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Bounds for Pairs of Consecutive Seventh 
and Higher Power Residues 

By John Brillhart, D. H. Lehmer, and Emma Lehmer 

Introduction. In previous papers [1], [3], [4] and [5] the first occurrence of two 
consecutive kth power residues of a prime p was discussed for k = 2, 3, 4, 5, and 6. 
The present paper is concerned with the same problem for k > 6. Before giving the 
results of this investigation in detail we need to recall some definitions and nota- 
tions. 

Let k be an integer > 1, and let p = km + 1 be a prime. 
Let g be a primitive root of p and let glfd x (mod p) 
Let R(n) ind n (mod k), 0 _ R(n) < k. [In particular n is a kth power 

residue if and only if R(n) = 0.] 
Let r = r(k, p) denote the least positive r such that r and r + 1 are both kth 

powers modulo p, so that R(r) = R(r + 1) = 0. 
Let a prime p* = p*(k) for which no r exists be called an "exceptional prime." 
Let A(k) = max r(k, p) taken over all nonexceptional primes p. 
Let any vector whose components are non-negative integers less than k be 

called a "case vector." 
For k < 8, to each case vector [cl, c2, c t, ct] there corresponds an infinite 

class of primes p for whiih 

R(2) = cl, R(3) C2, ,R(qt) = ct 

where qt is the tth prime [6]. 
A case vector [R(2), R (3), R.. , (qt)] characterizing an infinite class of primes 

for which r(k, p) = A(k) will be called a "maximal case vector." 

1. Results. For convenience of reference new and old results are given in Table 
I. Previous results are recognized by references in square brackets. 

TABLE I 

k A(k) Exceptional primes p*(k) References 

2 9 3, 5 [2] 
3 77 7, 13 [1] 
4 1224 5, 13, 17, 41 [5] 
5 7888 11, 41, 71, 101 [3] 
6 202124 7, 13, 19, 43, 61, 97, 157, 277 [3] 
7 1649375 29, 71, 113, 491 
8 > 1200744 17, 41, 113 
9 > 107 19, 37, 73, 181, 523, 577 

10 >22458303 11, 31, 41, 71, 101, 281, 401, 1181 
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If k > 9 and either odd or twice an odd prime of the form 4n + 3, then 
A(k) > 5t. 

In Table II we give maximal case vectors for k < 8. 

TABLE II 

k Description of maximal case vector References 

2 R(q) = R(2) = 1 for all primes q < 9 [2] 

3 R(5) = 0, R(q) = 2 for q = 7,19 
R(q) = 1 for all other 
primes q < 77 [1] 

4 R(3) = 0, R(q) = 1 for all other 
primes q < 1224 [5] 

5 R(q) = O for q = 3,5,29 
R(q) = 2 for q = 13, 19, 23, 31, 41, 43, 
211, 277, R(q) = 1 for all 
other primes q < 7888 [3] 

6 R(q) = O for q = 3, 43, 61 
R(q) = 2 for q = 71, 101, 331, 733, 
1423,4877,5413,6043 
R(q) = 1 for all other primes 
q < 202124 [3] 

7 R(q) = O for q = 3, 41 
R(q) = 2 for q = 79, 137, 197, 233, 
269, 277, 463, 467, 797, 1709, 2647, 2903, 15791 
R(q) = 1 for all other primes 
q < 1649375 

In order to avoid repetition, the reader is referred to the previous papers [3] 
and [4] for a description of general methods of machine proof. 

2. The Case k = 7. By inspection of the values of A (k) for k = 3 and 5 it 
seemed plausible that A(7) might be less than 107. Therefore an exploratory run, 
using a program similar to that used for k = 5 and 6, was made with dimension 
d = 22 and limit L = 107. All 4935 pairs (n, n + 1) whose prime factors are re- 
stricted to the first 22 primes were computed and condensed (as in [3]) to form the 
set of trial vectors 

A = [a1, a2, ,ad] 

in which each at is the exponent of qi in n = fi qi modulo 7. Since we are interested 
only in primes having 2 for a seventh power nonresidue, and since the nonresidue 
classes are interchangeable, the case vector was started at [1, 0] and stopped at 
[2, 0]. Between these limits the machine examined only 1179741 cases, rather than 
the total number of 721 cases. Fortunately the machine was able to settle 95 per cent 
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of the cases with vectors of dimension d ? 12. Beyond d = 12 there is a sharp drop 
in the number of cases, as can be seen from Table III. 

