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ON QUADRUPLES OF CONSECUTIVE kth 
POWER RESIDUES 

R. L. GRAHAM 

In a recent paper of D. H. and Emma Lehmer [2], the function 
A(k, m) was defined (for arbitrary integers k and m) as follows: 

Let p be a sufficiently large prime and let r = r(k, m, p) be the least 
positive integer such that 

r,r+ 1,r+2,* * ,r+m-1 

are all congruent modulo p to kth powers of positive integers. Define 

A(k, m) = lim sup r(k, m, p). 
VP -+ co 

In [2] it was shown that A(k, 4)= oo for k? 1048909 and it was 
conjectured that A(k, 4) = c- for all k. In this paper we establish 
this conjecture with the following 

THEOREM. A(k, 4)-= co. 

PROOF. It suffices to prove the theorem for values of k which are 
prime. The proof makes use of the following proposition which is a 
special case of a result of Kummer [1 ] (see also [3]). 

PROPOSITION. Let k be a prime and let y', * * *, ye be an arbitrary 
sequence of kth roots of unity. Then there exist infinitely many primes p 
with corresponding kth power character X modulo p such that 

x (Pi) = -Y , 1< i _ n, 

where pi denotes the ith prime. 

Thus, for any n and prime k, there exists a prime p with corre- 
sponding kth power character X modulo p such that 

X(2) 5 1, 

x(pi) = 1, 2 < i? n. 

Now consider any four consecutive positive integers all less than pn. 

It is clear that exactly one of these integers must equal 2(2d+1) for 
some integer d. But we have 

%(2(2d + 1)) = X(2)X(2d + 1) = x(2) * 1 = 1 

since 2d +1 is the product of odd primes less than pn. Therefore 
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2(2d+1) is not a kth power residue modulo p. Since n was arbitrary 
then A(k, 4) = oo. This proves the theorem. 
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BELL TELEPHONE LABORATORIES 

ON DECOMPOSITIONS OF PARTIALLY ORDERED SETS 

E. S. WOLK 

1. Introduction. Let P be a set which is partially ordered by a rela- 
tion <. A decomposition D of P is a family of mutually disjoint non- 
empty chains in P such that P= U C: CE D }. Two elements x, y 
of P are incomparable if and only if x $ y and y $ x. A totally unordered 
set in P is a subset in which every two different elements are incom- 
parable. We denote the cardinal number of a set S by I Si. 

Dilworth [1] has proved the following well-known decomposition 
theorem. 

THEOREM 1 (DILWORTH). Let P be a partially ordered set, and sup- 
pose that n is a positive integer such that 

n = max { I A |: A is a totally unordered subset of P}. 

Then there is a decomposition D of P with I D =n. 

It is natural to ask whether, in this theorem, the positive integer n 
may be replaced by an infinite cardinal number. However, the theo- 
rem is no longer valid in this case, as is shown by an example in [3] 
which is due in essence of Sierpinski [2]. In this example P is a set 
of pairs which represents a 1-1 mapping from wl, the first uncountable 
ordinal, into the real numbers. (x1, yl) _ (X2, y2) is defined by: x1?X2 

(as ordinals) and yi <_y2 (as real numbers). The purpose of this note 
is to show that a similar idea leads, given any infinite cardinal k, to 
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