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In this note we show that the asymmetric Prover–Delayer game developed in Beyersdorff
et al. (2010) [2] for Parameterized Resolution is also applicable to other tree-like proof
systems. In particular, we use this asymmetric Prover–Delayer game to show a lower bound
of the form 2Ω(n logn) for the pigeonhole principle in tree-like Resolution. This gives a new
and simpler proof of the same lower bound established by Iwama and Miyazaki (1999) [7]
and Dantchev and Riis (2001) [5].
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1. Introduction

Proving lower bounds by games is a very fruitful tech-
nique in proof complexity [9,11,10,1]. In particular, the
Prover–Delayer game of Pudlák and Impagliazzo [10] is
one of the canonical tools to study lower bounds in tree-
like Resolution [10,3] and tree-like Res(k) [6]. The Prover–
Delayer game of Pudlák and Impagliazzo arises from the
well-known fact [8] that a tree-like Resolution proof for a
formula F can be viewed as a decision tree which solves
the search problem of finding a clause of F falsified by a
given assignment. In the game, Prover queries a variable
and Delayer either gives it a value or leaves the decision
to Prover and receives one point. The number of Delayer’s
points at the end of the game is then proportional to the
height of the proof tree. It is easy to argue that showing
lower bounds by this game only works if (the graph of)
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every tree-like Resolution refutation contains a balanced
sub-tree as a minor, and the height of that sub-tree then
gives the size lower bound.

In [2] we developed a new asymmetric Prover–Delayer
game which extends the game of Pudlák and Impagliazzo
to make it applicable to obtain lower bounds to tree-like
proofs when the proof trees are very unbalanced. In [2] we
used the new asymmetric game to obtain lower bounds
in tree-like Parameterized Resolution, a proof system in
the context of parameterized proof complexity recently in-
troduced by Dantchev, Martin, and Szeider [4]. The lower
bounds we obtain in [2] for tree-like Parameterized Res-
olution are of the form Ω(nk) (n is the formula size and
k the parameter), but the tree-like Parameterized Resolu-
tion refutations of the formulas in question only contain
balanced sub-trees of height k.

The aim of this note is to show that the asymmet-
ric Prover–Delayer game is also applicable to other (non-
parameterized) tree-like proof systems. One of the best
studied principles is the pigeonhole principle. Iwama and
Miyazaki [7] and independently Dantchev and Riis [5]
show that the pigeonhole principle requires tree-like Reso-
lution refutations of size roughly n! while its tree-like Res-
olution proofs only contain balanced sub-trees of height n.
Therefore the game of Pudlák and Impagliazzo only yields
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a 2Ω(n) lower bound which is weaker than the optimal
bound 2Ω(n logn) established by Iwama and Miyazaki. Here
we provide a new and easier proof of this lower bound by
our asymmetric Prover–Delayer game.

2. Preliminaries

A literal is a positive or negated propositional variable
and a clause is a set of literals. A clause is interpreted as
the disjunctions of its literals and a set of clauses as the
conjunction of the clauses. Hence clause sets correspond
to formulas in CNF. The Resolution system is a refutation
system for the set of all unsatisfiable CNF. Resolution uses
as its only rule the Resolution rule

{x} ∪ C {¬x} ∪ D

C ∪ D

for clauses C, D and a variable x. The aim in Resolution is
to demonstrate unsatisfiability of a clause set by deriving
the empty clause. If in a derivation every derived clause
is used at most once as a prerequisite of the Resolution
rule, then the derivation is called tree-like, otherwise it is
dag-like. The size of a Resolution proof is the number of its
clauses. Undoubtedly, Resolution is the most studied and
best-understood propositional proof system (cf. [12]).

It is well known (cf. [8]) that a tree-like refutation of
F can equivalently be described as a boolean decision tree.
A boolean decision tree for F is a binary tree where in-
ner nodes are labeled with variables from F and leafs are
labeled with clauses from F . Each path in the tree cor-
responds to a partial assignment where a variable x gets
value 0 or 1 according to whether the path branches left or
right at the node labeled with x. The condition on the de-
cision tree is that each path α must lead to a clause which
is falsified by the assignment corresponding to α. There-
fore, a boolean decision tree solves the search problem for
F which, given an assignment α, asks for a clause from F
falsified by α. It is easy to verify that each tree-like Res-
olution refutation of F yields a boolean decision tree for
F and vice versa, where the size of the Resolution proof
equals the number of nodes in the decision tree. In the
sequel, we will therefore concentrate on boolean decision
trees to prove our lower bound to tree-like Resolution.