TABLE III 

No. of cases No. of cases No. of cases 
d settled d settled settled 

2 0 9 211167 16 140 
3 4 10 330811 17 85 
4 56 11 315639 18 80 
5 494 12 163367 19 66 
6 3820 13 42502 20 70 
7 20524 14 6593 21 41 
8 83661 15 573 22 48 

This slow preliminary run took 206 minutes and left 8 cases undecided. These 
were the 7 case vectors starting with 

[1, 3, 4, 3, 5, 3, 1, 3, 4, 1, 3) 

and the case vector 

[1, 5, 5, 4, 1, 3, 4, 1, 1, 4, 1, 3, 0, 3,3,2,5,2,5,2,3,5]. 

Actually these exceptional vectors were expected in advance since they correspond 
to the characters of the exceptional primes p* = 113 and 491. These vectors can 
readily be eliminated by hand using small multiples of the corresponding exceptional 
primes as follows: 

R(113) Pair of 7th power residues 

0 113 114 = 2*3*19 
1 2260 = 22.5.113 2261 = 7* 17 19 
2 1130 = 2*5 113 1131 = 3*13-29 
3 1581 = 3*17*31 1582 = 2.7*113 
4 339 = 3*113 340= 22 5 17 
5 6554 = 2-29 113 6555 = 3-5-19-23 
6 225 = 32.52 226 = 2*113. 

Similarly 

R(491) Pair of 7th power residues 

0 490 = 2.5.72 491 
1 2945 = 5*19*31 2946 = 2*3*491 
2 1472 = 26.23 1473 = 3-491 
3 12765 = 3-5 23-37 12766 = 2*13-491 
4 3927 = 3*7-11 17 3928 = 23-491 
5 23568 = 24*3*491 23569 = 72.13.37 
6 5400 = 23.33.52 5401 = 11-491. 
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Having eliminated these exceptions we could now assert that A(7) < 107 and that 
there were no exceptional primes greater than 491. As a matter of fact, the only 
primes having no pair of consecutive 7th power residues are 29, 71, 113, 491. This 
fact can also be derived from the consideration of cyclotomic numbers [7]. 

Before proceeding to sharpen the above limit L = 107, it seemed advisable to get 
some idea of the true limit by trying to discover a maximal vector. It seemed likely 
from previous results given in Table II that a maximal vector would again be of the 
form 

[1,0, 1, 1, ... 

with most of its components equal to 1. A routine called "case test," explained in 
?4, was therefore written for this purpose. 

Starting with the vector for which 

R(3) = 0, R(q) = 1 for all q # 3, 

this routine soon discovered that the pair (6560 = 2'.5541, 6561 = 38) implies 
R(41) = 1 is not a good choice for a maximal vector; neither is R(41) = 2 because 
of the pair (284375 = 55.7413, 284376 = 23.3-172.41). The machine then set 
R(41) -0, and inspected all multiples of 41 as explained in ?4. Continuing this 
run, the machine changed R(q) from 1 to 2 for the following primes: 

q = 79, 139, 197, 233, 269, 277, 463, 467, 709, 797, 1217, 1709, 2647, 2903, 15791.* 

The largest pair (1649375 = 574 -7*13*29, 1649376 = 25. 33 *23*83) caused the ma- 
chine to change R(83) to 2, but this choice leads to the pair 

(259375 = 5'.83, 259376 = 24- 13.29 *43), 

while the choice R(83)-0 leadsto the pair (10208 = 25- 11 *29, 10209 = 3 *41 *83). 
Accordingly a new main run was made with L = 1649375, d = 22, and the 

truncation feature at d = 6 described in ?3. This run took only 28 minutes and 
reported the following vectors: 

