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Abstract. Propositional proof complexity is the study of the sizes of proposi-

tional proofs, and more generally, the resources necessary to certify propositional

tautologies. Questions about proof sizes have connections with computational com-

plexity, theories of arithmetic, and satisfiability algorithms. This is article includes

a broad survey of the field, and a technical exposition of some recently developed

techniques for proving lower bounds on proof sizes.
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Part 1. A tour of propositional proof complexity

§1. Is there a way to prove every tautology with a short proof?
One way to certify that a propositional formula is a tautology is to present
a proof of the formula in a propositional calculus, such as the system F
below:

Definition 1.1. The formulas of F are the well-formed formulas over
the connectives ∧, ∨, → and ¬. The inference rule of F is modus ponens
(from A and A→ B infer B), and its axioms are all substitution instances
of:

1. A→ (B → A) 2. A ∧B → B
3. (A→ B) → (A→ B → C) → (A→ C) 4. A ∧B → A
5. A→ A ∨B 6. A→ B → A ∧B
7. (A→ B) → (A→ ¬B) → ¬A 8. B → A ∨B
9. (A→ C) → (B → C) → (A ∨B → C) 10. ¬¬A→ A

Let τ be a propositional formula. An F-proof of τ is a sequence of
formulas F1, . . . , Fm so that Fm = τ , and each Fi is either an axiom,
or follows from the application of modus ponens to two formulas Fj and
Fk, with j, k < i.

The completeness theorem for F guarantees that every tautology has
an F-proof. Moreover, most proofs of the completeness theorem give
quantitative bounds on proof sizes: Every tautology τ on n variables has
an F-proof in which there are at most 2O(n) formulas, each of which has
size polynomial in the size of τ . Of course, for many tautologies, much
smaller proofs are possible. Does every tautology have an F-proof signif-
icantly smaller than the exponential length derivation? More generally,
does there exist a propositional proof system in which every tautology
has a small proof?

This question requires a clarification of what is meant by “propositional
proof sytem”. For example, any algorithm for deciding satisfiability of a
Boolean formula can be viewed as a proof system, with an execution trace
for a run that declares ψ to be unsatisfiable being viewed as a proof that
¬ψ is a tautology. Another possibility would be to formalize the defini-
tions of propositional formulas and tautologies in ZFC and present a proof
in formal ZFC that the formula in question is a tautology. This might
seem extreme but by using high-level mathematics, some proofs might
be shorter than possible with a more commonplace system such as F .
These methods and the proof system F share three properties that seem
necessary for any method of certifying tautologies: Every tautology has a
proof, only tautologies have proofs, and valid proofs are computationally
easy to verify.
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Definition 1.2. (modified from [69]) Let F denote the set of propo-
sitional formulas over the connectives ∧, ∨, → and ¬, with a countably
infinite supply of propositional variables. An abstract propositional proof
system is a polynomial time function V : F × {0, 1}∗ → {0, 1} such that
for every tautology τ there is a proof P ∈ {0, 1}∗ with V (τ, P ) = 1 and
for every non-tautology τ , for every P , V (τ, P ) = 0. The size of the proof
is |P |.

Defintion 1.2 equates propositional proof systems with non-deterministic
algorithms for the language of tautologies. In particular, if a family of
tautologies possess polynomial-size proofs in the sense of Definition 1.2,
then that family of tautologies is in NP 1.

Definition 1.3. A propositional proof systems is said to be polynomi-
ally bounded if there exists a constant c so that for every tautology τ ,
there exists a proof P with |P | ≤ c|τ |c and V (τ, P ) = 1.

Theorem 1.1. [69] There exists a polynomially bounded propositional
proof system if and only NP = coNP .

Proof. Let TAUT denote the language of propositional tautologies
over the connectives ∧, ∨, ¬, and →, and let TAUT c denote the lan-
guage of non-tautologies. If NP = coNP then there is a polynomial-time
nondeterministic Turing machine that decides TAUT , call this machine
A. The procedure that takes a tautology τ and a string S and checks
that S is an an accepting computational history of A on input τ is a
polynomially bounded proof system for TAUT . Now suppose that there
is a polynomially-bounded propositional proof system V . Choose a con-
stant c so that every tautology τ has a V -proof of length at most c|τ |c.
The nondeterministic algorithm that on input τ simply guesses a string
S of length ≤ c|τ |c and verifies that S is a V -proof of τ correctly decides
TAUT . Because TAUT is coNP -complete under polynomial-time many-
one reductions, we have that coNP ⊆ NP . Furthermore, this places
TAUT c ∈ coNP , and since TAUT c isNP -complete we haveNP ⊆ coNP
and thus NP = coNP . a

Becuse P = NP ⇒ NP = coNP , showing that there is no polynomially-
bounded propositional proof system would also show that P 6= NP . So
resolving the existence of a polynomially-bounded propositional proof sys-
tem “in the expected direction” is probably a tough problem.

1It is natural to ask what happens if the proof verification procedure is a randomized
or quantum algorithm. With a randomized classical verifier, families of tautologies with
polynomial-size proofs fall into the complexity class of “Merlin-Arthur games” (MA),
which, modulo plausible conjectures in computational complexity, is the same class as
NP [97, 84]. For a quantum verifier, families of tautologies with polynomial-size proofs
are in the class QCMA, and it is not known how this class relates to NP [4].
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Showing that F is not polynomially bounded seems to be an easier
problem than showing NP 6= coNP - it is a particular proof system with
a simple syntactic structure. However, whether or not F is polynomially
bounded has resisted decades of effort, and this problem can be viewed as
the fundamental open problem in propositional proof complexity- “Are
the Frege systems polynomially bounded?” Frege systems are the axiom-
and-inference-rule based derivation systems exemplified by the system F .

Definition 1.4. [69] A Frege system is an axiomatic proof system that
is implicationally complete. An axiomatic proof system has two parts:

1. A finite set of propositional tautologies, A1, . . . Ak, called the axioms.
2. A finite set of tuples of formulas (A0, . . . Al) such that for each tuple

∧l
i=1Ai → A0 is a tautology. These tuples are called inference rules

and are not necessarily of the same arity.

A derivation of a propositional formula τ from hypotheses H is a sequence
of formulas F1, . . . Fm so that Fm = τ and each Fi is either a member of
H, a substitution instance of an axiom, or, there is an inference rule of
(A0, A1, . . . Al) and a substitution σ so that Fi = A0[σ], for each j =
1, . . . l, the formula Aj [σ] is among the formulas F1, . . . Fi−1. A proof of
τ is a derivation of τ from the empty set of hypotheses.

A propositional proof system G is said to be implicationally complete
if for all formulas F0, . . . Fk, whenever F1, . . . Fk |= F0, there exists a
G-derivation of F0 from the hypotheses F1, . . . Fk.

The particular choice of axioms and inference rules does not affect proof
sizes too much, as derivations in one Frege system can be efficiently trans-
lated into derivations in any other Frege system. Implicational complete-
ness is used in the proof of this fact.

Theorem 1.2. [69] There exists a polynomially-bounded Frege system
if and only if all Frege systems are polynomially bounded.

Establishing superpolynomial proof size lower bounds for the Frege sys-
tems seems beyond current techniques, so people have focused their atten-
tion on proving size lower bounds for Frege systems that use only formulas
of some limited syntactic form. These results can be interpreted as par-
tial results towards the larger goals of proving that the Frege systems are
not polynomially-bounded and proving that NP 6= coNP . Furthermore,
these special cases are interesting on their own terms: Proof size lower
bounds for restricted Frege systems can establish run time lower bounds
for satisfiability algorithms and independence results for first-order theo-
ries of arithmetic.

§2. Satisfiability algorithms and theories of arithmetic.
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2.1. The efficiency of satisfiability algorithms. Many satisfiabil-
ity algorithms heuristically construct proofs in a restricted fragment of a
Frege system. By identifying tautologies that require large proofs in the
proof system, we identify limitations for the satisfiability algorithms that
apply no matter which heuristics are used. Knowledge of these limita-
tions helps explain why some algorithms are faster than others on certain
instances, and helps guide the development of new algorithms.

The best known connection between a proof system and satisfiability
algorithms is that between resolution and satisfiability algorithms such as
the Davis-Logemann-Loveland procedure, the Davis-Putnam procedure,
and contemporary clause learning algorithms. This brings us a minor
technical issue: Because satisfiability algorithms distinguish between sat-
isfiable and unsatisfiable formulas (as opposed to tautological and non-
tautological formulas), it is cleaner to compare satisfiability algorithms
with refutation systems. A refutation of φ in a Frege system is a deriva-
tion of a contradiction from φ. Because the axioms are tautologies and
the inference rules are sound, a refutation of φ certifies that φ is unsatis-
fiable. Every refutation system can be viewed as a proof system because
φ is a tautology if and only if ¬φ is unsatisfiable

Definition 2.1. Resolution is a propositional refutation system that
manipulates clauses, and has two inference rules: The resolution rule,
“From A∨x and B∨¬x, infer A∨B”, and the subsumption rule, “From
A, infer A∨x”. A resolution refutation of a CNF

∧m
i=1 Ci is a sequence of

clauses D1, . . . Ds so that Ds = ∅, and each Di either is one of the clauses
C1, . . . Cm, or follows from the preceding clauses Dj , j < i by application
of one of the inference rules.

A basic satisfiability algorithm is the Davis-Logemann-Loveland (DLL)
procedure [112]. Below we present pseudocode for a simple DLL-based
satisfiability algorithm2. The input F is a CNF represented as a set of
clauses and the input π is a partial assignment to the variables, repre-
sented as a set of literals. The procedure returns 0 if F �π is unsatisfiable
and 1 if F �π is satisfiable. To decide if F is satisfiable, run DLL(F, ∅).
A sample run of the DLL algorithm is presented in Figure 1.

2The original version of the procedure included a “Pure Literal Rule”: If there exists
a literal l that occurs only positively in F then we may set l to 1. Contemporary
satisfiability engines usually omit this rule. The translation into resolution is easily
seen to hold even when the pure literal rule is used.



6 NATHAN SEGERLIND

Branch
on a

Branch
on x

UP:
¬¬¬¬x∨∨∨∨ ¬¬¬¬y

UP:
a∨∨∨∨ y

UP:
b∨∨∨∨ x

UP:
b∨∨∨∨ x

UP:
¬¬¬¬x∨∨∨∨ ¬¬¬¬y

¬¬¬¬b∨∨∨∨ x

¬¬¬¬b∨∨∨∨ x ¬¬¬¬a∨∨∨∨ x∨∨∨∨ y

a=0 a=1

x=1x=0

b=1 y=0

b=1

x=0

y=1

Figure 1. A DLL refutation of the set of clauses ¬a ∨
¬x∨¬y, a∨ y, ¬b∨x, b∨x, ¬x∨¬y. “UP” written above
clause denotes a unit propagation caused by that clause.
Beneath each branch is a clause which is falsified by the
partial assignment of that branch.

DLL(F, π):

1. If for all C ∈ F , C �π= 1, return 1
2. If there exist a clause C ∈ F so that C �π= 0, return 0
3. (Unit Propagation) If there exists a clause C ∈ F so that C �π= l,

then return DLL(F, π ∪ {l})
4. (Decision)

(a) Heuristically choose a variable x that is unset by π
(b) Heuristically choose a value v ∈ {0, 1}
(c) Return DLL(F, π ∪ {xv}) ∨ DLL(F, π ∪ {x1−v})

When an implementation of the DLL algorithm finds a CNF F to be
unsatisfiable, its execution tree corresponds to a resolution refutation of
F . The idea is to label each leaf by a clause of F falsified by the branch,
and then proceed upwards resolving on each variable that is branched
upon. Unit propagation on a variable is treated as a decision node in
which one child is immediately falsified. The conversion of the DLL tree
in Figure 1 into a resolution refutation is demonstrated in Figure 2. This
conversion holds regardless of the heuristic choices used for branching at
steps 4a and 4b.

Lemma 2.1. If some implementation of the DLL algorithm deems a
CNF F to be unsatisfiable within s steps, then there is a resolution refu-
tation of F of size at most s.

The Davis-Putnam procedure is another satisfiability algorithm based
upon resolution [71]. Below we present pseudocode for a simple DP-based
satisfiability algorithm. Again, the input F is a CNF represented as a set
of clauses. The procedure returns 0 if F is unsatisfiable and 1 if F is
satisfiable.
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¬¬¬¬b∨∨∨∨ x b∨∨∨∨ x

x ¬¬¬¬x∨∨∨∨ ¬¬¬¬y

¬¬¬¬y a∨∨∨∨ y

a

¬¬¬¬b∨∨∨∨ x b∨∨∨∨ x

x ¬¬¬¬x∨∨∨∨ a

¬¬¬¬x ∨∨∨∨ y ∨∨∨∨ ¬¬¬¬a ¬¬¬¬x ∨∨∨∨ ¬¬¬¬ y

a

∅∅∅∅

Figure 2. The resolution refutation of the set of clauses
¬a∨¬x∨¬y, a∨y, ¬b∨x, b∨x, ¬x∨¬y that corresponds
to the DLL run of Figure 1

DP (F ):

1. Order the variables as x1, . . . xn.
2. For i = 1, . . . n:

(a) For each clause C ∨ xi ∈ F , and each clause D ∨ ¬xi ∈ F , add
C ∨D to F

(b) Remove all clauses containing xi from F
3. If the empty clause belongs to F then return 0, otherwise return 1

The execution of the Davis-Putnam algorithm on an unsatisfiable CNF
corresponds to a resolution refutation. This is demonstrated in Figure 3.

Lemma 2.2. If the Davis-Putnam algorithm deems a CNF F to be un-
satisfiable within s steps, then there is a resolution refutation of F of size
at most s.

Notice that the conversion from the execution trace of a DLL algorithm
into a resolution refutation preserves the structure of the backtracking
tree. In the jargon of propositional proof complexity, the derivation of
Figure 2 is said to be tree-like and the derivation of Figure 3 is said to be
DAG-like. In Figure 2, the literal x is derived twice, whereas in Figure 3,
it is derived once and used twice. The ability to reuse previously de-
rived formulas, rather than repeatedly rederiving them, can make general
resolution exponentially more efficient than tree-like resolution.

Theorem 2.3. ([37] building upon [67, 159, 44, 38]) There exists a
family of unsatisfiable CNFs, {Fn}∞n=1, with |Fn| = O(n), so that tree-

like resolution refutations of Fn are all of size 2Ω(n/ log n) but Fn possesses
DAG-like resolution refutations of size O(n).

Theorem 2.3 shows that algorithms that generate DAG-like resolution
refutations can be exponentially more efficient than any algorithm that
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¬¬¬¬y

¬¬¬¬x∨∨∨∨ y

¬¬¬¬b∨∨∨∨ x b∨∨∨∨ x

x

¬¬¬¬x∨∨∨∨ a¬¬¬¬x ∨∨∨∨ y ∨∨∨∨ ¬¬¬¬a

¬¬¬¬x ∨∨∨∨ ¬¬¬¬ y

∅∅∅∅

yEliminate  y

Eliminate  x

Eliminate  b

Eliminate  a

Figure 3. The resolution refutation of the set of clauses
¬a ∨ ¬x ∨ ¬y, a ∨ y, ¬b ∨ x, b ∨ x, ¬x ∨ ¬y generated by
the Davis-Putnam procedure with the variable order a, b,
x, y.

generates tree-like resolution refutations – even those with idealized op-
timal branching heuristics. While the Davis-Putnam procedure creates
DAG-like refutations, it is often unsatisfactory because it can derive
many unnecessary clauses and has large memory requirements. How-
ever, in recent years there has been progress with other methods that
generate DAG-like resolution proofs in a more efficient manner than the
Davis-Putnam approach. Algorithms based on DLL with clause learn-
ing [157, 24, 111, 119, 83, 77] perform a DLL backtracking search aug-
mented with the ability to create new (“learned”) clauses and remove
these new clauses when unneeded. This process constructs DAG-like res-
olution refutations [109], and it is known that versions of these algorithms
can efficiently refute the CNFs of Theorem 2.3 [30].

The satisfiability algorithms that we have discussed so far - DLL back-
tracking, the Davis-Putnam procedure, and DLL with clause learning,
share some limitations. Each implements resolution, and therefore none
can quickly refute a CNF that requires large resolution refutations. Con-
sider the pigeonhole principle, the statement that n + 1 pigeons cannot
be placed into n holes without a collision. This fact can be encoded as an
unsatisfiable CNF as follows: For each i = 1, . . . n + 1, there is a clause
∨n

j=1 xi,j - “pigeon i gets some hole”, and for all 1 ≤ i < j ≤ n + 1, and
all 1 ≤ k ≤ n, ¬xi,k ∨ ¬xj,k - “pigeon i and pigeon j do not share hole
k”. (This CNF is so important that we give it a name, PHPn+1

n .) A fa-
mous result of Armin Haken shows that the pigeonhole principle requires
exponentially large resolution refutations.

Theorem 2.4. [87, 60, 29, 38] Resolution refutations of PHPn+1
n re-

quire size 2Ω(n).

Corollary 2.5. All DLL, Davis-Putnam or DLL with clause learning
algorithms run for 2Ω(n) many steps when processing PHPn+1

n .
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Many satisfiability algorithms have been proposed that can efficiently
refute the propositional pigeonhole principle (and thereby go beyond the
abilities of resolution based solvers). Techniques based on symmetry-
exploitation [76, 75, 74, 16], integer programming [73], and ordered-binary
decision diagrams [61, 62, 14, 120, 121, 125] have been suggested. Proof
search for these systems is a developing art, and none of these algorithms
has yet to consistently out-perform resolution based solvers over general
instances.