3. Tree-like lower bounds via asymmetric Prover–Delayer
games

We review the asymmetric Prover–Delayer game from
[2]. Let F be a set of clauses in n variables x1, . . . , xn . In
the asymmetric game, Prover and Delayer build a (par-
tial) assignment to x1, . . . , xn . The game is over as soon as
the partial assignment falsifies a clause from F . The game
proceeds in rounds. In each round, Prover suggests a vari-
able xi , and Delayer either chooses a value 0 or 1 for xi
or leaves the choice to the Prover. In this last case, if the
Prover sets the value, then the Delayer gets some points.
The number of points Delayer earns depends on the vari-
able xi , the assignment α constructed so far in the game,
and two functions c0(xi,α) and c1(xi,α). More precisely,
the number of points that Delayer will get is
0 if Delayer chooses the value,

log c0(xi,α) if Prover sets xi to 0, and

log c1(xi,α) if Prover sets xi to 1.

Moreover, the functions c0(x,α) and c1(x,α) are chosen in
such a way that for each variable x and assignment α

1

c0(x,α)
+ 1

c1(x,α)
= 1 (1)

holds. Let us call this game the (c0, c1)-game on F .
The connection of this game to size of proofs in tree-

like Resolution is given by Theorem 1. The theorem is es-
sentially contained in [2], but for completeness we include
the full proof.

Theorem 1. (See [2].) Let F be unsatisfiable formula in CNF and
let c0 and c1 be two functions satisfying (1) for all partial as-
signments α to the variables of F . If F has a tree-like Resolution
refutation of size at most S, then the Delayer gets at most log S
points in each (c0, c1)-game played on F .

Proof. Let F be an unsatisfiable CNF in variables x1, . . . , xn
and let Π be a tree-like Resolution refutation of F . Assume
now that Prover and Delayer play a game on F where they
successively construct an assignment α. Let αi be the par-
tial assignment constructed after i rounds of the game, i.e.,
αi assigns i variables a value 0 or 1. By pi we denote the
number of points that Delayer has earned after i rounds,
and by Παi we denote the sub-tree of the decision tree of
Π which has as its root the node reached in Π along the
path specified by αi .

We use induction on the number of rounds in the game
to prove the following claim:

|Παi | �
|Π |
2pi

for any round i.

To see that the theorem follows from this claim, let α be
an assignment constructed during the game yielding pα

points to the Delayer. As a contradiction has been reached
in the game, the size of Πα is 1, and therefore by the in-
ductive claim

1 � |Π |
2pα

,

yielding pα � log |Π | as desired.
In the beginning of the game, Πα0 is the full tree and

the Delayer has 0 points. Therefore the claim holds.
For the inductive step, assume that the claim holds af-

ter i rounds and Prover asks for a value of the variable
x in round i + 1. If the Delayer chooses the value, then
pi+1 = pi and hence

|Παi+1 | � |Παi | �
|Π |
2pi

= |Π |
2pi+1

.

If the Delayer defers the choice to the Prover, then the
Prover uses the following strategy to set the value of x.
Let αx=0

i be the assignment extending αi by setting x to 0,
and let αx=1

i be the assignment extending αi by setting x

to 1. Now, Prover sets x = 0 if |Παx=0
i

| � 1
c0(x,αi)

|Παi |, other-

wise he sets x = 1. Because 1 + 1 = 1, we know
c0(x,αi) c1(x,αi)
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that if Prover sets x = 1, then |Παx=1
i

| � 1
c1(x,αi)

|Παi |. Thus,

if Prover’s choice is x = j with j ∈ {0,1}, then we get

|Παi+1 | = |Π
α

x= j
i

| � |Παi |
c j(x,αi)

� |Π |
c j(x,αi)2pi

= |Π |
2pi+log c j(x,αi)

= |Π |
2pi+1

.

This completes the proof of the induction. �
As remarked in [2] we get the game of Pudlák and

Impagliazzo [10] by setting c0(x,α) = c1(x,α) = 2 for all
variables x and partial assignments α.