A = [1, 0, 0, 1, 1, 1], B = [1, 0,1, 1, 1, 1], 

C = [1,3,4,3,5,3], D = [1,5,5,4,1,3] 

and various tallies. We recognize the last two vectors as those corresponding to 
* = 113 and 491. These four vectors indicate four gaps in the proof tree, the second 

gap containing our proposed maximal vector. To explore the first gap the case test 
routine was run beginning with the vector for which R (3) = R (5) = 0 and R (q) = 
1 for all other primes. This run was not able to proceed beyond the limit 1349698, 
so that it seemed fairly certain that L = 1649375 is indeed the true limit A(7). 
Three short final runs were made with the main routine with d < 28. One over 
the region [1, 0, 0, 0, 0, 0] to [1, 1, 0, 0, 0, 0] took 35 minutes and produced no out- 
put. The other two runs, over the gaps determined by vectors C and D, produced 
only the predicted output. Hence A(7) = 1649375. 

* If we replace 139 by 137, then we can delete 709, 1217 to give the maximal vector quoted 
in Table II above. 



BOUNDS FOlt PAIRS OF CONSECUTIVE SEVENTH AND HIGHER POWER RESIDUES 401 

3. Description of the Main Program. The so-called "main program" is the highly 
ramified proof that A (k) is less than some preassigned limit L. The details of the 
main program, as previously coded, are given in [3] and [4]. For k = 7 the runs 
become too lengthy, especially as L approaches the true value of A(k) causing the 
ramification to increase. For the possible benefit of anyone who might want to 
repeat or extend the present proof for k _ 7, we give a brief account of a new main 
program, faster than the old one by an order of magnitude. 

As explained in [3], the proof tree is described at each point by a case vector 

(1) [R (ql), R (q2), ---, R(qd)] 

of dimension d whose components R(qi) are integers satisfying 

(2) 0 _ R(qi) < k. 

The bulk of the time is spent in examining the inner product 
d 

(3) = ?aR(qj) 
j=1 

of the case vector (1) and the trial vector 

(4) [al, a2, * * *, ad] 

for divisibility by ko. The trial vector (4) is sparse, and in practice has less than six 
nonzero components. Those a's that are not zero may be replaced by their least 
positive remainders modulo k. The multiplication implied in (3) is accomplished 
instantly by replacing the case vector (1) by a "case matrix" M of k rows and d 
columns whose first row is (1), and whose ith row and jth column element is iR(qj) 
taken modulo k. Thus multiplication is accomplished by "table look-up." 

Instead of storing the trial vector (4) in one or two machine words, as was done 
originally, each component aj is replaced by an addition instruction with a tag of 
aj - 1 and an address Aj of R(qj). Execution of such an instruction automatically 
selects from M the correct contribution to the sum and accumulates it forthwith. 
The final addition instruction, corresponding to the last nonzero a, is followed by 
a transfer command to that part of the program that tests whether 0f is divisible 
by k. Since r- < 5(k - 1) is of modest size, it is possible to use the following device 
to test divisibility by k in only 3 addition times. The early part of the memory is 
filled with transfer commands. The command in A, where A < 5(k - 1), instructs 
the machine to transfer to one of two possible addresses according as A is divisible 
by k or not. With the quantity a already in the accumulator the machine enters 
the test for divisibility by storing o- in the address of the next instruction which 
now reads "transfer to a." In address a- it encounters the transfer instruction whose 
execution sends control to the appropriate part of the program according as k divides 
a- or not. 