2.2. Independence Results for Weak-Theories of Arithmetic.
One notion of constructivity in arithmetic is to restrict the use of in-
duction so that the definable functions have restricted growth rates. A
well known example of such a system is Parikh’s theory I∆0, which for-
malizes strongly finitist arguments that disallow the use of exponentia-
tion [126, 55].

Definition 2.2. The bounded formulas over the language +, ·, ≤, 0,
1 are those meeting the following recursive definition:

1. All quantifier free formulas are bounded.
2. If φ(y) is a bounded formula and t is a term, then ∀y < t φ(y) and

∃y < t φ(y) are bounded formulas. (Either φ or t or both might
contain free variables different from y.)

I∆0 is a first-order theory with function symbols + and ·, binary relation
symbol <, and constants 0 and 1. As axioms, the theory includes the
universal closures of each of the following formulas:

a+ 0 = a (a+ b) + c = a+ (b+ c) a+ b = b+ a
a < b→ ∃x, a+ x = b 0 = a ∨ 0 < a 0 < 1
0 < a→ 1 ≤ a a < b→ a+ c < b+ c a · 0 = 0
a · 1 = a (a · b) · c = a · (b · c) a · b = b · a
(a < b ∧ c 6= 0) → a · c < b · c a · (b+ c) = (a · b) + (a · c)
In addition, for every bounded formula φ, there is an axiom:

φ(0) ∧ (∀xφ(x) → φ(x+ 1)) → ∀xφ(x)

The functions definable by I∆0 are rudimentary (in the language of
computational complexity, they belong to the linear-time hierarchy) [126,
39, 161, 107]. Other theories of bounded arithmetic correspond to other
complexity classes. For example, in Buss’s theory S1

2 the Σb
1 definable

functions are exactly the polynomial time computable functions. At
present we do not know much about which arguments can be formalized
in the various theories of bounded arithmetic. Learning more might shed
light on the P versus NP problem – for example, if strong pseudorandom
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number generators exist, then superpolynomial circuit size lowerbounds
for SAT are independent of the theory S2

2 [140, 53] 3.
For many classical results, it is unknown whether or not they can be

proved in I∆0. In particular, it is not known whether or not I∆0 can
prove the infinitude of the primes. It is known that if I∆0 can prove the
pigeonhole principle, then I∆0 can prove the infinitude of the primes [160,
128]. However, the relationship between I∆0 and the pigeonhole principle
is sticky.

Definition 2.3. Let I∆0(R) denote I∆0 with its language expanded to
include the relation symbol R. Let php(R) denote the following sentence
in the language of I∆0(R):

∀n ¬ ((∀x0 < n+ 1 ∀x1 < n+ 1 ∀y < n (x0 = x1) ∨ ¬R(x0, y) ∨ ¬R(x1, y))
∧ (∀x < n+ 1 ∃y < n R(x, y)))

Theorem 2.6. There is no I∆0(R) proof of PHP (R).

What Theorem 2.6 means for I∆0 is that there is no “schematic” I∆0

proof of the pigeonhole principle, one in which we take the proof of php(R)
in I∆0(R) and then substitute a bounded formula φ for R to obtain an
I∆0 proof of php(φ). It is still open whether or not I∆0 can prove php(φ)
for every bounded φ, but such proofs would have to be done on a formula-
by-formula basis that makes use of the structure of φ.

We now sketch the proof of Theorem 2.6.
Definition 2.4. [128] Let φ be a bounded formula in the language

I∆0(R) with free variables x1, . . . xm. For each ~n ∈ N
m we define 〈φ〉~n by

induction on the structure of φ as follows:

φ 〈φ〉~n
s(~y) = t(~y) 0, if s(~n) 6= t(~n), or 1, if s(~n) = t(~n)
s(~y) < t(~y) 0, if s(~n) ≥ t(~n), or 1, if s(~n) < t(~n)
R(s(~y), t(~y)) xi,j where i = s(~n) and j = t(~n)

η ∨ θ 〈η〉~n ∨ 〈θ〉~n
η ∧ θ 〈η〉~n ∧ 〈θ〉~n
η → θ 〈η〉~n → 〈θ〉~n
¬η ¬〈η〉~n

∃y < t(~x) η(y, ~x)
∨b

j=1〈η(j, ~x)〉~n where b = t(~n)

∀y < t(~x) η(y, ~x)
∧b

j=1〈η(j, ~x)〉~n where b = t(~n)

Because the terms of this language are polynomials, each existential
(universal) quantifier translates into a disjunction (conjuntion) with at

3The connections with cryptography and complexity go the other direction as well,
for example, if the RSA function is secure against polynomial-size circuits, then S1

2

cannot prove Fermat’s little theorem [105].
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most polynomially many disjuncts (conjuncts). An easy induction argu-
ment bounds the size and alternation depth of the propositional transla-
tions in terms of the first-order formula.

Lemma 2.7. [128] Let φ be a bounded formula in the language of I∆0(R)
with free variables x1, . . . xm. There exist constants c, d ∈ N so that for
all ~n ∈ N

m with N = maxi ni, |〈φ〉~n| ≤ N c and dp(〈φ〉~n) ≤ d.

The translation preserves the structure of I∆0(R) proofs (up to small
number of “clean-up” steps).

Theorem 2.8. [128] Let φ be a bounded formula in the language of
I∆0(R). Let x1, . . . xm be the free variables of φ. If I∆0(R) proves ∀~xφ(~x)
then for each ~n ∈ N

m, the propositional formula 〈φ〉~n has a Frege proof of
alternation-depth O(d) and size (maxi ni)

O(1).

A break-through result of Miklós Ajtai showed that there are no polynomial-
size, constant-depth Frege proofs of the n+1 to n pigeonhole principle [6].

Theorem 2.9. [6, 106, 130]. All depth d Frege proofs of PHPn+1
n

require size Ω
(

2n1/6d )

.

By Theorem 2.8, if I∆0(R) could prove phpn+1
n (R), then that proof

would translate into a family of polynomial-size, constant alternation-
depth Frege proofs for PHPn+1

n , contradicting Theorem 2.9. Thus we
obtain Theorem 2.6.

§3. A menagerie of Frege-like proof systems. In this section, we
describe and compare many propositional proof systems that come from
satisfiability algorithms and translations from theories of bounded arith-
metic. We focus on propositional systems that can be viewed as Frege
systems whose formulas are restricted to a particular syntactic form.

The notion used to compare all of these different propositional proof
systems is p-simulation. We consider a proof system A to be at least as
efficient as a system B if every B-proof can be efficiently translated into
an A proof.

Definition 3.1. Let V1 and V2 be abstract propositional proof systems.
We say that V1 p-simulates V2 if there is a polynomial time computable
function f so that whenever τ is a tautology and V1(τ, P ) = 1, V2(τ, f(P )) =
1. Let g : N → N. We say that V1 is g-separated from V2 if there ex-
ists a infinite family of tautologies {τn | n = 1, . . .∞} so that for all n,
sV2(τn) ≥ g(sV1(τn)). These definitions are adapted in the obvious man-
ner for refutation systems.

Theorem 1.2 is usually stated in its stronger form: “All Frege systems
p-simulate one another” [69].
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3.1. Some Frege systems with restricted formulas.

Resolution: The resolution system and its connections with satisfia-
bility algorithms were discussed at length in Subsection 2.1. Resolu-
tion also arises from translations of very weak theories of arithmetic
into propositional logic, for example, the fragment of I∆0(R) that
allows induction only on Σb

1 formulas, cf. [100, 102]. Theorem 2.4
shows that resolution is not polynomially bounded.

Res (k): The Res (k) systems generalize resolution by using formulas
that are k-DNFs instead of only clauses [102, 20]. The inference rules
for Res (k) are the same as those for resolution, but with the addi-

tion of rules for and-introduction x1∨C ... xk∨C

(
∧k

i=1 xi)∨C
and and-elimination

(
∧k

i=1 xi)∨C

xi∨C . The Res (k) systems correspond to translations from
certain weak theories of bounded arithmetic, for example, the frag-
ment of I∆0(R) that allows induction only on Σb

2 formulas, cf. [102].
The Res (k) systems also play a significant role in understanding
the proof complexity of the weak pigeonhole principles, variants of
the pigeonhole principle in which there are many more pigeons than
holes [102, 110, 20, 152]. Because Res (k) systems are special kinds of
Frege systems with constant alternation depth, Theorem 2.9 shows
that the Res (k) systems are not polynomially bounded.

Constant-depth Frege systems: A depth d Frege system (or, d-
Frege) is a Frege system in which the formulas are restricted to have
alternation depth at most d. For a function s : N → N, it is said
that a family of tautologies {τn | n = 1, . . .∞} possesses size s(n)
constant-depth Frege proofs if there exist a constant d so that each
τn possesses a depth d Frege proof of size at most s(n).

Constant-depth Frege systems generalize the resolution and Res (k)
systems, which are depth one and depth two systems, respectively.
Extensions to resolution based satisfiability algorithms, such as caching
previously refuted subformulas, can be formalized as constant-depth
Frege systems [28]. As shown in Subection 2.2, constant-depth proofs
arise naturally from translations of proofs from the first-order theory
I∆0(R) [128]. Theorem 2.9 shows that constant depth Frege systems
are not polynomially bounded.

The exact formulation of the inference rules and axioms is not
relevant - a variant of Theorem 1.2 shows that proofs can be trans-
lated between any two constant-depth Frege systems with at most a
polynomial increase in size and a linear increase in depth.

Constant-depth Frege with counting axioms modulo m: “You can-
not partition a set of odd cardinality into sets of size two.” Facts like
this are the beginnings of the connections between combinatorics and
algebra, and they entail many other results (for example, the onto
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pigeonhole principle, which states that there is no onto, injective
relation from n+1 pigeons to n holes, cf. [5]). These “counting prin-
ciples” can be formulated as propositional formulas as follows: For a
modulus m > 1 and finite set V of size indivisible by m, the formula
CountVm has a variable xe for each e ∈

(

V
m

)

, and:

CountVm =
∨

v∈V

(
∧

e∈[V ]m

e3v

¬xe) ∨
∨

e,f∈[V ]m

e⊥f

(xe ∧ xf )

Augment a depth d Frege system with substitution instances of the
CountVm formulas, and we have a “d-Frege + CAm” system. These
systems are capable of efficiently formalizing arguments based on the
unsatisfiability of linear equations modulo m, and more generally,
arguments based on Hilbert’s Nullstellensatz over Zm [95].

It is known that for every m, constant-depth Frege systems with
counting axioms modulo m are not polynomially bounded [5, 7,
27, 57]. Furthermore, when p and q are coprime, there is no sub-
exponential size derivation of the counting principles modulo q from
the counting principles modulo p [7, 27, 57].

Constant-depth Frege with counting gates: A natural extension
to bounded arithmetic is the introduction of a bounded modular
counting quantifier Qmx < t ψ(x), meaning that the number of x < t
with ψ(x) satisfied is zero modulo m [127]. Consider the system that
extends I∆0(R) with counting quantifiers modulo m. The analog of
Theorem 2.8 for this system is that its proofs translate into propo-
sitional proofs in a constant-depth Frege system with counting gates.
The lines of these systems are formulas that, in addition to ∧, ∨
and ¬ gates, have arbitrary fan-in MODm,a gates (which takes the
value 1 when the sum of its inputs is a mod m and 0 otherwise).
Alternation depth is calculated in a similar way, and the following
axioms are added for reasoning about the MODm,a gates:
1. MODm,0(∅)
2. ¬MODm,a(∅) for a = 1, . . . m− 1
3. MODm,a(φ1, . . . φk, φk+1) ≡ (MODm,a(φ1, . . . φk) ∧ (¬φk+1))∨

(MODm,a−1(φ1, . . . φk) ∧ φk+1) for all a = 0, . . . m and k ≥ 0.
We abbreviate the name of these systems to “d-Frege + CGm”. It is
widely conjectured that constant-depth Frege systems with counting
gates are not polynomially bounded, however, no unconditional proof
of this is known. Interestingly, superpolynomial size lower bounds
are known constant alternation depth formulas built from ∧, ∨, ¬,
and modular counting connectives [138, 155, 45], but it not known
how to extend the techniques from formulas to proof systems.

Polynomial calculus: Clauses correspond naturally to polynomials
over a field, for example the clause x ∨ ¬y ∨ z can be viewed as the
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polynomial (1−x)y(1−z) = y−zy−xy+xyz. The satisfying assign-
ments of the clause are exactly the zero-one roots of the polynomial.
In light of this, one way to solve the CNF satisfiability problem is to
translate the given CNF into a system of polynomials over a field,
and then use Groebner’s basis algorithm to decide if the system of
polynomials has a common zero-one root [66].

The steps of the Groebner basis algorithm over a field F can be
simulated by the following refutation system: Treat as axioms the
clauses of the input CNF (translated into polynomials), as well as
x2 − x for each variable x (this enforces that all roots are zero-one).
As inference rules, we may derive gf where f has been previously de-
rived and g is an arbitrary polynomial, and we may derive αf + βg,
where α, β ∈ F and both f and g have been previously derived.
When 1 has been derived, we know that the initial set of clauses is
unsatisfiable. Completeness for the polynomial calculus follows from
Hilbert’s Nullstellensatz [66, 129]. The size of a polynomial calcu-
lus derivation is the number of monomials that it contains, and it is
known that over any field, the polynomial calculus is not polynomi-
ally bounded [66, 141, 93].

The translation of clauses into polynomials results is not size effi-
cient. For example, x1∨ . . .∨xn translates into a polynomial with 2n

many monomials. The extension polynomial calculus with reso-
lution (PCR) adds to the polynomial calculus an extension variable
yi for each original variable xi along with an equation yi = 1 − xi.
This system behaves much like the polynomial calculus, but it p-
simulates resolution.

Nullstellensatz Refutations: The Nullstellensatz refutation system
is a restricted form of the polynomial calculus. Rather than iter-
atively derive new polynomials in the ideal generated by the poly-
nomials of the CNF until a contradiction is found, a Nullstellensatz
refutation lists an explicit combination that yields the polynomial
“1”. Each clause Cj is translated into a polynomial pj . A Nullstellen-
satz refutation of

∧m
j=1Cj is a list of polynomials f1, . . . fm, g1, . . . gn

so that 1 =
∑m

j=1 fjpj +
∑n

i=1 gi(x
2
i − xi). The completeness of

the system follows from Hilbert’s Nullstellensatz. The size of a
Nullstellensatz refutation is the number of monomials in the list
f1, . . . fm, g1, . . . gn.

The Nullstellensatz refutation system over Zp is closely related to
constant-depth Frege proofs with counting axioms modulo q: Known
lower bound proofs for constant-depth Frege systems with counting
axioms modulo q build upon lower bounds on Nullstellensatz refuta-
tions [27, 57, 33]. Furthermore, constant-depth Frege systems with
mod q counting axioms p-simulate Nullstellensatz refutations [95],
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size lower bounds for Nullstellensatz refutations are necessary for
size lower bounds for constant-depth Frege systems with counting
axioms.

Cutting Planes: Clauses can be identified with inequalities over zero-
one valued variables, for example, x∨¬y∨ z translates into x+ (1−
y) + z ≥ 1, so that the satisfying assignments of the clause are ex-
actly the zero-one solutions of the inequality. This allows us to bring
powerful techniques from integer optimization to the Boolean satis-
fiability problem. One such method is the cutting planes technique
for converting integer programming problems into linear program-
ming problems by repeatedly applying the following “cutting planes
inference rule”: From

∑n
i=1 caixi ≥ a, where c ∈ N, c > 0, and each

ai ∈ Z, infer
∑n

i=1 aixi ≥ da
c e [85, 63].

Cutting planes derivations can be viewed as a Frege-like refutation
system that manipulates linear inequalities: There are axioms 0 ≤ x
and x ≤ 1 for each variable x, and in addition to the cutting planes
inference rule, we may add inequalities (from f ≥ a and g ≥ b infer
f + g ≥ a+ b), and perform positive multiplication (from f ≥ a infer
βf ≥ βa for any β ≥ 0). The orginal CNF is unsatisfiable if and
only if there is a derivation of 1 ≥ 0.

The cutting planes refutation system p-simulates resolution, and
provides polynomial size refutations of PHPn+1

n . Satisfiability algo-
rithms based on so-called pseudoboolean methods construct cutting
planes refutations when run on unsatisfiable CNFs [72, 17, 73].

Lovász-Schrijver Refutations: The Lovász-Schrijver lift-and-project
method is a way to convert zero-one programming problems into lin-
ear programming problems [108]. The first observation is that if one
knows that a linear inequality f(~x) ≥ t holds and that all variables
xi take values in [0, 1], then for any variable xi, xif(~x) ≥ xit and
(1−xi)f(x) ≥ (1−xi)t. Of course, this derives quadratic inequalities
that hold for all ~x ∈ [0, 1]n. However, by incorporating the fact that
for Boolean solutions, x2

i = xi for all i ∈ [n], one can derive new lin-
ear constraints that hold for all zero-one solutions to the problem. If
one repeats this procedure n times, the resulting polytope will be the
convex hull of the zero-one solutions to the problem. For problems
of propositional logic, we can convert a CNF into inequality form
and use the procedure to determine whether the set of solutions is
empty.

There are many formulations of the Lovász-Schrijver systems, but
we discuss only the LS+ system, which is one of the most powerful
variants commonly considered. The lines of an LS+ refutation are
quadratic inequalities over the rationals. There are axioms x ≥ 0,
−x ≥ −1, and x2 − x = 0 for every variable x, and f2 ≥ 0 for
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every affine function f . From a linear inequality f ≥ t we may infer
xf ≥ xt and (1− x)f ≥ (1− x)t for any variable x. From f ≥ a and
g ≥ b we may infer that f + g ≥ a+ b, and from f ≥ a we may infer
βf ≥ βa for any β ≥ 0. The orginal CNF is unsatisfiable if and only
if there is a derivation of 1 ≥ 0.