4. Tree-like resolution lower bounds for the pigeonhole
principle

The weak pigeonhole principle PHPm
n with m > n uses

variables xi, j with i ∈ [m] and j ∈ [n], indicating that pi-
geon i goes into hole j. PHPm

n consists of the clauses

∨
j∈[n]

xi, j for all pigeons i ∈ [m]

and ¬xi1, j ∨¬xi2, j for all choices of distinct pigeons i1, i2 ∈
[m] and holes j ∈ [n]. We prove that PHPm

n is hard for tree-
like Resolution. Showing the lower bound by the asymmet-
ric game from the last section, requires a suitable choice
of the functions c0 and c1 and then the definition of the
Delayer-strategy for the (c0, c1)-game.

Theorem 2. Any tree-like Resolution refutation of PHPm
n has size

2Ω(n logn) .

Proof. Let α be a partial assignment to the variables {xi, j |
i ∈ [m], j ∈ [n]}. Let

pi(α) = ∣∣{ j ∈ [n] | α(xi, j) = 0 and

α(xi′, j) �= 1 for all i′ ∈ [m]}∣∣.
Intuitively, pi(α) corresponds to the number of holes
which are still free but are explicitly excluded for pigeon i
by α (we do not count the holes which are excluded be-
cause some other pigeon is sitting there). We define

c0(xi, j,α) =
n
2 + 1 − pi(α)

n
2 − pi(α)

and

c1(xi, j,α) = n

2
+ 1 − pi(α).

For simplicity we assume that n is divisible by 2. During
the game it will never be the case that Prover gets the
choice when pi(α) � n

2 . Therefore the functions c0 and c1
are always greater than zero when the Delayer gets points,
thus the score function is always well defined. Furthermore
notice that this definition satisfies (1).

We now describe Delayer’s strategy in a (c0, c1)-game
played on PHPm

n . If Prover asks for a value of xi, j , then De-
layer decides as follows:
set α(xi, j) = 0 if there exists i′ ∈ [m] \ {i} such that

α(xi′, j) = 1 or

if there exists j′ ∈ [n] \ { j} such that

α(xi, j′) = 1;

set α(xi, j) = 1 if pi(α) � n
2 and there is no i′ ∈ [m]

with α(xi′, j) = 1, and

let Prover decide otherwise.

Intuitively, Delayer leaves the choice to Prover as long as
pigeon i does not already sit in a hole, hole j is still free,
and there are at most n

2 excluded free holes for pigeon i.
Let us pause to give an intuitive explanation of why

we choose the functions c0 and c1 and thus the points
for Delayer as above. As a first observation, Delayer always
earns more when Prover is setting a variable xi, j to 1 in-
stead of setting it to 0. This is intuitively correct as the
amount of freedom for Delayer to continue the game is by
far more diminished by sending pigeon i to some hole j
than by just excluding that hole j for pigeon i. In fact, our
choice of scores can be completely explained by the fol-
lowing information-theoretic interpretation: When Prover
sends a pigeon to a hole, Delayer should always get about
log n points on that pigeon. For our Delayer strategy, send-
ing pigeon i to a hole either means that Prover excluded n

2
holes for pigeon i or was setting pigeon i directly to a hole.
When we play the game, in each round Delayer should
get some number of points proportional to the progress
Prover made towards fixing pigeon i to a hole. For in-
stance, if Prover fixes i to a hole in the very beginning
by answering 1 to xi, j , Delayer should get the log n points
immediately. On the other extreme, if Prover has already
excluded n

2 − 1 holes for pigeon i, then it does not mat-
ter whether Prover sets xi, j to 0 or 1 because after both
answers pigeon i will be forced to a hole. Consequently,
in the latter case, Delayer gets just 1 point regardless of
whether Prover answers 0 or 1. This is exactly what our
score function provides.