The main program was runi on an IBM 7090 with seven index registers, of which 
six were used in the calculation of a. MIore than 32000 words were used to represent 
the trial vectors of dimensions < 22. Whenever the proof tree demanded the ex- 
tension of the case vector beyond dimension 22, this vector was reported, the proof 
tree was severely pruned back to the next case vector of dimension 6 and the run 
was resumed. 
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4. Case Test. In previous papers dealing with k < 7, a maximal vector was 
obtained as an extension of a case vector the machine was unable to handle in which 
R(q) = 1 for all q's exceeding those used in the trial vectors. The machine was in- 
structed to find the least pair (n, n + 1) with R(n) = R(n + 1) = 0, which we 
shall call a "zero pair." This pair was then examined and a suitable change was 
made in the character of one of the factors of n(n + 1 ). A rerun was made to search 
for a larger zero pair. After several such runs the desired limit was reached. 

In order to speed up this process a more automatic program was written, which 
not only finds the first zero pair for a given vector, but also changes the case vector 
itself, using the following simple strategy: the largest prime factor q of the zero 
pair (n, n + 1) is examined. If q is not on either a "fixed" or a "special" list, then 
R(q) has been 1. The machine accordingly sets R(q) = 2 and puts q on the special 
list. If q is on the special list, then R(q) has been 2, and the machine puts R(q) = 0 
and places q on the fixed list. If q is on the fixed list, then R(q) cannot be changed, 
and the machine selects the next largest prime factor of n(n + 1) for q. When all 
prime factors of n(n + 1) become fixed, the machine reports this impasse and 
stops. 

This simple strategy was arrived at by studying the maximal vectors for k < 7 
given in Table II. In some instances it was found to be a little too simple, and 
human intervention was required to make a change not prescribed by the strategy. 

The program was tested, beginning with the simple initial vector R(2) = 1, 
R(3) = 0, R(q) = 1 for all primes q > 3, for all k < 7. The strategy worked for 
all k < 6, producing the maximal vectors given in Table II. However, in the case 
k = 6 a small amount of prompting from the authors was needed. 

The maximal case vector for k = 7 given in Table II was obtained in this way 
with only two deviations from the machine strategy. 

5. Case Test Program. This program is designed to evaluate R(n) for a given 
case vector over a given interval (no , n1). If a zero pair is discovered it is reported, 
and the automatic revision section of the program is entered. If on the other hand 
no zero pair is encountered in the interval, the machine stops with the remark "the 
limit has been reached." In particular, this happens whenever a maxinmal case 
vector and a limit L = A((k) are used. 

In scanning the given interval the program actually evaluates R(n) only for 
every other n, inasmuch as it is necessary to examine n + 1 or n - 1 if and only 
if R(n) = 0. This pace is normal for the routine. After a revision, however, it is 
necessary to re-evaluate R(q) for all multiples of q less than the current zero pair. 
If no multiple in this range is one of a zero pair, then the program has successfully 
reached the level of the current zero pair and can proceed once more at its normal 
pace. For n 2. 106 the scanning rate is about a thousand numbers per second. 

The first stage in the evaluation of R(n) with respect to a given case vector con- 
sists in the complete factorization of n = TI>j qj . This being done, it is next 
necessary to compute E>=1 a 1R(qj) (mod k). Since R(q) is assigned only the values 
0, 1 and 2, for j > 1, it is possible to design a rapid look-up procedure, carried out 
for each factor qa of n, consisting of three transfer commands executed consecu- 
tively. 

The first of these sends control to the memory location q itself for q < 31872 
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(larger q's are handled specially). At location q a second transfer has been placed 
during the initial phase of the program. This transfer sends control to a list de- 
termined by R(q) at a position corresponding to the multiplicity of q. Here the 
third transfer sends control back to the factoring section of the program, simul- 
taneously incrementing index register 4 by the amount aR(q) (mod k). At the 
end of the factoring process the contents of index register 4 are reduced modulo k 
to give R(n). 

6. A General Inequality for A(k). The case vector 

(5) [1, 011, 1, ..., 71 ... I 

is of use not only for special values of k. We use it in what follows to prove in 
general the 

THEOREM. If k > 3, and if k is odd or twice a prime of the form 4m + 3, then 
A(k) > 5k. 