Presently, it is not known if the LS+ refutation system is poly-
nomially bounded. However, two special cases, the LS0 system (in
which multiplication is noncommutative and −xy does not cancel
yx) [70], and the tree-like LS+ system [96], are known to not be
polynomially bounded.

Ordered-binary decision diagrams: The Boolean satisfiability prob-
lem would be trivial if the CNFs considered could be efficiently re-
duced to a canonical form - to decide if a CNF is unsatisfiable, we
would need only check that its canonical form is the constant false.
Ordered binary decision diagrams (OBDDs) are data structures for
canonically representing Boolean functions4 [46, 47, 117]. The catch
is that the canonical OBDD can sometimes be exponentially large.
However, OBDDs often have reasonable sizes for Boolean functions
encountered in engineering practice, and they are widely used in cir-
cuit synthesis and model checking, cf. [46, 47, 114, 65].

Presently, there are two kinds of satisfiability algorithms based
upon OBDDs in the satisfiability literature. The first kind builds
the OBDD for the given CNF and tests if it is the constant false [46,
86, 3, 125, 91, 154]. This approach can be extended to eliminate
variables using existential quantification (a technique called symbolic
quantifier elimination [86, 125, 91]). The second kind of approach
uses the OBDDs to succinctly represent an exponentially large reso-
lution or breadth-first search [61, 62, 120, 121, 122]. Such techniques
are called compressed search or compressed resolution.

Algorithms that explicitly construct OBDDs and symbolic quan-
tifier elimination algorithms can be simulated by the OBDD-based
propositional proof system formalized by Atserias, Kolaitis and Vardi [22].
In this system, a variable ordering for constructing OBDDs is fixed,
the clauses of the CNF are each transformed into an OBDD, and
new OBDDs are constructed according to the following inference
rules: From an OBDD A, then we may infer any OBDD B such
that A ⇒ B, (in particular, from an OBDD A(x, ~y) we may infer
∃xA(x, ~y)), and from two OBDDs A and B we may infer A∧B. The
given CNF is unsatisfiable if and only if this system can derive the
constantly-false OBDD.

4More precisely, an OBDD is a read-once branching program in which the variables
appear according to a fixed order along every path. It is the fixed ordering that guar-
antees canonicity.
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System p-simulates Cannot p-simulate

resolution Res (2) [19, 152], cutting
planes [6], Nullstellensatz

Res (k) resolution, Res (k − 1) Cutting planes, Res (k + 1) [152,
150]

d-Frege Res (k), (d− 1)-Frege Cutting planes [6], (d + 1)-
Frege [99]

d-Frege + CAp Zp-Nullstellensatz [95], d-Frege polynomial calculus mod p,
constant-depth Frege + CGp [94]

d-Frege + CGp d-Frege + CAp

F-Nullstellensatz resolution [48]

F-polynomial calculus F-Nullstellensatz Res
(

Θ(log2 n)
)

[141, 110]

F-PCR F polynomial calculus, resolution Res
(

Θ(log2 n)
)

[141, 110]
Cutting planes resolution Frege systems [132]
Lovász-Schrijver resolution
OBDD refutations resolution, Gaussian elimination,

cutting planes with unary coeffi-
cients [22]

Frege systems [103]

Figure 4. Some known p-simulations and non-p-
simulations between propositional proof systems.

Recently announced results show that OBDD refutations are not
polynomially bounded [103, 151]. No nontrivial bounds are known
for proof systems corresponding to the compressed search or com-
pressed resolution algorithms.

In contrast with the other proof systems discussed in this section,
it is not known whether or not Frege systems p-simulate OBDD
refutations. This is because we do not know how to convert OBDDs
into Boolean formulas without an exponential increase in size.

Known simulation and non-simulations for these propostional proof sys-
tems are presented Figure 4.

3.2. Tree-like versus DAG-like proofs. For many propositional
proof systems, proof sizes depend dramatically on the inference struc-
ture. In Subsection 2.1, we saw this for resolution: Theorem 2.3 shows
that DAG-like resolution is exponentially separated from tree-like resolu-
tion. The notions of being tree-like or DAG-like apply to any Frege-like
system that derives new formulas from axioms and hypotheses by the
application of inference rules.

Definition 3.2. Let C1, . . . Cm be a derivation in some Frege-like sys-
tem. The derivation is said to be tree-like if every formula is used as an
antecedent to an inference rule at most once. Arbitrary derivations are
said to be DAG-like.
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resolution exponential separation [38, 40]
Res (k) exponential separation [78]

constant-depth Frege polynomial simulation [99]
C.D. Frege with counting axioms ”
C. D. Frege with counting gates ”

Frege systems ”
polynomial calculus exponential separation [48]

cutting planes exponential separation [44]
Lovász-Schrijver unknown

OBDD refutations unknown

Figure 5. Comparisons between the DAG-like and tree-
like forms of some proof systems.

Tree-like systems arise from proof search algorithms based on back-
tracking search, and from translations of first-order proofs5. However,
they can sometimes be less efficient than their DAG-like counterparts.
For some propositional proof systems, the DAG-like system has an ex-
ponential speed-up over the tree-like system, but for others, the tree-like
system p-simulates the DAG-like system. The most general result on this
is Kraj́ıček’s Lemma which shows that for many proof systems, the tree-
like system p-simulates the DAG-like system. Here we state it only for
constant-depth Frege systems.

Lemma 3.1. (Kraj́ıček’s Lemma, [99, 100]) If τ has a size s, depth d
DAG-like Frege proof, then τ has a size O(s2), depth d+ 1 tree-like Frege
proof.

Currently known relationships between the tree-like and DAG-like ver-
sions of various propositional proof systems are summarized in Figure 5.

§4. Reverse mathematics of propositional principles. In addi-
tion to asking questions focused on propositional proof systems - “Is this
system polynomially bounded? Does this system p-simulate that sys-
tem?” - we can also ask questions tha focus on particular tautologies -
“Which proof systems can efficiently prove this tautology?”. This can be
thought of as reverse mathematics for propositional principles. Reverse
mathematics studies the axioms that are necessary to prove theorems of
mathematics (cf. [153]). In contrast, the propositional systems we con-
sider are complete, so the focus is not on provability but on efficiency.

5Converting a fixed first-order proof into tree-like form incurs an exponential in-
crease in the size of that first-order proof but this affects the sizes of the propositional
translations by only a constant factor.
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System PHPn+1
n PHP 2n

n PHPn2

n

Resolution 2Ω(n) / 2O(n) 2Ω(n) / 2O(n) 2nΩ(1)
/ 2O(n)

Res
(

O
(

log n
log log n

))

2nΩ(1)
/ 2O(n) 2nΩ(1)

/ 2O(n) nO(1) / 2O(n)

Res
(

logO(1) n
)

2nO(1)
/ 2O(n) nO(1)/ nO(logO(1) n) nO(1) / nO(logO(1) n)

d-Frege 2nΩ(1)
/ 2O(n) nO(1) / n(log n)O(1/d)

nO(1) / nO(log(d) n)

d-Frege+ CGm 2nΩ(1)
/ 2O(n) nO(1) / n(log n)O(1/d)

nO(1) / nO(log(d) n)

Frege nO(1) / nO(1) nO(1) / nO(1) nO(1) / nO(1)

Polynomial Calculus 2Ω(n) / 2O(n) 2Ω(n) / 2O(n) 2Ω(n) / 2O(n)

PCR 2Ω(n) / 2O(n) 2Ω(n) / 2O(n) nO(1) / 2O(n)

Figure 6. Known lower bounds / upper bounds for
refutation sizes of pigeonhole principles. For all m > n,
the cutting planes, Lovász-Schrijver, and OBDD systems
each refute PHPm

n with polynomial size refutations. Ref-
erences: Resolution lower bounds [87, 29, 38], resolution
upper bound is folklore, Res (k) lower bounds [20, 152],
Res (k) upper bounds [110], d-Frege lower bounds [6,
130, 106], d-Frege upper bounds [18, 128], Frege upper
bound [51], and the polynomial calculus and PCR lower
bounds [141, 93].

Two families of principles that have received much attention are the weak
pigeonhole principles and random 3-CNFs.

4.1. Weak pigeonhole principles. The weak pigeonhole principle
states that for integers m > n, m pigeons cannot be injectively associated
with n holes. Encoded as as the unsatisfiable CNF PHPm

n , there are mn
variables xi,j, with interpretation “pigeon i goes to hole j”, and for each
i ∈ [m], there is a clause

∨

j∈[n] xi,j, and for each i, i′ ∈ [m] with i 6= i′,

there is a clause ¬xi,j ∨¬xi′,j. When m� n, this CNF is called the weak
pigeonhole principle because it is “more contradictory” than the n+ 1 to
n pigeonhole principle. Current understanding of the proof complexity of
various weak pigeonhole principles is summarized in Figure 6.

The weak pigeonhole principle naturally arises in many contexts. In
industrial satisfiability applications, it can arise when analyzing systems
in which many agents are competing for exclusive access to resources
from a small pool, such as locks or channels [15]. Size lower bounds for
refutations of the weak pigeonhole principles can be useful starting points
for proving other results. By showing that a CNF F has a small derivation
from PHPm

n , we show that the smallest refutation of F is no smaller
than the smallest refutation of PHPm

n . Some striking results obtained
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System Lower Bound

Resolution 2
n

∆4/k−2+ε [64, 29, 38]

Res
(

O(
√

log n/ log log n)
)

2n/2O(k2)
[20, 152, 8]

Constant Depth Frege Ω(n)

Polynomial calculus 2Ω(n) [93, 36, 13]
Cutting planes Ω(n)

Lovász-Schrijver Ω(n)
OBDD Refutations Ω(n)

Figure 7. Best known lower bounds for refuting random
3-CNFs on ∆n clauses. A lower bound S means that with
probabilty 1 − o(1) as n → ∞, a 3-CNF on ∆n clauses
requires size S to be refuted in that system.

through such techniques show that resolution-based methods cannot prove
superpolynomial circuit size lower bounds for NP [137, 144].

In the study of bounded arithmetic, it is known that I∆0 can prove
the infinitude of primes from the 2n to n weak pigeonhole principle [128].
By Theorem 2.8, a necessary condition for I∆0(R) to be able to prove
php2n

n (R) is that there exist polynomial size, constant depth Frege refu-
tations of PHP 2n

n . It seems plausible that there are small constant-depth

refutations of PHP 2n
n . The known upper bounds for PHP 2n

n and PHPn2

n

in constant-depth Frege are barely-superpolynomial. Furthermore, there
are polynomial-size, constant-depth formulas that distinguish betweeen
the cases when < 1/3 of the input bits are set to 1 and these case when
> 2/3 of the input bits are set to 1 [136]. However, it is not known how
to use these formulas in a refutation of PHP 2n

n .

4.2. Random 3-CNFs. It may be that for some propositional proof
system P, there are tautologies that require superpolynomially large proofs
in P, yet such tautologies are rare. We address this possibility by studying
refutation sizes needed for random 3-CNFs.

Consider the experiment that generates a random 3-CNF on n vari-
ables by choosing ∆n many 3-clauses uniformly, independently and with

replacement. This distribution is called F∆,n
3 . The parameter ∆ is called

the clause density.
Empirical study of satisfiability algorithms suggests that there is a

threshold value for ∆ (it seems to be approximately 4.2), above which
a random 3-CNF is almost surely unsatisfiable and below which a ran-
dom 3-CNF is almost surely satisfiable [118]. Rigorously, it is known that
there is some threshold but its value has not been been rigorously de-
termined [81]. This value is called the satisfiability threshold. Empirical
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Figure 8. Overlay of graphs depicting the probability of
satisfiability for a random 3-CNF with n = 50 many vari-
ables on ∆n many clauses being satisfiable, and the the
number of recursive calls made by DLL on randomly gener-
ated 3-CNFs with n = 50 variables and ∆n many clauses.
In the region near ∆ = 4.267, the probability of a random
3-CNF being satisfiable switches from 1 to 0. The num-
ber of recursive calls made by the DLL algorithm sharply
spikes near this satisfiability threshold. Data from [118].

studies also suggest that for values of ∆ far below or far above the sat-
isfiability threshold, it is computationally easy to solve satisfiability for
CNFs of that clause density. However, when the clause density is close to
the satisfiability threshold, random 3-CNFs seem to require exponential
run times to be refuted by known satisfiability algorithms. Propositional
proof complexity rigorously explains this behavior for several satisfiabil-
ity algorithms and proof systems. Figure 7 summarizes currently known
lower bounds for refuting random 3-CNFs6.

It seems plausible that random 3-CNFs of appropriate clause densities
might require superpolynomial proofs of unsatisfiability in any proposi-
tional proof system. There is little to suggest that this is actually the
case, but there is even less contradicting it. A surprising connection be-
tween this question and the computational complexity of approximating
combinatorial optimization problems was discovered by Uri Feige: If re-
futing random 3-CNFs of arbitrarily large constant clause density requires
superpolynomial size refutations in all abstract proof systems, then sev-
eral approximation problems (that resist analysis via current PCP-based
techniques) cannot be solved in polynomial time [80].

6Recently Galesi and Lauria announced an exponential lower bound for refuting
random 3-CNFs of constant clause density in the “polynomial calculus plus Res (k)”
over finite fields of characteristic 6= 2 [82]. This system is the strongest (in terms of
p-simulations) for which we have lower bounds for refuting random 3-CNFs.
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§5. Feasible interpolation. Consider the propositional form of Craig’s
interpolation theorem:

Theorem 5.1. Let φ(~x, ~y) and ψ(~x, ~z) be propositional formulas. If
φ(~x, ~y) → ψ(~x, ~z) is a tautology, then exists a propositional formulas θ(~x)
so that φ(~x, ~y) → θ(~x) and θ(~x) → ψ(~x, ~z) are both tautologies. The
formula θ is called an interpolant.

The standard proof of Theorem 5.1 guarantees the existence of an in-
terpolant whose size is at most exponentially large in the number of vari-
ables. In general, the exponential blow-up is probably necessary: If the
size of θ were bounded by a polynomial in the sizes of φ and ψ, then
NP ∩ coNP would have polynomial size circuits [123]. However, for
many propositional proof systems, we can bound the size of the inter-
polant by a polynomial in the size of the proof of φ(~x, ~y) → ψ(~x, ~z).
This phenomenon is called feasible interpolation. Feasible interpolation
has been used to prove size lower bounds for propositional proof sys-
tems [92, 41, 132, 101, 22, 151, 103], and it has found applications in
formal verification and theorem proving [115, 116].

Systems known to have feasible interpolation include resolution [132],
cutting planes [132], Lovász-Schrijver refutations [133], and the polyno-
mial calculus [135]. To date, the absence of feasible interpolation has
been guaranteed for non-trivial proof systems only under cryptographic
assumptions. Among these results are: “If one-way functions exist, then
Frege systems do not have feasible interpolation” [104], and “if factoring
Blum integers is hard, then constant-depth Frege systems do not have fea-
sible interpolation” [42, 43]. It is not known, even under cryptographic
assumptions, whether or not Res (k) has feasible interpolation for any
k ≥ 2.

§6. Further connections with satisfiability algorithms.

6.1. Space complexity of refutations. Satisfiability algorithms based
on clause learning and the Davis-Putnam procedure maintain a set of
clauses called the clause database. These are previously derived conse-
quences of the input CNF, saved for future re-use. The size of the clause
database is a major bottleneck on the performance of such algorithms, so
it is natural to ask “How large must the clause database be to refute a
given CNF?” This leads to the notion of space complexity for resolution
refutations.

Definition 6.1. ( [79] and [10]) Let F be a CNF. A resolution refu-
tation presented in configuration form is a sequence of sets of clauses
S1, . . . Sm satisfying the following properties:

1. S1 = ∅
2. The empty clause belongs to Sm.
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3. Each Si+1 follows from Si by either (a) Removing a clause from Si

(b) Resolving two clauses from Si and adding the resolvent to Si+1

or (c) Adding a clause from F to Si

The clause space of S1, . . . Sm is maxi∈[m] |Si|. The variable space of
S1, . . . Sm is maxi∈[m]

∑

C∈Si
|C|. For a resolution refutation Γ, let sp(Γ)

be the minimum space needed to present Γ as a sequence of configurations,
and let vsp(Γ) be the minimum variable space needed to present Γ as a
sequence of configurations. Let sp(F ) denote the minimum clause space of
a resolution refutation of F and let vsp(F ) denote the minimum variable
space of a resolution refutation of F .

Clearly, it the goal of any resolution based satisfiability engine worth
its salt is to find a derivation that simultaneously has small size and small
space. How are these two parameters related?

The space needed to refute a CNF is in general not the same as the size
needed to refute the CNF. For example, the implication chain x0, ¬xn, and
¬xi ∨xi+1, for i = 0, . . . n−1, has a linear size, constant space refutation.
However, there are many connections between the space needed to refute
a CNF and its other requirements.

Theorem 6.1. [79] Let F be a CNF in n variables. Let size(F ) denote
the least size of a resolution refutation of F , let sizeT (F ) denote the least
size of a tree resolution refutation of F , and let height(F ) denote the
least height of a resolution refutation of F . We have that: sp(F ) ≤ n+1,

size(F ) ≤
(sp(F )+height(F )

sp(F )

)

, and 2sp(F ) − 1 ≤ sizeT (F ).

It is known that for some unsatisfiable CNFs, it is impossible to simul-
taneously obtain optimal size and optimal space.

