono-
tone complexity of some Boolean functions (in
Russian), Dokl. Akad. Nauk SSSR 281 (1985),
798-801.

[Ra2] A. A. Razborov, A lower bound for the mono-
tone network complexity of the logical perma-
nent (in Russian), Matematicheskie Zametki

~7/e (1985)
[Ru] I. Z. Ruzsa, Essential components, Acta

Arithm.?, to appear
[Sa] J. E. Savage, The Complexity of Computing,

Wiley 1976
[Sh] J. B. Shearer, announced in [Ba]
[Va] R. C. Vaughan, The Hardy-Littlewood Method,

Cambridge University Press, 1981
[Vii I. M. Vinogradov, The Method of Trigonometri-

cal Sums in the Theory of Numbers, Intersclence
Publ., London

[We] I. Wegener, On the complexity of branching pro-
grams and decision trees for clique functions,
UniversitSt Frankfurt, Fachbereich Informatik,
Int. Rept. 5/84, 1984

[Yal] A. C. Yao, Lower bounds by probabilistlc argu-
ments, Proc. 24th IEEE FOCS, 1983, pp. 420-
428.

[Ya2] A. C. Yao, Separating the polynomial-time hier-
archy by oracles, Proc. 26th IEEE FOCS, Port-
land OR 1985, pp. 1-10.

[Za] S. ZSk, An exponential lower bound for one-
time-only branching programs, Proc. Conf. on
Mathematical Foundations of Computer Science
1984, Springer Lecture Notes in Computer Sci-
ence 176 (1984), 562-566.

38