In the proof we use the following lemmas: 
LEMMA 1. Let p be a prime F 3 and let v be the smallest positive integer h Jor which 

(3h _ 1)/2 is divisible by p. Let pr be the highest power of p dividing (3v - 1)/2. 
Then p divides (3' - 1)/2 if and only if v divides n. If n = vpom, where p does not 
divide n, thent the highest power of p dividing (3' - 1)/2 is pr+. 

This is a combined statement of the familiar Laws of Apparition and Repetition 
of Lucas' Function U- = (a' - bn)/(a - b) in the special case a = 3, b = 1, [9]. 

LEMMA 2. Let h be an integer >1 and let 21, 5a2, 7a3 be the highest powers of 
2, 5, and 7 dividing any of the numbers 3n - 1 for n ? h. Then 

(6) al < 1.4427 log h + 2, 

(7) a2 < .6214 log h + .1387, 

(8) a3 < .5139 log h + .0793. 

Proof. Lemma 2 is simply the result of applying Lemma 1 to p = 2, 5 and 7. 
In fact if p = 2, then v = 2 and r = 2. Hence if 

20 ? h < 20+1 

we may set n - 20 in Lemma 1 and conclude that 3' -1 is divisible by a higher 
power of 2 than any of the numbers of the form 

3t-1 t= 1(1)h 

and this highest power of 2 is 2a1, where by Lemma 1 

al = 1 + r + / = 1 + 2 + 0 - 1 

= 2 + 0 < 2 + log h/log 2 < 1.4427 log h + 2. 

This proves (6). The inequalities (7) and (8) are established in a similar way after 
noting that for p = 5, V = 4 and r = 1, and that for p = 7, v = 6 and r = 1. 

LEMMA 3. Let h be an integer > 1, and let 2", 5", 7"' be the highest powers of 2, 5 
and 7 dividing any of the numbers 3n + 1 for n _ h. 
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Then 

al = 2, 

a2 < .6214 log h + .5694, 

a3 < .5139 log h + .4355. 

The proof of this lemma follows also from Lemma 1 after one notices that 
3n + 1 = (322n _ 1)/(3n - 1). 

LEMMA 4. Let ?U(N) denote the total number of prime factors of N so that 

Q(p1'1p232 ... pt3t) &1 + 32 + ...+ ?t 

Then 

(9) Q(3n-1) ? 2n/3 forn > 8 

and 

(10) Q(3 n + 1) < 2n/3 forn > 3. 

Proof. To establish (9) suppose that it fails for some n > 8 and let 

3 - 1 = 2aY5a27a3 
H piai 

i>3 

so that 

Q(3n _ 1) = (ai + a2 + aX3) + E ai = 81 + 82 > 2n/3. 
i>3 

From this and Lemma 2 we deduce that 

S2 > (2n/3) - s= (2n/3) - (al + a2 + a3) 

> (2n/3) - 2.5780 log n - 2.2180. 

On the other hand a, > 1, since 3f _ 1 is even, a2 > 0 and a3 > 0. 

Therefore 

3n _ 1 2 211 pia > 2. 1182. 
i>3 

Hence 

(log 11)s2 + log 2 ? n log 3 

or 

S2 -< .4582n - .2890. 

Combining this inequality with (11) we finally get 

(12) n < 12.365 log n + 9.252 

which implies n ? 59. 

To complete the proof it suffices to show that (9) holds for 8 < n < 60. For 

this we have only to consult tables of factorization of 3f _ 1 for n < 60, [8]. 
The values of n given in Table IV are those for which Q (3 - 1) exceeds all 

values of Q(3h - 1) for 8 < h < n < 60. We give also the values of Q(371 + 1) and 
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TABLE TV 

n Q(3n 1) n Q(3n + 1) 

9 3 4 2 
10 6 5 3 
12 8 9 5 
16 10 15 6 
24 11 21 7 
32 12 39 8 
40 13 45 10 
48 1 17 

the corresponding information for 3' + 1 to be used in connection with (10). 
Since (9) holds for these values of n, it holds for all n > 8. 

To prove (10) we proceed in the same manner, this time obtaining from Lemma 3 

n < 5.446 log n + 16.48, 

which implies n < 34. An inspection of the above values of Q(3n + 1) shows that 
(10) holds for all n > 3. This completes the proof of Lemma 4. 