Theorem 6.2. [35] There exists a faily of CNFs {Tn}∞n=1 so that each
Tn has a resolution refutation of size O(n), but any resolution refutation
Γ of Tn has sp(Γ) · log |Γ| = Ω(n/ log n).

A recently announced result of Hertel and Pitassi gives a very strong
trade-off between optimal resolution size and optimal resolution variable
space.

Theorem 6.3. [89] There is a family of CNFs {Fn} such that all res-

olution refutations of Fn that use variable space vsp(Fn) have size 2Ω(n),
but, there exists a size O(n), variable space vsp(Fn) + 3 refutation of Fn.

Resolution width provides a lower bound for space, but the lower bound
is not believed to be tight.

Theorem 6.4. [21] Let F be an unsatisfiable CNF, let iw(F ) denote
the maximum width of a clause of F and let w(F ) denote the minimum
width of a resolution refutation of F . We have that sp(F ) ≥ w(F ) −
iw(F ) + 1.
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Theorem 6.5. [124] For all k ≥ 4 there is a family of k-CNF formulas
{Fn}∞n=1 of size O(n) so that w(Fn) = O(1) but sp(Fn) = Θ(log n).

6.2. Automatizability. A big difference between propositional proof
complexity and the study of satisfiability algorithms is that just because
a tautology has a short proof, there is not necessarily a good way to
automatically find it.

Definition 6.2. Let f : N → N be given. A propositional proof system
P is said to be f -automatizable if there is an algorithm A so that for
every tautology τ , whenever there is an P proof of size S, the algorithm
A terminates within f(S) steps and outputs some P proof of τ .

There are some positive results for automatizability: Tree-like reso-
lution is nO(log n) automatizable [38, 29], as is the treelike polynomial
calculus over any field [66]. Negative results depend upon conjectures
in computational complexity and cryptography. It is known that neither
resolution no tree-resolution is polynomial-time automatizable unless the
W [P ] hierarchy in parameterized complexity collapses [12]. Moreover,
there is no automatizability for Frege systems if one-way functions ex-
ist [104], and under the assumption that “factoring Blum integers is hard”,
there is no automatizability for any system that can polynomially simu-
late constant-depth Frege systems [43, 42].

For many purposes, it would suffice if the existence of a small P proof
guaranteed that we could quickly find a proof in some other system Q.
This leads to the related notion is of weak automatizability [19]. It turns
out the resolution is weakly automatizable if and only if Res (2) has fea-
sible interpolation [19].

6.3. Lower bounds for satisfiability algorithms on satisfiable
formulas. Propositional proof complexity can tell us why a satisfiabil-
ity algorithms take a long time to run on some unsatisfiable CNF, but
what can be said about the running times of satisfiability algorithms on
satisfiable CNFs?

When analyzing how a DLL-style backtracking algorithm performs on
a satisfiable CNF, you must take into account the method that chooses
the branching variable and which setting (x = 0 or x = 1) to explore
first. This is because a completely unrestricted, exponential-time heuristic
could find a satisfying assignment, and then guide the DLL search to that
assignment within n decision steps.

The family of myopic branching heuristics has been successfully ana-
lyzed on satisfiable CNFs. When choosing the branching variable and
which branch to explore first, a myopic heuristic can make use of the par-
tial assignment at that point of the recursion tree, inspect at most n1−ε

many clauses of the input CNF, make full use of the formula with all nega-
tion signs removed, and make full use of a variable frequency-analysis from
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the full CNF. A somewhat orthogonal class of variable-centric heuristics
has also been studied. In variable-centric heuristics, the variable to branch
upon is selected using an arbitrary method, but the decision whether to
first explore the branch with x = 0 or the branch with x = 1 is made
randomly.

Theorem 6.6. [11] For every myopic DLL algorithm A that reads at
most K(n) clauses per step, for each n there is a satisfiable formula Φn so

that with probability 1 − 2Ω((n/(K logO(1))), A requires time 2Ω(n/ logO(1) n)

on input Φn.
For each k ≥ 3 there is c > 0 and a family of satisfiable (k + 1)-CNF

formulas Gn so that for every DLL algorithm A with a variable-centric
branching heuristic, the probability that A finds a satisfying assignment
on input Gn with fewer than 2cn steps is at most 2−n.

A particularly interesting class of satisfiable CNFs are random 3-CNFs
with clause densities just below the satisfiability threshold. These seem
to be hard, however, unconditional results are only known for very weak
branching heuristics that use some fixed order for branching upon vari-
ables along every branch of the search tree. (DLL with such a heuristic is
called ordered DLL.) For ordered DLL, it is known for a range of clause
densities just below the satisfiability threshold, a constant-fraction of the
random k-CNFs require exponential run times to refute.

Theorem 6.7. [2, 1] With uniformly positive probability, ordered-DLL

requires time 2Ω(n) on random k-CNFs of clause density c, where k = 4
and c > 7.5, or k ≥ 5 and c > (11/k)2k−2. Moreover, a random k-CNF
of clause density c is almost-surely satisfiable if k = 4 and c < 7.91, or
k ≥ 5 and c < 2k(ln 2) − (k + 4)/2.

§7. Beyond the Frege systems.

7.1. Some powerful propositional proof systems. These are some
of the propositional proof systems conjectured to be more superpolyno-
mially more efficient than the Frege systems. No superpolynomial proof
size lower bounds are known for any of these systems, and the only p-
simulations known are the obvious ones.

Extended Frege: Extended Frege systems extend Frege systems with
the ability to introduce definitions: At step i+ 1 of a derivation, the
formula Ai+1 may follow from A1, . . . Ai either by the usual inference
rules of the Frege system, or, Ai+1 can be of the form x↔ B where x
is a variable not appearing in A1, . . . Ai, and B is a Boolean formula.
The variable x is called an extension variable.

Extended Frege systems can be also be defined as Frege systems
that manipulate circuits instead of formulas. For this reason, the
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distinction between Frege systems and extended Frege systems can
be viewed as analogous to the distinction between Boolean formulas
and Boolean circuits in circuit complexity.

Quantified Frege Systems: Quantified Boolean formulas extend Boolean
formulas by allowing the introduction of quantifiers, ∃xF (x, ~y) or
∀xF (x, ~y), where the semantics is that ∃F (x, ~y) is satisfied if and
only if F (0, ~y) ∨ F (1, ~y) is satisfied and ∀F (x, ~y) is satisfied if and
only if F (0, ~y) ∧ F (1, ~y) is satisfied. Quantified Frege systems are
analagous to standard first-order proof systems, except that the
“terms” are propositional formulas. Quantified Boolean formula are
conjectured to have exponentially more succinct representations for
some Boolean functions than is possible with Boolean formulas, but
this has not been proved. It is easily seen that quantified Frege
systems p-simulate extended Frege systems, cf. [100].

Propositional ZFC: A proof for a tautology need not be written in
a classical propositional calculus, indeed, it might be more intuitive
and succinct to bring to bear some higher mathematic formalized in
ZFC (or Peano’s arithmetic, or whatever theory you prefer). The
proof would be formalized in some standard way, and the verification
procedure would check that each line of the proof is an instance of an
axiom or follows from the preceding by application of the inference
rules. All of the other propositional proof systems discussed in this
survey can be p-simulated by such a system, as can any proof system
whose correctness is provable in ZFC.

What tautologies might require superpolynomially large proofs in pow-
erful systems such as these? As discussed in Section 4.2, it seems plausi-
ble that random 3-CNFs of certain clause densities almost surely require
superpolynomially-large proofs in any proof system, but other than that,
there are no candidates.

Possible separations between these strong systems such as these are
more difficult to identify. It is quite a challenge to even propose natural
propositional tautologies that give superpolynomial separations between
such systems. If we do not mind unnatural tautologies, then it suffices to
cosider partial consistency statements- propositional encodings of state-
ments such as “If P is a P proof of τ then τ is a tautology”. It turns out
that, for proof systems P and Q that can p-simulate Frege systems, if P
does not p-simulate a proof system Q, then P requires superpolynomial
size to prove the partial consistency statements for Q.

Theorem 7.1. [68, 104, 52] Let P be a propositional proof system that
p-simulates Frege systems, and let Q be any propositional proof system.
P + ConQ p-simulates Q .
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Separations based on partial consistency would be great to have - but
they reveal little about the kinds of arguments that can be efficiently
performed in one proof system but not in another. For the problem of
separating extended Frege systems from Frege systems, there are natural
combinatorial tautologies that are have polynomial size extended Frege
proofs and are conjectured to require superpolynomial size Frege proofs.
The partial consistency of extended Frege systems can be shown equiv-
alent to a combinatorial statement about the non-existence of sinks in
certain directed graphs [23]. Another candidate is a propositional encod-
ing of the principle AB = I ⇒ BA = I [156]. The latter seeks to make
use of the conjecture that the inverse of a matrix cannot be computed by
a polynomial-size Boolean formula.

7.2. Optimal proof systems. It may well be that there is some “uni-
versal” propositional proof system that p-simulates all other propositional
proof systems. In the literature, such a proof system is called p-optimal.
Whether or not a p-optimal proof system exists is a major open ques-
tion, and there is little evidence either way. The existence of p-optimal
proof systems is guaranteed by implausible computational complexity hy-
potheses - for example, “if EXPEXP = NEXPEXP then there is a
p-optimal proof system [104, 98]. On the other hand, if p-optimal proof
systems exist, then there also exist complete sets for semantic classes
such as UP [139, 148, 98] - a consequence that is unexpected, but not
particularly controversial7 .

The most natural candidate for a p-optimal proof system is proposi-
tional ZFC, but this is possibly an artifact of the fact that we develop
propositional proof systems and prove their consistency inside ZFC. It
may be that bringing in assumptions from beyond ZFC could enable more
succinct proofs of propositional tautologies.

This leaves us with three possibilities:

1. Propositional ZFC (and perhaps something weaker) is p-optimal.
This would be a remarkable conservation result: For the purposes of
certifying propositional tautologies, there would no benefit to adding
further axioms.

2. Propostional ZFC is not p-optimal, but some other system is. In this
case, identifying a p-optimal system and its properties would be of
utmost importance.

3. There is no p-optimal propositional system. If this is the situation,
then independence raises its head in one of the most basic tasks of
logic: No matter what (polynomial-time decidable) axioms of math-
ematics you accept, the correctness of some method for certifying
propositional tautologies is independent of those axioms.

7A statement in computational complexity equivalent to the existence of a p-optimal
proof system is given in [104].
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Part 2. Some lower bounds on refutation sizes

Much of the appeal of propositional proof complexity lies in the fact
that we can prove limitations for non-trival proof systems. In this section,
we present size lower bounds for refutations of random 3-CNFs and weak
pigeonhole principles. These have all been proved in recent years, and use
a family of related techniques that build upon and extend the size-width
trade-off for resolution.

Space limitations prevent us from discussing all known techniques for
establishing proof size lower bounds. Many interesting results and tech-
niques have been omitted, among them: The use of feasible interpolation
to establish size lower bounds for cutting planes [92, 41, 132], Lovász-
Schrijver [32], and OBDD refutations [151, 103], “rank” lower bounds
for cutting planes and Lovász-Schrijver refutations [49, 9], degree lower
bounds for the Nullstellensatz system [59, 57, 54] and the polynomial cal-
culus [66, 141, 93, 56, 13], using extensions of H̊astad’s switching lemma
to establish exponential size lower bounds for constant-depth refutations
of the n + 1 to n pigeonhole principle [6, 130, 106], and lower bounds
for constant-depth Frege systems with counting axioms via a combina-
tion of the H̊astad switching lemma and Nullstellensatz degree lower
bounds [5, 7, 27, 147, 57, 33, 94].

Background from probabilistic combinatorics Our presentation
is not self-contained: We omit proofs of standard lemmas from discrete
probability and probabilistic combinatorics.

A common framework in proof complexity is to use expansion in the
clauses of the CNF (or some higher-level constraints) to guarantee that
the CNF requires large width to refute in resolution. For a thorough
introduction to expansion and its applications in discrete mathematics
and computer science, see [90]. The following definition is more often
phrased in the language of bipartite graphs, but matrix notation better
suits our perspective.

Definition 7.1. Let A be a Boolean matrix with m rows and n columns.
For a set of rows, I ⊆ [m], we define the boundary of I in A, ∂A(I) as
∂A(I) = {j ∈ [n] : |{i ∈ I | Ai,j = 1}| = 1}.

We say that A an (r, η)-boundary expander if for every I ⊆ [m] with
|I| ≤ r we have that |∂A(I)| ≥ η|I|. We say that an (r, η)-boundary
expander is a (d, r, η)-boundary expander if every column of A contains
at most d ones.

Lemma 7.2. Let ∆ > 0 be a constant, and let m = ∆n. Let A be
a random matrix from {0, 1}m×n so that A is chosen uniformly among
matrices with exactly three ones in each row. For all constants ∆ > 0,
η < 1, there exists some constant δ so that with probability 1− o(1), An,∆

is a (δn, η)-boundary expander.
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In some of the lower bound arguments, we make use of the following
form of the Chernoff-Hoeffding bounds:

Lemma 7.3. (Chernoff-Hoeffding bounds, cf. [113]) Let X1, . . . ,Xn be
independent random indicator variables. Let µ = E [

∑n
i=1Xi]. For every

ε > 0: Pr [
∑n

i=1Xi < (1 − ε)µ] ≤ e−ε2µ/2 and Pr [
∑n

i=1Xi > (1 + ε)µ] ≤
e
− ε2µ

2(1+ε/3) .

Corollary 7.4. Let X1, . . . ,Xn be independent random indicator vari-
ables. Let µ = E [

∑n
i=1Xi]. Pr

[
∑n

i=1Xi <
µ
2

]

≤ e−µ/8 and Pr [
∑n

i=1Xi > 2µ] ≤
e−3µ/8. Furthermore, for any B be with B ≥ µ, Pr [

∑n
i=1Xi > 2B] ≤

e−3B/8.

Proof. The first two inequalities specialize Lemma 7.3 with ε = 1/2
and ε = 1, respectively. For the third claim, choose a family of inde-
pendent, random indicator variables X∗

1 , . . . X
∗
n with Xi ≤ X∗

i for each
i = 1, . . . n, and

∑n
i=1EX

∗
i = B. The probability that

∑n
i=1Xi exceeds

2B is less than the probability that
∑n

i=1X
∗
i exceeds 2B, which by the

preceding claim is at most e−3B/8. a

§8. The size-width trade-off for resolution. The task of proving
lower bounds on the sizes of resolution refutations has been simplified in
recent years by the discovery of the size-width trade-off: If every resolution
refutation of a CNF F contains a clause with many variables, then every
resolution refutation of F is large.

Definition 8.1. The width of a clause is the number of variables ap-
pearing in the clause; the width of a resolution derivation is the maximum
width of a clause in the derivation. For a set of clauses F , w(F ) denotes
the minimum width of a resolution refutation of F , S(F ) denotes the min-
imum size of a DAG-like resolution refutation of F , and ST (F ) denotes
the minimum size of a tree-like resolution refutation of F . The initial
width of F , written iw(F ), is the maximum width of a clause in F .

Theorem 8.1. [38] Let F be an unsatisfiable set of clauses in n vari-
ables. We have that w(F )− iw(F ) ≤ log ST (F ) and that w(F )− iw(F ) ≤
1 + 3

√

n lnS(F ).

Corollary 8.2. Let F be an unsatisfiable set of clauses on n variables.

We have that ST (F ) ≥ 2(w(F )−iw(F ) and that S(F ) ≥ 2Ω((w(F )−iw(F ))2/n).

While the size-width trade-off is sufficient for establishing resolution
size lower bounds, it is not necessary. In particular, the quality of the
lower bound falls off rapidly with the number of variables in the CNF,
and it gives only trivial bounds when minimum width of a refutation is
at most the square-root of the the number of variables. This can be a
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wild underestimation of minimum refutation size, as there are unsatisfi-

able CNFs on n variables that require resolution refutations of size 2nΩ(1)

but which posses refutations of width at most o(
√
n). This limitation

to the applicability of the size-width trade-off can be overcome with a
sparsification trick (cf. Subsection 8.1), or it can require completely new
techniques (cf. Section 11).

The size-width trade-off is not known to apply to stronger proof systems
(in particular, nothing like it is known to hold for the Res (k) systems),
but ideas developed here will be useful when analyzing those stronger
systems in Sections 9 and 10.

The presentation here closely follows [66] and [38]. As in those works,
the proof of Theorem 8.1 builds upon a sequence of simple lemmas.

Lemma 8.3. For v ∈ {0, 1}, if F �x=v can be refuted in width ≤ w, then
there is a width ≤ w + 1 derivation of x1−v from F .

Proof. Let Γ be the width w refutation of F �x=v. Without loss of
generality, no clause of Γ contains the variable x. Obtain a derivation Γ′ as
follows: By using subsumption inferences, infer C∨x1−v for every C ∈ F .
Follow this by a derivation that follows the structure of Γ, but in which
every clause C has been replaced by C ∨x1−v. The sequence of clauses Γ′

clearly as width at most w+1. Moreover, it is a valid resolution derivation
from F : If C ∈ F �x=v, then either C ∨ x1−v ∈ F or C ∈ F ; in the either
case, C ∨ x1−v follows from a clause of F by subsumption. Clearly all
subsumption inferences in Γ become valid subsumption inferences in Γ′.
Consider the case when C follows from a resolution step applied to C ∨ y
and C ∨¬y. Because the variable x appears in no clause of Γ, y 6= x, and
thus C ∨ x1−v follows from a resolution step applied to C ∨ x1−v ∨ y and
C ∨ x1−v ∨ ¬y. a

Lemma 8.4. For all CNFs F , all literals x, all k ∈ N, and all values
v ∈ {0, 1}, if w(F �x=v) ≤ k − 1 and w(F �x=1−v) ≤ k then w(F ) ≤
max{k, iw(F )}.