If Delayer uses the above strategy, then the small
clauses ¬xi1, j ∨ ¬xi2, j from PHPm

n will not be violated
in the game. Therefore, a contradiction will always be
reached on one of the big clauses

∨
j∈[n] xi, j . Let us assume

now that the game ends by violating
∨

j∈[n] xi, j , i.e. for pi-
geon i all variables xi, j with j ∈ [n] have been set to 0. As
soon as the number pi(α) of excluded free holes for pi-
geon i reaches the threshold n

2 , Delayer will not leave the
choice to Prover. Instead, Delayer will try to place pigeon
i into some hole. If Delayer still answers 0 to xi, j even
after pi(α) > n

2 , it must be the case that some other pi-
geon already sits in hole j, i.e. for some i′ �= i, α(xi′, j) = 1.
Therefore, at the end of the game at least n

2 variables have
been set to 1. W.l.o.g. we assume that these are the vari-
ables xi, ji for i = 1, . . . , n

2 .
Let us check how many points Delayer earns in this

game. We calculate the points separately for each pigeon
i = 1, . . . , n

2 and distinguish two cases: whether xi, ji was
set to 1 by Delayer or Prover. Let us first assume that De-
layer sets the variable xi, ji to 1. Then pigeon i was not
assigned to a hole yet and, moreover, there must be n

2 un-
occupied holes which are already excluded for pigeon i by
α, i.e., there is some J ⊆ [n] with | J | = n , α(xi′, j′ ) �= 1
2
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for i′ ∈ [m], j′ ∈ J , and α(xi, j′) = 0 for all j′ ∈ J . All of
these 0’s have been assigned by Prover, as Delayer has
only assigned a 0 to xi, j′ when some other pigeon was al-
ready sitting in hole j′ , and this is not the case for the
holes from J (at the moment when Delayer assigns the 1
to xi, ji ). Thus, before Delayer sets α(xi, ji ) = 1, she has al-
ready earned points for all n

2 variables xi, j′ , j′ ∈ J , yielding

n
2 −1∑
p=0

log
n
2 + 1 − p

n
2 − p

= log

n
2 −1∏
p=0

n
2 + 1 − p

n
2 − p

= log

(
n

2
+ 1

)

points for the Delayer. Let us note that because Delayer
never allows a pigeon to go into more than one hole, she
will really get the number of points calculated above for
every of the variables which she set to 1.

If, conversely, Prover sets variable xi, ji to 1, then De-
layer gets log( n

2 + 1 − pi(α)) points for this, but she also
received points for the pi(α) variables set to 0 before by
Prover. Thus, in this case Delayer earns on pigeon i

log

(
n

2
+ 1 − pi(α)

)
+

pi(α)−1∑
p=0

log
n
2 + 1 − p

n
2 − p

= log

(
n

2
+ 1 − pi(α)

)
+ log

n
2 + 1

n
2 − pi(α) + 1

= log

(
n

2
+ 1

)

points. In total, Delayer gets at least

n

2
log

(
n

2
+ 1

)

points in the game. Applying Theorem 1, we obtain
2

n
2 log( n

2 +1) as a lower bound to the size of each tree-like
Resolution refutation of PHPm

n . �
By inspection of the above Delayer strategy it becomes

clear that the lower bound from Theorem 2 also holds for
the functional pigeonhole principle where in addition to the
clauses from PHPm

n we also include ¬xi, j1 ∨ ¬xi, j2 for all
pigeons i ∈ [m] and distinct holes j1, j2 ∈ [n].

We remark that the choice of the score functions c0 and
c1 in the proof of Theorem 2 is by no means unique. It is
even possible to obtain the same asymptotic lower bound
2Ω(n logn) by choosing simpler score functions c0, c1 which
do not depend on the game played so far, i.e. c0 and c1
just depend on n, but are independent of the assignment
α and the queried variable x. Namely, setting

c1 = n

logn
and

c0 = c1

c1 − 1
= 1 + 1

c1 − 1
= Ω

(
e

1
c1−1

) = 2Ω(
log n

n )
we obtain score functions which satisfy (1) and lead to
the following modified analysis in the proof of Theorem 2:
if the Prover sets xi, j to 1, then Delayer earns at least
log c1 = Ω(log n) points. Otherwise, she still earns at least
n
2 log c0 = Ω(log n) points on pigeon i. Thus, in total De-
layer earns n

2 · Ω(log n) points during the game, yielding
the lower bound.

Our first proof of Theorem 2 has the advantage that
it yields more precise and better bounds, namely exactly
2

n
2 log( n

2 +1) which is the same lower bound obtained by
Dantchev and Riis [5]. There might also be scenarios where
the adaptive definition of points according to our above
information-theoretic interpretation indeed yields better
asymptotic bounds.
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