Proof of Theorevit. Suppose that the theorem is false. Since 

A(4) = 1224 > 625 =5, 

A(5) = 7888 > 3125 =55, 

A(6) = 202124 > 15625 =5' 

A(7) = 1649375 > 78125 57 

the theorem would have to fail for some k > 8. This means that every p 3 p* has 
two consecutive kth power residues, the first of which is _ A(k), and hence < 5k. 
One of these two residues is odd. Let it be denoted by co and its companion by 
w ?i 1. Let us suppose that p has been chosen so that 3 is a kth power residue and 
that R(q) = 1 for all other primes q < 5k. Such a p exists for k odd or twice prime 
of the form 4m + 3 by [3]. 

Since 

co < A(k) < 5k 

and co is an odd kth power residue, it follows that w must be some power of 3, say 
3n, so that 

(13) 3n < 5k 

Now the kth power residue 

Co ? 1 = 3 ? 1 

must be such that Q(3n ? 1) is a multiple of k. Since R(q) = 1, (q F 3), 

(14) Q(3n ? 1) ?> k 
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On the other hand by (13), since 27 > 25, 

k > n log 3/log 5 > 2n/3 

so that 

Q(3n =t 1) > 2n/3. 

By Lemma 4 this means that n ? 8. But no number 3f i 1 with n ? 8 has 
more than 7 prime factors and so (14) becomes 7 ? k. This contradicts k > 8. 

7. The Case k = 9. Using the same methods of proof the inequality of the 
theorem can be strengthened to 7. 5k-I if one is willing to examine factors of 5n -+ 1. 

The same general method can also be used for special values of k. For instance for 
k = 9, we have examined for possible consecutiveness the 18 odd ninth power resi- 
dues between 59 and 107 of primes corresponding to the case vector (5). 

There is only one such pair 

7109375 = 5'.7-13, 7109376 = 28.3.9257. 

With k(9257) = 0 the multiples of 9257 in the range 59 to 107 reveal no further 
pair. Hence A(9) > 107. 

8. The Case k = 8. The first value of k not covered by the theorem is kc = 8. 
However, a lower bound for A(8) can be established using the case test routine. 
Since 2 is a quadratic residue of p = 8m + 1, we cannot choose R (2) = 1, and 
the case vector (5) must be modified accordingly. Starting with R(2) = 2, R(3) = 0 
and R(q) = 1 for q > 3, the machine was able to postpone the appearance of two 
consecutive eighth power residues till the pair 

(1200744 = 23 34 17 109, 1200745 = 5 . 72. 132. 29 

corresponiding to the case vector shown in Table V. Hence A(8) > 1200744. 

TABLE V 

K(3) = 0. 

R(q) 2 for q = 2, 13, 31, 101, 113, 139, 149, 271, 317, 
K = 8 353, 379, 401, 443, 479, 641, 647, 673, 709, 1061, 1301, 1409, 

1451, 2383, 2411, 2687, 3257, 4241, 4547, 5407, 5791, 5867, 
6343, 6761, 8543, 9343, 10271, 14869, 24049. 

R(q) = 1 for all other primes < 1200744. 

9. The Case k = 10. This is the next case not covered by the theorem. Since 
p = 1Gm + 1, we must have R(5) even. Starting with R(5) = 0, R(q) = 1 for 
all q # 5, the machine arrived at the following vector: 

R(5) = R(163) = 0, 

R(q) = 2 for q = 47, 101, 313, 433, 593, 719, 1049, 7039, 

R(q) - 1 for all other primes q < 22458303. 
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This vector postpones the appearance of the first pair of consecutive tenth 
power residues till the pair (22458303 = 39*7*163, 22458034 = 26 11.19.23-73). 

Hence A(10) > 22458303. 
Our thanks are due to the computing centers of the University of California, 

Berkeley, and Stanford University* for the free use of machine time for this un- 
sponsored research. 
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