Proof. By Lemma 8.3, there is a resolution derivation of x1−v from
F of width at most k. Take this derivation, and then resolve x1−v with
every clause of F that contains xv to derive F �x=1−v. This step requires
width at most iw(F ). Now refute F �x=1−v; by hypothesis, this can be
done with width at most k. a

Lemma 8.5. For any set of clauses F , w(F ) ≤ iw(F ) + log ST (F ).

Proof. We will show that for every set of clauses F and every tree-
like refutation of F , Γ, w(F ) ≤ iw(F ) + log |Γ|. This proves the claim by
taking a refutation of minimum size.

Induct on the number of variables in F , denoted by n, and dlog |Γ|e,
denoted by b. If b = 0, then Γ is a length 1 refutation, and thus ∅ ∈ F .
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Therefore, the minimum width of a refutation of F is 0 ≤ w(F )+ b. Note
that if n = 0, we necessarily have that b = 0.

For the induction step, let n, b ≥ 1, and assume that for all sets of
clauses F ′ in fewer than n variables and all tree refutations Γ′ of F ′,
w(F ′) ≤ iw(F ′)+log |Γ′|, and that for all sets of clauses F ′ on n variables
such that dlog |Γ′|e ≤ b − 1, w(F ′) ≤ iw(F ′) + log |Γ′|. Let a set of
clauses F , and a tree-like resolution refutation of F , Γ, be be given so
that b = dlog |Γ|e. The final clause of Γ is ∅, so the final inference is
the resolution of x and ¬x for some variable x. Let Γx and Γ¬x be
the sub-derivations of Γ that lead to x and ¬x, respectively. Note that
|Γ| = 1+ |Γx|+ |Γ¬x|. Without loss of generality, |Γx| ≤ 2b−1. Notice that
Γx �x=0 is a refutation of F �x=0 in n − 1 variables and of size at most
2b−1; apply the induction hypothesis to conclude that it has resolution
refutation of width at most b − 1. Similarly, Γ¬x �x=1 is a refutation of
F �x=1 in n − 1 variables and of size at most 2b; apply the induction
hypothesis to conclude that it has resolution refutation of width at most
b. By Lemma 8.4, w(F ) ≤ b+ iw(F ). a

Lemma 8.6. For any set of clauses F , w(F ) ≤ iw(F )+1+3
√

n lnS(F ).

Proof. Let Γ be a minimum size refutation of F , and let S = |Γ|. Set

d =
√

2n lnS(F ), and a = (1 − d/2n)−1. Let W be the set of clauses
from F of width ≥ d. Call such clauses “wide”. We show by induction
on n and b that if |W | < ab then w(F ) ≤ iw(F )+ d+ b. Observe that the
claim trivially holds when d ≥ n, because every refutation that uses at
most n variables has width at most n, so we may assume that d < n. In
the base case, b = 0 and there are no clauses in Γ of width more than d,
so w(F ) ≤ d ≤ iw(F ) + d. In the induction step, suppose that |Γ| < ab.
Because there are 2n literals making at least d|W | appearances in the
wide clauses, there is a literal x that appears in at least d

2n |W | of the
wide clauses. Setting x = 1, Γ �x=1 is a refutation of F �x=1 with at most
(

1 − d
2n

)

|W | < ab−1 many wide clauses. By the induction hypothesis,
w(F �x=1) ≤ d+ iw(F )+ b− 1. On the other hand, Γ �x=0 is a refutation
with at most |W | < ab many large clauses and in n − 1 many variables.
By induction on the number of variables, w(F �x=0) ≤ d + iw(F ) + b.
Therefore by Lemma 8.4, w(F ) ≤ d+ iw(F )+b. This concludes the proof
by induction.

Now, for any size S refutation of Γ, we have that |W | < abloga(|W |)c+1

and that |W | ≤ S. Applying the inequality demonstrated in the previ-
ous paragraph (with the same definitions for a and d), we have w(F ) ≤
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iw(F ) + bloga(|W |)c + 1 + d ≤ iw(F ) + loga(S) + 1 + d so that:

w(F ) − iw(F ) ≤ 1 + d+ loga(S) = 1 + d+ log( 2n
2n−d)(S)

= 1 + d+ log(1+ d
2n−d ) S = 1 + d+ (lnS) log(1+ d

2n−d )(e)

= 1 + d+ (lnS) (ln (1 + (d/(2n − d))))−1

Because 0 ≤ d < n, we have that 0 ≤ d/(2n−d) < 1, so we may apply the
inequality ln(1 + x) ≥ x− x2/2 ≥ x/2 with x = d/(2n − d). Therefore:

w(F ) − iw(F ) ≤ 1 + d+ (lnS) (d/2(2n − d))−1

≤ 1 + d+ (lnS)(2 · 2n/d)
= 1 +

√
2n lnS + 2 · 2n(lnS)/(

√
2n lnS)

= 1 + 3
√

2n lnS

a
8.1. Exponential lower bounds for the 2n to n Weak Pigeon-

hole Principle. We cannot directly apply the size-width trade-off of
Corollary 8.2 to the pigeonhole principle: There are width n refutations
of PHPm

n , and the number of variables is mn ≥ n2, therefore a direct ap-
plication of Corollary 8.2 yields a size lower bound that is constant. One
way to get around this is to prove the lower bound for an even weaker
pigeonhole principle - one in which each pigeon finds only a small number
of holes acceptable.

Definition 8.2. Let G = (U ∪ V,E) be a bipartite graph. The pigeon-
hole principle of G, PHP(G), is the set of clauses For each u ∈ U , there
is

∨

v∈V
{u,v}∈E

xu,v. For each u, u′ ∈ [m], with u 6= u′, and each v ∈ V with

{u, v} ∈ E and {u′, v} ∈ E, there is ¬xu,v∨¬xu′,v. The maximum degree
of G, ∆(G), is defined to be maxv∈V deg(v).

Notice that iw(PHP (G)) is the larger of two and the maximum degree
of a left vertex of G.

Definition 8.3. Let G be a bipartite graph with m left nodes and n
right nodes. We say that G is an (m,n, d, r, η)-boundary expander if the
adjacency matrix A ∈ {0, 1}m×n (with Ai,j = 1 iff i is adjacent to j in G)
is an (d, r, η)-boundary expander in the sense of Definition 7.1.

Lemma 8.7. [38] Let G be a bipartite graph that is an (m,n, d, r, η)-
boundary expander. w(PHP (G)) ≥ rη

2 .

Proof. For each i, let Pi denote the clause
∨

j∼Gi xi,j. Let H denote

the set of CNF
∧

i,i′,j

(

¬xi,j ∨ ¬xi′,j

)

. For each clause C in Γ, let µ(C) =

min{|I| : H ∧ ∧

i∈I Pi |= C}. Observe that µ : Γ → {0, . . . m} maps
each axiom to 0 or 1. Moreover, µ(∅) ≥ r because G is an (m,n, d, r, η)-
expander, and thus Hall’s matching condition guarantees that every I ⊆



COMPLEXITY OF PROPOSITIONAL PROOFS 33

[m] with |I| < r has a matching into [n]. Finally, µ is subadditive with
respect to the resolution rule: µ(A ∨ B) ≤ µ(A ∨ x) + µ(B ∨ ¬x). This
allows us to choose a clause C in Γ with r/2 ≤ µ(C) < r.

Choose I0 ⊆ [m] so that |I0| = µ(C) and H ∧ ∧

i∈I0
Pi |= C. Let

j0 ∈ δ(I0) be given. Suppose for the sake of contradiction that C contains
no variable of the form xi,j0 with i ∈ [m]. Choose i0 ∈ I0 so that i0 ∼G j0,
and choose an assignment α satisfying H ∧∧

i∈I0\{i0}
Pi and falsifying C.

Because C contains no variable of the form xi,j0 and j0 6∼G i for all
i ∈ I0 \ {i0}, we may assume that α(xi,j0) = 0 for all i ∈ [m].

Define the assignment α′ to agree with α off xi0,j0 and to set xi0,j to
1. Because C does not contain the variable xi0,j, α

′ 6|= C. However, α′ |=
H ∧∧

i∈I0
Pi - contradiction. Therefore, for every j0 ∈ δ(I0) there is some

variable xi,j0 present in C, so the width of C is at least |δ(I0)| ≥ ηr
2 . a

Observe that whenG has maximum left-degree d, there are dm variables
in PHP (G), therefore by Corollary 8.2:

Corollary 8.8. [38] Whenever G is a bipartite (m,n, d, r, η)-expander,

S(PHP (G)) ≥ 2
r2η2

4dm .

Theorem 8.9. [38] For all integers m > n > 0, S(PHPn+1
n ) ≥ 2Ω(n)

and S(PHPm
n ) ≥ 2

n2

m log m .

Proof. Let Gn+1,n be a bipartite (n + 1, n, 5, n/c, 1)-expander (such
an expander exists by a simple probabilistic calculation with c a constant
greater than 1, cf. [90]). Let σ be the partial assignment on V ars(PHPn+1

n )
so that σ(xi,j) = xi,j, if (i, j) ∈ E(Gn), and σ(xi,j) = 0 otherwise. Let
Γ = C1, . . . Cm be a resolution refutation of PHPn+1

n . Clearly, Γ �σ is res-
olution refutation of PHPn+1

n �σ= PHP (Gn+1,n). By Corollary 8.8, the

size of Γ �σ is at least 2n/4c2 . For m = Θ(n), we use a similar argument
with a (m,n, logm,Ω( n

log m), 3
4 logm) expander. a

8.2. Exponential lower bounds for refutations of random k-
CNFs. It is possible to prove that random 3-CNFs of constant clause
density require resolution refutations of linear width directly using the
boundary expansion technique of Lemma 8.7. However, a slight modifi-
cation gives quantitatively better bounds.

Definition 8.4. [64] Let F be a set of clauses over the variable set V .
The boundary of F , ∂(F ), is defined as:

∂(F ) = {v ∈ V | v appears in exactly one clause of F}
Let s(F ) be the minimum size of an unsatisfiable subset of F . Define the
expansion of F as e(F ) = min{|δ (F0) | : F0 ⊆ F, s(F )/2 ≤ |F0| < s(F )}.

Theorem 8.10. [64] For any set of clauses F , w(F ) ≥ e(F ).
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Proof. We define a notion of clause complexity as follows: For any
clause C, µ(C) is equal to the minimum size of F0 ⊆ F so that F0 |= C.

Let Γ be a resolution refutation of F . Because µ is subadditive with
respect to resolution, each A ∈ F has µ(A) = 1, and, by the definition of
s(F ), µ(∅) ≥ s(F ), there exists a clause C in Γ so that s(F )/2 ≤ µ(C) <
s(F ). Let F0 ⊆ F be so that |F0| = µ(C) and F0 |= C.

We now show that for each variable in ∂(F0) also appears in C. Let D
be the unique clause in F0 with x ∈ D. Because F0 − D 6|= C, we may
and choose an assignment α so that α satisfies every clause of F0 \D but
not C. Let α∗ be α with its value on x flipped. Because x ∈ D, α∗ |= D,
and because x does not appear in any other clause of F0, α

∗ |= F0. Since
F0 |= C, we also have that α∗ |= C. Because α∗ |= C and α 6|= C, we
must have that x ∈ C. Because the size of ∂(F0) is at least e(F ), the
lemma is proved. a

Plugging the excellent expansion parameters of random k-CNFs into the
width inequality of Theorem 8.10, and then applying the size-width trade-
off of Corollary 8.2 yields size lower bounds for refutations of random
k-CNFs.

Lemma 8.11. (See [29, 26] for proofs.) If F is distributed according to

F∆,n
k then with probability 1 − o(1) as n → ∞: s(F ) = Ω

(

n/∆1/(k−2)
)

and e(F ) = Ω
(

n/∆2/(k−2)
)

.

Theorem 8.12. For F distributed as F∆,n
k , with probability 1 − o(1)

as n → ∞: Every treelike resolution refutation of F has size at least

2n/∆2/(k−2)+ε
, and every resolution refutation of F has size at least 2n/∆4/(k−2)+ε

.

Proof. Combining Lemma 8.11 and Theorem 8.10, we have that with
probability 1 − o(1), w(F ) ≥ Ω

(

n/∆2/(k−2)
)

. An application of Corol-

lary 8.2 shows that in this event: ST (F ) ≥ 2Ω((n/∆2/(k−2))−k) and S(F ) ≥
2
Ω

(

(n/∆2/(k−2)−k)
2
/n

)

= 2Ω((n/(∆4/(k−2)−2k∆2/(k−2)+k2))). a

§9. The small restriction switching lemma. There is no known
analog of the size-width trade-off that holds for Res (k) for any k ≥ 2.
However, we can reduce size lower bounds for Res (k) refutations to width
bounds for resolution refutations using a technique called the small re-
striction switching lemma. A switching lemma is a guarantee that after
the application of a randomly chosen partial assignment, a disjunction
of small ANDs can be represented by a conjunction of small ORs, thus
“switching” an OR into an AND. This turns the k-DNFs of a Res (k)
refutation into narrow clauses, so that the Res (k) refutation becomes a
narrow resolution refutation (after some clean-up of the inference steps).



COMPLEXITY OF PROPOSITIONAL PROOFS 35

In this section, we prove the small restriction switching lemma and its
connection with resolution width, and use these to prove that Res (k) refu-

tation of PHP 2n
n require size 2nΩ(1)

(this presentation closely follows [149]
and [152]). In Section 10, we combine the small restriction switching
lemma with expansion clean-up techniques to prove that almost all ran-

dom 3-CNFs of constant clause density requre size 2nΩ(1)
to be refuted in

Res (k).
Another variety of switching lemma, the H̊astad-style switching lem-

mas, have been used to establish exponential size lower bounds for constant-
depth Frege proofs of PHPn+1

n [34, 130, 106] and the modular counting
principles [27, 57, 33, 94]. Such techniques are powerful - they can be
iterated to prove proof size lower bounds for constant depth systems- but
they seem too crude to analyze refutation sizes for PHP 2n

n or for ran-
dom 3-CNFs. This is because switching lemmas of this form must set an
overwhelming majority of the variables to 0 or 1 in order to collapse a
k-DNF into a CNF of narrow clauses. Consider the standard formulation
for distributions that set bits independently:

Theorem 9.1. (“H̊astad’s switching lemma” [88], cf. [45, 25]) Let pos-
itive integers k and w be given. Setting φ = (1 +

√
5)/2 and γ = 2/ ln φ

(note that γ > 4), we have that for any k-DNF F , if we construct an
assignment ρ by independently setting each bit to 0 with probability p/2,
to 1 with probability p/2, and leave it unset with probability 1 − p:

Prρ[F �ρ cannot be computed by a w-CNF] ≤ (γ(1 − p)k)w

To collapse a k-DNF to a w-CNF using Theorem 9.1, it is necessary for
the probability of a variable being set (p in the notation of Theorem 9.1)
to be strictly more than 1 − 1

γk ≥ 1 − (1/4k) ≥ 3/4. Futhermore, when

k is a superconstant function of n, almost all of the bits must be set. On
the other hand, if a partial matching matches a majority of the pigeons
in the 2n to n pigeonhole principle, the original CNF becomes trivially
false. The small restriction switching lemma of Theorem 9.2 can apply
to k-DNFs even when the probability of setting a variable is vanishingly
small. This enables the small restriction switching lemma to be applied
in many contexts when H̊astad’s switching lemma cannot.

9.1. The small restriction switching lemma.

Definition 9.1. A decision tree is a rooted binary tree in which every
internal node is labeled with a variable, the edges leaving a node correspond
to whether the variable is set to 0 or 1, and the leaves are labeled with
either 0 or 1. Every path from the root to a leaf may be viewed as a partial
assignment. For a decision tree T and v ∈ {0, 1}, we write the set of paths
(partial assignments) that lead from the root to a leaf labeled v as Brv(T ).
We say that a decision tree T strongly represents a DNF F if for every
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π ∈ Br0(T ), for all t ∈ F , t �π= 0 and for every π ∈ Br1(T ), there exists
t ∈ F , t �π= 1. The representation height of F , h(F ), is the minimum
height of a decision tree strongly representing F .

Notice that the function computed by a decision tree of height h can
also be computed by both an h-CNF and an h-DNF.

The switching lemma exploits a trade-off based on the minimum size of
a set of variables that meets each term of a k-DNF.

Definition 9.2. Let F be a DNF, and let S be a set of variables. If
every term of F contains a variable from S, then we say that S is a cover
of F . The covering number of F , c(F ), is the minimum cardinality of a
cover of F .

For example, the 3-DNF xyz ∨ ¬x ∨ yw has covering number two.
We now give a general condition on the distributions of partial assign-

ments for which our switching lemma holds: That the distribution almost
always satisfies any k-DNF with a large cover number.

Theorem 9.2. [152] Let k ≥ 1, let s0, . . . , sk−1 and p1, . . . , pk be se-
quences of positive numbers, and let D be a distribution on partial assign-
ments so that for every i ≤ k and every i-DNF G, if c(G) > si−1, then
Prρ∈D [G �ρ 6= 1] ≤ pi. Then for every k-DNF F :

Prρ∈D

[

h(F �ρ) >
∑k−1

i=0
si

]

≤
∑k

i=1
2(

∑k−1
j=i sj)pi

Proof. We proceed by induction on k. First consider k = 1. If c(F ) ≤
s0, then at most s0 variables appear in F . We can construct a height ≤ s0
decision tree that strongly represents F �ρ by querying all of the variables
of F �ρ. On the other hand, if c(F ) > s0 then Prρ∈D [F �ρ 6= 1] ≤ p1.

Therefore, h(F �ρ) is non-zero with probability at most p1 = p12
∑k−1

j=1 sj .
For the induction step, assume that the theorem holds for all k-DNFs,

let F be a (k+1)-DNF, and let s0, . . . , sk and p1, . . . , pk+1 be sequences of
positive numbers satisfying the hypotheses of the theorem. If c(F ) > sk,
then by the conditions of the lemma, Prρ∈D [F �ρ 6= 1] ≤ pk+1. Because

pk+1 ≤ ∑k+1
i=1 2

∑k
j=i sjpi, we have that h(F �ρ) is non-zero with probability

at most
∑k+1

i=1 2
∑k

j=i sjpi.
Consider the case when c(F ) ≤ sk. Let S be a cover of F of size at most

sk. Let π be any assignment to the variables in S. Because each term of
F contains at least one variable from S, F �π is a k-DNF. By combining
the induction hypothesis with the union bound, we have that

Prρ∈D

[

∃π ∈ {0, 1}S h((F �ρ) �π) >
∑k−1

i=0 si

]

≤ 2sk(
∑k

i=1 2(
∑k−1

j=i sj)pi)

<
∑k+1

i=1 2(
∑k

j=i sj)pi
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In the event that ∀π ∈ {0, 1}S , h((F �ρ) �π) ≤ ∑k−1
i=0 si, we construct

a decision tree for F �ρ as follows. First, query all variables in S unset
by ρ, and then underneath each branch, β, simulate a decision tree of
minimum height strongly representing (F �ρ) �β. For each such β, let β̂
be the part of the assignment ρ ∪ β restricted to the variables of S, and
note that β̂ is a total assignment to the variables of S with (F �ρ) �β=
(F �ρ) �β̂. Therefore the height of the resulting decision tree is at most

sk + maxπ∈{0,1}S h((F �ρ) �π) ≤ ∑k
i=0 si.

Now we show that the decision tree constructed above strongly repre-
sents F �ρ. Let π be a branch of the tree. Notice that π = β ∪σ, where β
is an assignment to the variables in S \dom(ρ) and σ is a branch of a tree
that strongly represents (F �ρ) �β . Consider the case that π leads to a leaf
labeled 1. In this case, σ satisfies a term t′ of (F �ρ) �β. We may choose
a term t of F so that t′ = (t �ρ∪β), and π = β ∪ σ satisfies the term t �ρ

of F �ρ. Now consider the case that π leads to a leaf labeled 0. There are
two cases, (F �ρ) �β= 0 and (F �ρ) �β 6= 0. If (F �ρ) �β= 0, then for every
term t of F �ρ, t is inconsistent with β and hence with π. If (F �ρ) �β 6= 0
then because the sub-tree underneath β strongly represents (F �ρ) �β, for
every term t of (F �ρ) �β, t is inconsistent with σ. Therefore, every term
of F �ρ is inconsistent with either β or σ, and thus with π = β ∪ σ. a

Corollary 9.3. Let k ≥ 1, d > 0, 1 ≥ δ > 0, 1 ≥ γ > 0, s, and let
D be a distribution on partial assignments so that for every k-DNF G,
Prρ∈D [G �ρ 6= 1] ≤ d2−δ(c(G))γ

. Then for every k-DNF F , Prρ∈D [h(F �ρ) > 2s] ≤
dk2−δ′sγ′

, where δ′ = 2(δ/4)k and γ′ = γk.

Proof. Let si = (δ/4)i(sγi
), and pi = d2−4si . Note that si−1/4 ≥

(δ/4)si−1 = (δ/4)(δ/4)i−1sγi−1 ≥ (δ/4)isγi
= si. It follows that

∑k
j=i sj ≤

∑

j≥i si/4
j−i ≤ 2si. Also, for any i-DNF G, with c(G) ≥ si−1, Prρ∈D [G �ρ 6= 1] ≤

d2−δ(c(G))γ ≤ d2−δsγ
i−1 = 2−δ(δ/4)i−1(sγi−1

)γ
= d2−4si . Thus, we can apply

theorem 9.2 with parameters p1, . . . , pk, s0, . . . , sk−1. For every k-DNF
F :

Prρ∈D [h(F �ρ) > 2s] ≤ Prρ∈D

[

h(F �ρ) >
∑k−1

i=0 si

]

≤ ∑k
i=1 2(

∑k−1
j=i sj)pi

≤ ∑k
i=1 22si(d2−4si) ≤ dk2−2sk = dk2−δ′sγ′

a
9.2. Converting Res (k) refutations into resolution refutations.

Applications of the small-restriction switching lemma use the fact that
when the lines of a Res (k) refutation are strongly represented by short
decision trees, the refutation can be converted into a narrow resolution
refutation. This does not depend the particular, definition of the Res(k)
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system, but only upon a property called strong soundness: If F is inferred
from F1, . . . , Fj , and t1, . . . , tj are mutually consistent terms of F1, . . . , Fj

respectively, then there is a term t of F implied by
∧j

i=1 ti. In other words,
any reason why F1, . . . , Fk are true implies a reason why F is true. This
is stronger than mere soundness.

Recall the definition of w(C) from Definition 8.1.

Theorem 9.4. Let C be a set of clauses of width ≤ h. If C has a
Res (k) refutation so that for each line F of the refutation, h(F ) ≤ h,
then w(C) ≤ kh .

Proof. We will use the short decision trees to construct a narrow refu-
tation of C in resolution augmented with subsumption inferences: When-
ever A ⊆ B, A

B . These new inferences simplify our proof, but they may
be removed from the resolution refutation without increasing the size or
the width.

For each initial clause C ∈ C, we let TC be the decision tree that queries
the (at most h) variables in C, stopping with a 1 if the clause becomes
satisfied and stopping with a 0 if the clause becomes falsified. For the
other lines, F , let TF be a shortest decision tree that strongly represents
F .

For any partial assignment π let Cπ be the clause of width ≤ h that
contains the negation of every literal in π, i.e., the clause that says that
branch π was not taken.

We construct a resolution proof of width ≤ kh by deriving Cπ for each
line F of the refutation and each π ∈ Br0(TF ).

Notice that for π ∈ Br0(T∅), Cπ = ∅, and for each C ∈ C, for the unique
π ∈ Br0(TC), Cπ = C.

Let F be a line of the refutation that is inferred from the previously
derived formulas F1, . . . , Fj , j ≤ k. Assume we have derived all Cπ ∈
Br0(TFi) for 1 ≤ i ≤ j.

To guide the derivation of {Cπ | π ∈ Br0(TF )}, we construct a decision
tree that represents the the conjunction of F1, . . . Fj . The tree (call it T )
begins by simulating, TF1 and outputting 0 on any 0-branch of TF1. On
any 1-branch, it then simulates TF2, etc. If all j branches are 1, T outputs
1; otherwise T outputs 0. The height of T is at most jh ≤ kh, so the
width of any such Cπ, with π ∈ Br(T ) is at most kh.

Every σ ∈ Br0(T ) contains some π ∈ ⋃j
i=1 Br0(TFi). Therefore, {Cσ |

σ ∈ Br0(T )} can be derived from the previously derived clauses by sub-
sumption inferences.

On the other hand, if σ ∈ Br1(T ), there exists π1 ∈ Br1(TF1), . . . , πj ∈
Br1(TFj ) so that π1 ∪ · · · ∪ πj = σ. Because the decision trees TF1 , . . . TFj

strongly represent the k-DNFs F1, . . . , Fj , there exist terms t1 ∈ F1, . . . , tj ∈
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Fj so that
∧j

i=1 ti is satisfied by σ. By strong soundness of Res (k), there
exists t ∈ F so that σ satisfies t.

Let σ ∈ Br0(TF ) be given. Because TF strongly represents F , σ sets all
terms of F to 0. So by the preceding paragraph, for all π ∈ Br(T ), if π is
consistent with σ, then π ∈ Br0(T ).

We now begin the derivation of Br0(TF ). Let σ ∈ Br0(TF ) be given.
For each node v in T , let πv be the path (viewed as a partial assignment)
from the root to v. Bottom-up from leaves to root, we inductively derive
Cπv ∨ Cσ, for each v so that πv is consistent with σ. When we reach the
root, we will have derived Cσ.

If v is a leaf, then πv ∈ Br0(T ) (because it is consistent with σ), and it
has already been derived.

If v is labeled with a variable that appears in σ, call it x, then there is
a child u of v with πu = πv ∪ {x}. Therefore, Cπv ∨ Cσ = Cπu ∨ Cσ. By
induction, the clause Cπu ∨ Cσ has already been derived.

If v is labeled with a variable x that does not appear in σ, then for both
of the children of v, call them v1, v2, the paths πv1 and πv2 are consistent
with σ. Moreover, Cπv1

∨Cσ = x∨Cπv ∨Cσ and Cπv2
∨Cσ = ¬x∨Cπv∨Cσ.

Resolving these two previously derived clauses gives us Cπv ∨ Cσ. a

Corollary 9.5. Let C be a set of clauses of width ≤ h, let Γ be a
Res (k) refutation of C, and let ρ be a partial assignment so that for every
line F of Γ, h(F �ρ) ≤ h. Then w(C �ρ) ≤ kh.

9.3. Lower bounds the 2n to n weak pigeonhole principle. Here
we prove:

Theorem 9.6. For every c > 1, there exists ε > 0 so that for all n
sufficiently large, if k ≤

√

log n/ log log n, then every Res(k) refutation of

PHP cn
n has size at least 2nε

.

We contrast this with the known upper bounds for PHP 2n
n : Maciel,

Pitassi and Woods [110] demonstrate quasipolynomial size refutations of
PHP 2n

n in Res(polylog(n)). Our results show that super-constant sized
conjunctions are necessary for sub-exponential size proofs of the weak
pigeonhole principle.

Alexander Razborov has announced an improvement of Theorem 9.6:
Theorem 9.7. [145] For every c > 1, there exists ε, δ > 0 so that

for all n sufficiently large, if k ≤ ε log n/ log log n, then every Res(k)

refutation of PHP cn
n has size at least 2nδ

.

His proof uses a switching lemma that is less general (in particular, it
does not clearly apply to random 3-CNFs as we need in Section 10). For
this reason we present the version based upon the more general switching
lemma.
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As in Subsection 8, we perform the analysis on PHP (G) where G
is a suitable bipartite graph. (See Definition 8.2 for the definition of
PHP (G).)

First, all Res (k) refutations are put into a normal form in which no
term of any DNF asks that two pigeons be mapped to the same hole.

Definition 9.3. [20] Let G = (U ∪V,E) be a bipartite graph. A term
is said to be in pigeon-normal-form if it does not contain two literals xu,v

and xu′,v with u 6= u′. A DNF is said to be in pigeon-normal-form if all
of its terms are in pigeon-normal-form and a Res (k) refutation is said to
be in pigeon normal form if every line is in pigeon-normal-form.

Every Res (k) refutation of PHP (G) can be transformed into a refuta-
tion in pigeon normal form which at must doubles the number of lines in
the proof. When there is an AND-introduction inference that creates a
line not in pigeon normal form, say

(A ∨ xu,v)
(

A ∨ xu′,v

)

· · · (A ∨ lj)
A ∨

(

xu,v ∧ xu′,v ∧
∧j

i=3 li

)

Replace the inference by a derivation that resolves A∨xu′,v with ¬xu,v∨
¬xu′,v to obtain A ∨ ¬xu,v. Resolve this with A ∨ xu,v to obtain A. We
may proceed through the rest of the proof with A because it subsumes

A ∨ xu,v ∧ xu′,v ∧
∧j

i=3 li.
Now we define our family of random restrictions.

Definition 9.4. For a bipartite graph G = (U∪V,E) and a real number
p ∈ [0, 1], let Mp(G) denote the distribution on partial assignments ρ
given by the following experiment:

Independently, for each v ∈ V , with probability 1 − p choose to match
v and with probability p leave v unmatched. If v is matched, uniformly
select a neighbor u of v, set xu,v to 1, and for every w 6= u that is a
neighbor of v, set xw,v to 0. Moreover, for each v′ 6= v, set xu,v′ = 0.

Let Vρ be the set of vertices of V matched by ρ, let Uρ be the set of
vertices of U matched by ρ, and let Sρ = Uρ ∪ Vρ.

It is easy to check that for any ρ ∈ Mp(G), we have that PHP (G) �ρ=
PHP (G− Sρ).

Lemma 9.8. Let p ∈ [0, 1], i ∈ [k] be given. Let G = (U ∪ V,E) be a
bipartite graph with ∆ = ∆(G). Let F be an i-DNF in pigeon-normal-

form: Prρ∈Mp(G) [F �ρ 6= 1] ≤ 2−
(log e)(1−p)ic(F )

i∆i+1 .

Proof. For a term T , define the holes of T as Holes(T ) = {v | xu,v ∈
T or ¬xu,v ∈ T}. We say that two terms T and T ′ are hole-disjoint if
Holes(T ) ∩ Holes(T ′) = ∅.
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Because F contains at least c(F )/i many variable-disjoint terms, and
each hole v ∈ V appears in at most ∆ many variables, F must contain at
least c(F )/i∆ many hole-disjoint terms.

The events of satisfying hole-disjoint terms are independent, and for a
given term, T , the probability that T �ρ= 1 is at least (1 − p)i/∆i. This
is because with probability (1− p)i, every hole of T is matched, and with
probability at least 1/∆i the holes are matched in a way that satisfies T
(here we use that F is in pigeon-normal-form). Therefore, we have that:

Prρ [F �ρ 6= 1] ≤
(

1 − (1 − p)i/∆i
)

c(F )
i∆ ≤

(

e−(1−p)i/∆i
)

c(F )
i∆

= 2−
(log e)(1−p)ic(F )

i∆i+1

a
For the proof to work, we need that after the application of a random

restriction ρ , with high probability, G − Sρ contains a good boundary
expander as a subgraph (and therefore PHP (G) �ρ requires large width
to refute). We call such graphs robust.

Definition 9.5. A bipartite graph G with m left vertices, n right ver-
tices, and maximum right degree d is said to be (p, r, η)-robust, if when ρ
is selected from Mp(G), with probability at least 1

2 , G − Sρ contains an
(m− (1 − p)n, pn, d, r, η)-boundary expander as a subgraph.

All we need for the size lower bound is the following lemma, which is
proven in [152]. The proof is a straightforward probabilistic construction:
A random subgraph of a random graph is itself a random graph, random
graphs are good expanders.

Lemma 9.9. [152] For all c > 1, there exists d, c1, c2 > 0 so that for n
sufficiently large, there exists a bipartite graph G on vertex sets [cn] and
[n] that is (3/4, c1(n/ ln n), c2 lnn)-robust and has ∆(G) ≤ d log n .

Lemma 9.10. For any c > 1 and d, c1, c2 > 0, there exists ε > 0
so that for all n sufficiently large, if k ≤

√

log n/ log log n and G is a
(3/4, c1(n/ ln n), c2 lnn)-robust bipartite graph with vertex sets of sizes cn
and n and ∆(G) ≤ d log n, then Sk(PHP (G)) ≥ 2nε

.

Proof. By Lemma 9.8, for each i ∈ [k] and every i-DNF F ,

Prρ∈M3/4(G) [F �ρ 6= 1] ≤ 2
− (log e)(1−3/4)ic(F )

i(d log n)i+1 = 2
− (log e)c(F )

i·4i(d log n)i+1 .

In the interest of obtaining a better bound, we will not appeal to Corol-
lary 9.3, but directly apply Theorem 9.2. We define sequences s0, . . . , sk

and p1, . . . , pk for use in the switching lemma. Set s0 = 3
4k (c1c2n/2 − 1).

For each i ∈ [k], set si = si−1 ·
(

log e

2i4i(d log n)i+1

)

. For each i ∈ [k] set

pi = 2−2si . For every i-DNF F so that c(F ) > si−1, we have the following
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inequality:

Prρ∈M3/4(G) [F �ρ 6= 1] < 2
−

(log e)si−1

i·4i(d log n)i+1 = 2
−2

(log e)si−1

2i4i(d log n)i+1 = 2−2si = pi

An easy calculation (presented below in Lemma 9.12) shows that there
exists ε > 0 so that for sufficiently large n, sk ≥ nε. Suppose that Γ is a
Res(k) refutation of PHP (G) of size less than 2nε

. By an application of
Theorem 9.2 and the union bound, we have:

Prρ∈M3/4(G)

[

∃F ∈ Γ, h(F �ρ) >
k−1
∑

i=0

si

]

≤ 2nε
k

∑

i=1

pi2
∑k−1

j=i sj ≤ 2sk

k
∑

i=1

pi2
∑k−1

j=i sj =

k
∑

i=1

pi2
∑k

j=i sj

We now bound pi2
∑k

j=i sj for each i > 0. For each i, si+1 < 1
4si so

∑k−1
j=i sj ≤ 4

3si. This gives us the following inequality:

pi2
∑k−1

j=i sj = 2
∑k−1

j=i sj−2si ≤ 2(4/3−2)si = 2−(2/3)si ≤ 2−(2/3)sk ≤ 2−(2/3)nε

Therefore:

Prρ∈M3/4(G) [∃F ∈ Γ, h(F �ρ) > (c1c2n/2 − 1)/k]

≤ Prρ∈M3/4(G)

[

∃F ∈ Γ, h(F �ρ) >

k−1
∑

i=0

si

]

≤
k

∑

i=1

pi2
∑k−1

j=i sj ≤
k

∑

i=1

2−(2/3)nε ≤ k2−(2/3)nε
= 2log k−(2/3)nε

For n sufficiently large, this probability is strictly less than 1/2. Because
G is a (3/4, c1(n/ lnn), c2 lnn)-robust for ρ ∈ M3/4(G), with probability
at least 1/2, G− Sρ contains a ((c− 1/4)n, (3/4)n, d, c1(n/ lnn), c2 lnn)-
boundary expander. Let β be the assignment that zeroes out the edges
not in the expanding subgraph, and by Lemma 8.7, w(PHP (G) �ρ) ≥
w(PHP (G) �ρ∪β) ≥ c1(n/ ln n)c2 ln n

2 = c1c2n
2 . However, ∀F ∈ Γ, h(F �ρ

) ≤ 1
k (c1c2n/2− 1), so by Corollary 9.5, there is a resolution refutation of

PHP (G) �ρ of width ≤ c1c2n/2 − 1. Contradiction. a
Theorem 9.11. [152] For each c > 1, there exists ε > 0 so that for all

n sufficiently large, if k ≤
√

log n/ log log n, then every Res(k) refutation

of PHP cn
n has size at least 2nε

.

Proof. Apply Lemma 9.9 and choose d so that for sufficiently large
n, there exists a (3/4, c1(n/ ln n), c2 lnn)-robust graph G on vertex sets
cn and n, with ∆(G) ≤ d log n. By Lemma 9.10, there exists ε > 0 so

that for k ≤
√

log n/ log log n, Sk(PHP (G)) ≥ 2nε
. Because PHP (G)
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can be obtained by setting some of the variables of PHP cn
n to 0, every

Res (k) refutation of PHP cn
n can be converted into a Res (k) refutation

of PHP (G) of the same or lesser size. Therefore, all Res (k) refutations
of PHP cn

n must have size at least 2nε
. a

Lemma 9.12. There exists ε > 0, so that all n sufficiently large, with
k ≤

√

log n/ log log n and s0, . . . , sk defined as in the proof of Lemma 9.10,
sk ≥ nε.

Proof. The recursive definition of the si’s gives:

sk =
1

2k
(log e)k 1

k!

(

1

4

)

∑k
j=1 j( 1

d log n

)

∑k+1
j=2 j 3

4k
(n/24 − 1)

Because k ≤
√

log n/ log log n, we have that 1
2k (log e)k 1

k!

(

1
4

)

∑k
j=1 j 3

4k =

n−o(1). Therefore:

sk = n−o(1)(1/d log n)(k+2)(k+1)/2(n/24 − 1) = n−o(1)2−(log(d log n))(k2+3k+2)/2(n/24 − 1)

Because k ≤
√

log n/ log log n and d is a constant, for n sufficiently
large, (log(d log n))(k2 + 3k + 2)/2 = (log n)(1 + o(1))/2. Therefore,

sk = n−o(1)2−(log n)(1+o(1))/2(n/24 − 1)

and there exists ε > 0 so that for all n sufficiently large, sk ≥ nε. a

§10. Expansion clean-up and random 3-CNFs. In this section we
study the sizes of refutations needed to refute random 3-CNFs (as given

by the distribution F∆,n
3 described in Subsection 4.2). In particular, we

give the proof (due to Misha Alekhnovich) that that random 3-CNFs of
constant clause density almost surely require exponentially large Res (k)

refutations, for k ≤
√

log n/ log log n. The Res (k) systems are among
the most powerful propostional proof systems for which non-trivial lower
bounds are known for the refutation of random 3-CNFs.

Theorem 10.1. [8] Let ∆ be a constant. For n sufficiently large with
respect to ∆, with probability 1−o(1) over 3-CNFs F chosen according to

F∆,n
3 , every Res

(

√

n/ log log n
)

refutation of F has size at least 2n1−o(1)
.

The proof of Theoerem 10.1 uses the the small restriction switching
lemma (Theorem 9.2), but with a twist. As in other applications of The-
orem 9.2, a random restriction is used to transform a small Res (k) refu-
tation into a narrow resolution refutation. In order to get a contradiction,
it is shown that the surviving system of equations is still expanding and
therefore requires high-width to refute. This is ensured via an expansion
clean-up procedure that is applied after the random restriction. Expan-
sion clean-up techniques have proved useful for other bounds in proof
complexity and the zero-one optimization [13, 11, 9].
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As in [8], we prove the stronger result that systems of linear equations
over GF2, Ax = b, require exponentially large Res (k) refutations when
A is a (∆n, n,Θ(1),Θ(n),Θ(1)) boundary expander. This simplifies the
analysis of the random restrictions, cf. Lemma 10.11.

10.1. From 3-CNFs to systems of linear equations.

Definition 10.1. Let F be a 3-CNF in variables x1, . . . xn. The system
AFx = bF over GF2 is defined as follows: Translate each clause xε1

j1
∨xε2

j2
∨

xε3
j3

into the equation xj1 + xj2 + xj3 = ε1 + ε2 + ε3 over GF2.
For a system of equations over GF2, Ax = b, we create an equivalent

CNF, CA,b, as follows: Each equation xi + xj + xk = b is encoded as four
clauses of width 3: Let B = {(ε1, ε2, ε3) ∈ GF 3

2 | ε1 + ε2 + ε3 6= b}, and

identify xi +xj +xk = b with
∧

~ε∈B(x1−ε1
i ∨x1−ε2

j ∨x1−ε3
k ). Let CA,b denote

the set of clauses obtained by applying this transformation to all equations
of Ax = b.

We state some easy observations without proof:

Lemma 10.2. Let F be a 3-CNF in variables x1, . . . xn. If the system
AFx = bF is satisfied, then F is also satisfied, but not necessarily vice-
versa. For every system of equations Ax = b, the CNF CA,b is satisfied if
and only if the system of equations Ax = b is satisfied. For any 3-CNF
F , F ⊆ CAF ,bF . If there is a size S Res (k) refutation of F , then there is
a size S Res (k) refutation of CAF ,bF .

10.2. Expansion and expansion clean-up.

Lemma 10.3. Let Ax = b be a system of equations so that A is an
(r, η)-boundary expander with η > 0. For every I ⊆ [m] with |I| ≤ r,
AIx = bI is satisfiable.

Proof. Otherwise, by linear algebra, there is I ′ ⊆ I with
∑

i∈I′ Aix−
bi = 1. Notice that I ′ 6= ∅ and ∂A(I ′) = ∅. However, by the expansion of
A, |∂AI

′| > η|I ′| > 0; contradiction. a
Definition 10.2. Let A ∈ {0, 1}m×n be an (r, η)-boundary expander,

and let J ⊆ [n] be given. Define the relation `e
J on subsets of [m] as:

I1 `e
J I2 ⇐⇒ |I2| ≤ (r/2) ∧

∣

∣

∣
∂A(I2) \

(

⋃

i∈I
Ai ∪ J

)
∣

∣

∣
< (η/2)|I2|(1)

Define the expansion closure of J , eclA(J), via the following iterative
procedure: Initially let I = ∅. So long as there exists I1 so that I `e

J I1,
let I1 be the lexicographically first such set, replace I by I ∪ I1 and remove
all rows in I1 from the matrix A. Set eclA(J) to be the value of I after
this process stops. The matrix A is often clear from the context, and we
accordingly drop the subscript. Let the clean up of A after removing J ,
CLJ(A), be the matrix that results by removing all rows of ecl(J) and all
columns of

⋃

i∈eclA(J)Ai from A.
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Lemma 10.4. Let A ∈ {0, 1}m×n and J ⊆ [n] be given. If CLJ(A) is
non-empty, then CLJ(A) is an (r/2, η/2)-boundary expander.

Proof. Suppose that I1 is a set of ≤ r/2 many rows of CLJ(A) such
that |∂CLJ (A)(I1)| < (η/2)|I1|. Consider a column j ∈ ∂A(I1). There is

exactly one i ∈ I1 with Ai,j = 1, so clearly there is at most one i ∈ I1
with (CLJ(A))i,j = 1. Moreover, if j 6∈ J ∪⋃

i∈ecl(J)Ai, then j is incident

with exactly one row i ∈ I1 in CLJ(A), so j ∈ ∂CLJ (A)(I1). Therefore:

∂A(I1) ⊆ ∂CLJ (A)(I1) ∪
⋃

i∈ecl(J)Ai ∪ J . Therefore:

|∂A(I1) \
⋃

i∈ecl(J)

Ai ∪ J | ≤ |∂CLJ (A)(I1) \
⋃

i∈ecl(J)

Ai ∪ J | < (η/2)|I1|

So ecl(J) `e
J I1, contrary to the definition of ecl(J).

a
Lemma 10.5. Let A ∈ {0, 1}m×n be an (r, η)-boundary expander, and

let J ⊆ [n] be given. If |J | < ηr/4 then |eclA(J)| < (2/η)|J |.
Proof. Suppose for the sake of contradiction that |ecl(J)| ≥ (2/η)|J |.

Let I1, . . . It be the sequence of subsets of [m] that are taken in cleaning
procedure, with each |Ii| ≤ r/2.

First we inductively show that for each s ≤ t, |∂A (
⋃s

i=1 Ii) \ J | ≤
(η/2)|⋃s

i=1 Ii|. For the base case, Equation 1 yields |∂A(I1)\J | ≤ (η/2)|I1|.
For the induction step, assume that |∂A (

⋃s
i=1 Ii)\J | ≤ (η/2)|⋃s

i=1 Ii| for

an arbitrary s < t. By Equation 1, |∂A(Is+1) \
(

J ∪ ⋃

i∈
⋃s

i=1 Ii
Ai

)

| ≤
(η/2)|Is+1|. Because rows added to ecl(J) are removed from the matrix
after each stage of cleaning, the sets I1, . . . It are pairwise disjoint, thus:

∣

∣

∣
∂A

(

⋃s+1

i=1
Ii

)

\ J
∣

∣

∣
≤

∣

∣

∣
∂A

(

⋃s

i=1
Ii

)

\ J
∣

∣

∣
+

∣

∣

∣

∣

∂A(Is+1) \
(

J ∪
⋃

i∈
⋃s

i=1 Ii

Ai

)∣

∣

∣

∣

≤ (η/2)
∣

∣

∣

⋃s

i=1
Ii

∣

∣

∣
+ (η/2) |Is+1| = (η/2)

∣

∣

∣

⋃s+1

i=1
Ii

∣

∣

∣

Now, let i0 be the first index with |⋃i0
i=1 Ii| > (2/η)|J |. Note that

|⋃i0
i=1 Ii| ≤ |⋃i0−1

i=1 Ii| + |Ii0 | ≤ (2/η)|J | + r/2 ≤ (2/η)(ηr/4) + r/2 =

r. Therefore by expansion, |∂A

(

⋃i0
i=1 Ii

)

| > η|⋃i0
i=1 Ii|. Therefore:

|∂A

(

⋃i0
i=1 Ii

)

\ J | ≥ η|⋃i0
i=1 Ii| − |J | > η|⋃i0

i=1 Ii| − (η/2)|⋃i0
i=1 Ii| =

(η/2)|⋃i0
i=1 Ii|. This contradicts the previously established fact that |∂A

(

⋃i0
i=1 Ii

)

\
J | ≤ (η/2)|⋃i0

i=1 Ii|.
a

Lemma 10.6. Let A ∈ {0, 1}m×n be an (r, η)-boundary expander, and
let J ⊆ [n] be given. For all I0 ⊆ [m], if ∂A(I0) ⊆ J then I0 ⊆ eclA(J).
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Proof. We show that for every I ⊆ [m], I `e
J (I0\I). The claim follows

by induction, as eventually every row of I0 will be added to ecl(J). Let
A∗ be the submatrix of A with the rows of I deleted. Let j ∈ ∂A∗(I0 \ I)
be given. If j ∈ ∂A(I0), then by the hypothesis ∂A(I0) ⊆ J , j ∈ J .
Otherwise, there are i1, i2 ∈ I0 with Ai1,j = Ai2,j = 1, but i2 is not a
row of A∗, that is, i2 ∈ I. Therefore, j ∈ ⋃

i∈I Ai. Thus we have that
∂A∗(I0 \ I) ⊆ J ∪ ⋃

i∈I Ai so that I `e
J (I0 \ I). a

10.3. Extracting an expanding matrix with bounded column
degree.

Lemma 10.7. For all constants ∆ > 0, there are constants c, d > 0 so

that with probability 1−o(1) over F chosen by the distribution F∆,n
3 , there

exists a partial assignment ρ so that CAF ,bF �ρ is a sub-CNF of CÂ,b̂ where

Â is an (m′, n, d, cn, 2/5)-boundary expander with m′ ≥ m/2.

Proof. By Lemma 7.2, there is a constant c > 0 so that with probabil-
ity 1−o(1), in the system AFx = bF , the matrixAF is a (cn, 0.8)-boundary
expander. Set r = cn. Let J be r/5 many columns of largest hamming

weight in A. Let Â = CLJ(A). By Lemma 10.4, Â is an (r/2, 2/5)-
boundary expander. Let b be the maximum number of ones in a column
of A that does not belong to J . Because there are 3∆n many ones in
the matrix A, (r/5)b = |J |b ≤ 3∆n. Therefore, b ≤ 3∆n

r/5 = 15∆n
cn = 15∆

c .

Set d = 15∆
c . The matrix Â contains at least m/2 rows because by

Lemma 10.5, |ecl(J)| ≤ (2/c)|J | ≤ (2/(4/5))(r/5) = r/2, and thus the
maximum number of rows deleted is r/2 < m/2.

Because |ecl(J)| ≤ r/2 < r, by Lemma 10.3, there exists a partial
assignment ρ to the variable of

⋃

i∈ecl(J)Ai that satisfies every equation

Aix = bi with i ∈ ecl(J). Consider the system of equations (Ax = b) �ρ.
If an equation Aix = bi is not satisfied by ρ, then i 6∈ ecl(J), and the

restriction of Aix = bi by ρ is Âix = b̂i for some b̂i ∈ {0, 1} (possibly

bi 6= b̂i). Therefore, (Ax = b) �ρ is a subsystem of Âx = b̂, and thus
CA,b �ρ is sub-CNF of CÂ,b̂.

a
10.4. Local consistency and a normal form.

Definition 10.3. Let t be a term. We define ecl(t) to be ecl(V ars(t)).
We say that t is locally consistent if for the formula t∧ [Aecl(t)x = becl(t)]
is satisfiable.

Lemma 10.8. Let t be a locally consistent term. For every I ⊆ [m] with
|I| < r/2, the formula t ∧ [AIx = bI ] is satisfiable.
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Proof. Suppose that t∧ [AIx = bI ] is unsatisfiable. By linear algebra,
there are I ′ ⊆ I and t′ ⊆ t so that:

∑

i∈I′

(Ai − bi) +
∑

x
εj
j ∈t′

(xj − εj) = 1

This forces ∂A(I ′) ⊆ V ars(t′), so that by Lemma 10.6, I ′ ⊆ ecl(t). This
contradicts the hypothesis that t is locally consistent. a

Definition 10.4. A DNF F is said to be in normal form if every term
t ∈ F is locally consistent.

Lemma 10.9. Let A be an (m,n, d, r, η) boundary expander. Let Γ be
a Res (k) refutation of CA,b. There is a refutation Γ′ of CA,b so that the
set of k-DNFs appearing in Γ′ can be partitioned into two sets, Γ′

0 and Γ′
1

satisfying:

1. Every formula in Γ′
0 is a clause of width ≤ 6k

η .

2. |Γ′
1| ≤ k|Γ| and every DNF in Γ′

1 is locally consistent.

Proof. First, we show that for every term t =
∧l

j=1 x
εj

ij
that is locally

inconsistent with respect to Ax = b, there is a width ≤ (6l/η) resolution

derivation of
∨l

j=1 x
1−εj

ij
from CA,b. By Lemma 10.5, |ecl(t)| ≤ 2l/η,

so Aecl(t)x = becl(t) is a system of at most 2l/η many equations, with
each equation contains at most 3 variables. Therefore, the set of clauses
encoding Aecl(t)x = becl(t) is a set of width 3 clauses in at most 6l/c many

variables. Because
(

Aecl(t)x = becl(t)
)

|= ∨l
j=1 x

1−εj

ij
, by the implicational

completeness of resolution with subsumption, there is a width ≤ 6l/eta

derivation of
∨l

j=1 x
1−εj

ij
.

The refutation Γ′ is constructed as follows:

1. For every locally inconsistent term t =
∧l

j=1 x
εj

ij
that appears in Γ,

derive
∨l

j=1 x
εj

ij
using a derivation of width at most 6k/η. These are

the clauses of Γ′
0.

2. Let ρ be the partial assignment that falsifies every locally inconsistent
literal l, that is, ρ(l) = 0 if l is locally inconsistent and all other
variables are unset. For every locally inconsistent literal l, resolve ¬l
against all clauses of CA,b that contain l, thus deriving CA,b �ρ. These
clauses are locally consistent, and are placed into Γ′

1.
3. Now follow the proof structure of Γ �ρ, but do not construct any lo-

cally inconsistent terms of size ≥ 2: Inferences of the form
x

ε1
i1
∨G ... x

εl
il
∨G

t∨G

are replaced by resolution inferences against x1−ε1
i1

∨. . . x1−εl
il

to derive

G. These clauses are placed in Γ′
1.

a
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10.5. Random restrictions and the switching lemma.

Definition 10.5. Let A ∈ {0, 1}m×n be an (r, η)-boundary expander
and let b ∈ {0, 1}m be given. Let ρA,b be partial assignment to the variables
x1, . . . xn generated by the following experiment: Uniformly select a subset
X1 ⊆ {x1, . . . xn} of size ηr

4 . Let Î = ecl(X1) and let x̂ = X1 ∪ {xj | ∃i ∈
Î , Ai,j = 1}. The restriction ρA,b is a uniformly selected assignment to x̂
satisfying AÎ x̂ = bÎ .

In the above definition, take note that |X1| ≤ ηr/4, so that by Lemma 10.5,
|ecl(X1)| < (2/η)|X1| = (2/η)(ηr/4) = r/2 < r. Therefore, by Lemma 10.3,
the system of equations AÎx = bÎ is satisfiable.

Definition 10.6. Let A be a system of equation in variables V . Let GA

be the bipartite graph whose left vertices are V and whose right vertices are
the equations of A. The distance between two variables u and v, dA(u, v),
is their distance in the graph GA. The distance between two terms t1 and
t2, dA(t1, t2), is the minimum distance between variables u and v with u
appearing in t1 and v appearing in t2.

Lemma 10.10. Let A be an (r, η) boundary expander. Let I be a set of
rows with |I| < r/2 and let t be a term so that the formula t ∧ [AIx =
bI ] is satisfiable. The for any satisfiable term t1 with |t1| ≤ k and
dA(ecl(t), t1) > 4k/η, the formula t1 ∧ t ∧ [AIx = bI ] is also satisfiable.

Proof. Suppose that t ∧ t1 ∧ [AIx = bI ] is unsatisfiable. By linear
algebra, there is t′ ⊆ t, t′1 ⊆ t1 and I ′ ⊆ I so that

∑

i∈I′

(Axi − bi) +
∑

x
εj
j ∈t′

(xj − εj) +
∑

x
εk
k ∈t′1

(xk − εk) = 1

We immediately have that ∂A(I ′) ⊆ V ars(t′) ∪ V ars(t′1). Furthermore,
because (AIx = bI) ∧ t and t1 are both satisfiable, there is a path con-
necting t1 to t in GAI

.

Case 1: |I ′ \ ecl(t)| > 2k/η. In this case,
∣

∣

∣

∣

∂A(I ′) \
(

⋃

i∈ecl(t)
Ai ∪ V ars(t)

)
∣

∣

∣

∣

≤ |t1| ≤ k = (η/2)(2k/η) < (η/2)|I ′ \ ecl(t)|

In light of this and the fact that |I ′| ≤ |I| < r/2, ecl(t) `e
t I

′ \ ecl(t).
This contradicts the property that ecl(t) is closed.

Case 2: |I ′ \ ecl(t)| ≤ 2k/η. The minimum length path joining t1 to
ecl(t) passes through at most |I ′ \ecl(t)| many variables not in ecl(t)
before reaching in ecl(t), and thus it has length at most ≤ 2(2k/η) =
4k/η. This contradicts the hypothesis dA(ecl(t), t1) > 4k/η.

a
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Lemma 10.11. Let Y ⊆ X be a set of variables. Assume that b is a
partial assignment to Y that is distributed uniformly over some affine sub-
space of {0, 1}X . For any term t in l many Y variables, either Prb[t �b=
1] = 0 or Prb[t �b= 1] ≥ 2−l.

Proof. Let a+L be the affine subspace of {0, 1}X over which b is dis-

tributed. Write t =
∧l

i=1 x
εi
i . Choose a basis extending the independent

variables of t, ie. choose I ⊆ [l] and vectors {ei | i ∈ I} ⊆ {0, 1}X that
are linearly independent modulo L, and so that for i ∈ [l] \ I, bi is equal
to an affine combination of {bj | j < i}. We immediately have that the

probability that the term t is satisfied is either 0 or 2−|I| ≥ 2−l. a
Lemma 10.12. Let A be an (m,n, d, r, η)-boundary expander such that

d ≥ 2. Let b ∈ {0, 1}m be arbitrary. There exists a > 0 (dependent upon
only η and the ratio r/n, and increasing in both quantities) such that for
any k-DNF F so that F is in normal form:

PrρA,b
[F �ρA,b

6= 1] < 2−c(F )/dak

Proof. Let F be a k-DNF in normal form with covering number c(F ).

Let ρA,b, X1 and Î be generated as in Definition 10.5. The DNF F
contains at least c(F )/k many variable disjoint terms, and each of these
has its variables contained in X1 with independent probability (ηr/4n)k.
Therefore, there expected number of variable disjiont terms from F whose

variables are contained in X1 is at least c(F )/k(ηr/4n)k = c(F )
k(ηr/4n)k . Let

B1 denote the event that there are strictly fewer than c(F )
2k(ηr/4n)k many

terms of F whose variables are contained in X1. By the Chernoff bounds,

Corollary 7.4, the probability of B1 is at most e
−

c(F )

16k(ηr/4n)k .
Consider the event that B1 fails. Denote the set of variable disjoint

terms from F whose variables are contained in X1 as F0. Define M =

b η·c(F )

4k2dd4k/ηe(ηr/4n)k c. Let t1 be the first term in F0. Because t1 is locally

consistent, by Lemma 10.8, t1 ∧ [AÎx = bÎ ] is satisfiable, and thus by

Lemma 10.11, t1 is satisfied by ρA,b with probability at least 2−k. If
t1 is satisfied, terminate the process. Otherwise, we repeat as follows:
Suppose that we have considered terms t1, . . . tl from F0. Let t(l) be the
term corresponding to the values given to V ars(t1) ∪ . . . ∪ V ars(tl) by
ρA,b. In the following paragraph it is shown that so long as l ≤M , there

is a term t ∈ F0 with dA(t, ecl(t(l))) > 4k/η; let tl+1 be such a term.

By Lemma 10.10, tl+1 is consistent with AÎx = bÎ ∧ t(l), and thus by

Lemma 10.11, tl+1 is satisfied by ρA,b with probability at least 2−k. Let
B2 denote the event that none of the terms t1, . . . tM are satisfied by ρ:
Multiplying out the conditional probabilities shows that the probability

of B2 is at most (1 − 2−k)M ≤ e−M/2k
.
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Now we show that for any term t with |t| < Mk, there exists a term t′ ∈
F0 so that d(ecl(t), t′) > 4k/η. Let V ∗ be the set of all variables at distance

≤ 4k/η from ecl(t). Because |t| < Mk ≤ b η·c(F )

4k2dd4k/ηe(ηr/4n)k c ·k ≤ ηr/4, by

Lemma 10.5, |ecl(t)| ≤ 2|t|/η < 2Mk/η. Because |V ∗| ≤ dd4k/ηe|ecl(t)| <
dd4k/ηe2Mk/η < dd4k/ηe2b η·c(F )

4k2dd4k/ηe(ηr/4n)k ck/η ≤ c(F )
2k(ηr/4n)k ≤ |F0|, and

F0 contains only variable disjoint terms, there exists a term t′ ∈ F0 with
V ars(t) ∩ V ∗ = ∅. In other words, d(ecl(t), t′) > 4k/η.

The event that F �ρ 6= 1 is contained within B1 ∪ B2. Therefore, the
probability that F �ρ 6= 1 is at most

e
− c(F )

16k(ηr/4n)k + e
−b

η·c(F )

4k2dd4k/ηe(ηr/4n)k
c/2k

Taking a sufficiently small with respect to η and r/n completes the
proof. a

10.6. Width bound for expanding systems of linear equations.

Lemma 10.13. If A is an (m,n, d, r, η)-boundary expander, then w(CA,b) ≥
rη
2 .

Proof. For each i ∈ [m], let Ei denote the conjunction of clauses
equivalent to Aix = bi. Define the measure of a clause C as µ(C) =
min{|I| :

∧

i∈I Ei |= C}. Observe that µ : Γ → {0, . . . m} maps each
clause of CA,b to 1. Furthermore, µ(∅) ≥ r by Lemma 10.3. Finally, µ is
subadditive with respect to the resolution rule: µ(A ∨ B) ≤ µ(A ∨ x) +
µ(B ∨ ¬x).

Choose a clause C in Γ with r/2 ≤ µ(C) < r. Choose I0 ⊆ [m] so that
|I0| = µ(C) and

∧

i∈I0
Ei |= C. Let j0 ∈ δ(I0) be given and let i0 ∈ I0

be the unique neighbor of j0 in I0. Suppose for the sake of contradiction
that no variable of C contains the variable xj0. Choose an assignment
α satisfying

∧

i∈I0\{i0}
Ei and falsifying C. Define the assignment α′ to

agree with α off xj0 and to set xj0 to 1. Because C does not contain the
variable xj0, α

′ 6|= C. However, α′ |= ∧

i∈I0
Ei. Thus we contradict the

defining property of I0, so for every i0 ∈ δ(I0) there is some variable Xi0,j0

present in C and thus the width of C is at least |δ(I0)| ≥ ηr
2 . a

10.7. Proving Theorem 10.1.

Proof. (of Theorem 10.1) By Lemma 10.7, there are constants c, d > 0

so that with probability 1−o(1) over F selected by the distribution F∆,n
3 ,

there exists a partial assignment κ so that CAF ,bF �κ is a sub-CNF of

CÂ,b̂ for some (m′, n, d, cn, 0.4)-boundary expander Â with m′ ≥ m/2.

Consider n sufficiently large so that 15k ≤ (1/k)((cn/40) − 1). We show
that in this event, the minimum size of any Res (k) refutation of CAF ,bF is

at least S = (dak/k2)2
(1/k)((cn/40)−1)

2dak2 . Suppose for the sake of contradiction
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that Γ is Res (k) refutation of CAF ,bF of size strictly less than S. By
application of the partial assignment κ, Γ �κ is a refutation of CÂ,b̂.

By Lemma 10.9, there is a refutation Γ′ of CÂ,b̂ so that the DNFs of Γ′

can be partitioned into sets Γ′
0 and Γ′

1 so that every formula in Γ′
0 is a

clause of width at most 6k
0.4 = 15k, all DNFs in Γ′

1 are locally consistent,
and |Γ′

1| ≤ k|Γ| < kS.
Apply a random restriction ρ = ρÂ,b̂ to Γ′. By Lemma 10.11, there

is a constant a > 0 so that every locally consistent k-DNF F has that

Prρ[F �ρ 6= 1] < 2−c(F )/dak
. Thus, by Corollary 9.3, for every k-DNF F ,

Prρ[h(F �ρ) > (1/k)((cn/40) − 1)] < k
dak 2

−
(1/k)((cn/40)−1)

2dak2 = 1/(kS). By

the union bound, there exists ρ so that every F ∈ Γ′
1 is strongly repre-

sented by a decision tree of height at most (1/k)((cn/40) − 1). More-
over, every clause in Γ′

0 is strongly represented by a decision tree of
height at most (1/k)((cn/40) − 1) because each such clause has width
≤ 15k ≤ (1/k)((cn/40) − 1). Therefore, by Theorem 9.4, there is a reso-
lution refutation of CÂ,b̂ �ρ of width at most (cn/40) − 1.

On the other hand, CÂ,b̂ �ρ is a sub-CNF of CA∗,b∗ where A∗ is an

(r/4, 0.2)-boundary expander. By Lemma 10.13, all resolution refutations
of CA∗,b∗ must have width ≥ cn/40. Contradiction.

a

§11. Resolution pseudowidth and very weak pigeonhole prin-
ciples. We do not obtain meaningful bounds for resolution refutations of
PHPm

n by using the techniques of Subsection 8.1 when m ≥ n2. Restrict-
ing to PHP (G) where is G is a suitably expandingm to n bipartite graph,
does not work because each pigeon must be allowed at least one hole and
that forces the number of variables to be at least n2, so that Corollary 8.2

yields only that s(PHPm
n ) ≥ s(PHP (G)) ≥ 2Θ((n−iw(PHP (G)))2/n2) =

Θ(1) (where s(F ) denotes the minimum resolution refutation size of F ).
Similar difficulties are encountered when one tries to extend the bottle-
neck counting approach of [87, 60].

The first superpolynomial size lower bound for resolution refutations of
PHPm

n , with m ≥ n2, was shown by Ran Raz [137] (building upon similar
bounds for regular resolution [131]). Subsequently, Alexander Razborov
found a short proof based on the analysis of a parameter that he dubbed
the pseudowidth [143]. Here we present the simplest version of this argu-
ment; stronger versions appear in [143, 142, 146].

Theorem 11.1. [143] For all natural numbers m > n ≥ 1, every reso-

lution refutation of PHPm
n has size at least 2

√
n/(512(log2 m)2). Moreover,

regardless of the value of m, every resolution refutation of PHPm
n has

size at least 2
4
√

n/4096.
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11.1. A monotone normal form.

Definition 11.1. [58] The monotone calculus is refutation system for
refuting instances of PHPm

n . Its lines are positive clauses in the variables
xi,j , i ∈ [m], j ∈ [n]. It has one inference rule, the monotone rule.
Whenever I0, I1 ⊆ [m] with I0 ∩ I1 = ∅, and C0, C1 and C are positive
clauses with C0 ∪ C1 ⊆ C:

C0 ∨
∨

i∈I0
xi,j C1 ∨

∨

i∈I1
xi,j

C

A monotone calculus refutation of PHPm
n is a sequence of positive clauses

such that each clause is either
∨n

j=1 xi,j for some i ∈ [m], or follows from
two preceding clauses by the application of the monotone rule. The size of
a monotone calculus refutation is the number of clauses that it contains.
Let sMC(PHPm

n ) denote the minimum size of a monotone calculus refu-
tation of PHPm

n .

Lemma 11.2. [58] For every m and n, sR(PHPm
n ) ≥ sMC(PHPm

n ).

Proof. Let Γ be a resolution refutation of PHPm
n with |Γ| = sR(PHPm

n ).
Replace every clause C in Γ by the positive clause CM defined as follows:
The clause CM contains every positive literal contained in C, and for
every negative literal ¬xi,j that appears in C, CM contains the disjunc-
tion

∨

k∈[n]\{j} xi,k. Notice that whenever A ⊆ B, AM ⊆ BM , and that

∅M = ∅. The initial clauses
∨

j∈[n] xi,j remain unchanged by the transfor-

mation C 7→ CM but the initial clauses of the form ¬xi,k ∨ ¬xj,k become
∨

l∈[n]\{k} xi,l∨
∨

l∈[n]\{k} xj,l. The latter clauses are not legal initial clauses

for a monotone calculus derivation, so we throw them away. Let ΓM de-
note Γ with the initial clauses ¬xi,k ∨ ¬xj,k removed, and every other

clause C replaced by CM . Notice that the number of lines in ΓM is no
more than the number of lines in Γ.

We now show that ΓM is a valid monotone calculus refutation of PHPm
n .

Consider a clause C = A∨¬xk,j that follows by resolving A∨xi,j with an

initial clause ¬xi,j ∨ ¬xk,j. Notice that when we combine (A ∨ xi,j)
M =

AM ∨xi,j with the initial clause
∨

l∈[n] xl,j = xk,j ∨
∨

l∈[n]\{j} xk,l using the

monotone rule, we obtain AM ∨ ∨

l∈[n]\{j} xk,l = CM . Finally, consider

a clause C = A ∨ B that follows from A ∨ xi,j and B ∨ ¬xi,j by an
application of the resolution rule and B is not an initial clause of the form
¬xi,j ∨¬xk,j. We have that (A∨xi,j)

M = AM ∨xi,j, that (B ∨¬xi,j)
M =

BM ∨∨

k∈[n]\{j} xi,k, and that CM ⊆ BM ∨AM . Applying the monotone

rule derives CM .
a

11.2. Pseudowidth.
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Definition 11.2. Let C be a positive clause. For each i ∈ [m], the
holes for pigeon i in C is defined as Ji(C) = {j ∈ [n] | xi,j occurs in C}.
The degree for pigeon i in C is di(C) := |Ji(C)|. Let ~d ∈ [n]m be given;

we call ~d a filter. A ~d-axiom is a clause
∨

j∈J xi,j with |J | ≥ di. Let δ

be given. We say that pigeon i ∈ [m] passes the filter if di(C) < di, and

that it narrowly passes the filter ~d if 0 < di − di(C) ≤ δ. Define the set of

narrowly-passing pigeons for a positive clause C with filter ~d and margin δ
as I~d,δ

(C) = {i ∈ [m] | di − δ ≤ di(C) < di}. The pseudo-width of C with

respect to ~d and δ, w~d,δ
(C), is the number of pigeons in C that narrowly

pass the filter: w~d,δ
= |I~d,δ

(C)|. The pseudo-width of a monotone calculus

refutation is the maximum pseudowidth of its clauses.

11.3. Reducing the pseudowidth of a small refutation.

Lemma 11.3. Let m and n be integers, with m > n ≥ 1, and define
δ = n

2 log2 m . Suppose that there exists a monotone calculus refutation Γ

of PHPm
n that has size ≤ S. There exists an integer vector ~d ∈ [n]m

so that (1) for each i ∈ [m], di > δ, and (2) there exists a monotone

calculus refuation Γ′ of a set of ~d-axioms which also has size ≤ S and has
w~d,δ

(Γ′) ≤ 16 lnS.

Proof. For each clause C of Γ, define the vector ~r(C) ∈ [n]m as

ri(C) = b(n − di(C))/δc + 1. Let W (C) =
∑m

i=1 2−ri(C). Below we

use a probabilistic construction to generate ~d so that for every clause C
of Γ:

W (C) ≥ 2 lnS ⇒∃i ∈ [m], di ≤ di(C)

W (C) ≤ 2 lnS ⇒ |{i ∈ [m] | d− di ≤ δ}| ≤ 16 lnS

Call this property “Property A”. Set t = blog2mc − 1 and let D be
the random variable that takes the value n − δr with probability 2−r

(for r = 1, . . . t − 1), and that takes the value n − δt with probability

21−t. Choose the vector ~d using m independent trials of D. Notice that
property (1) is satisfied because the smallest each di can be is n − δt =
n − δ (blog2mc − 1) = δ + n − δblog2mc ≥ δ + n − δ log2m = δ + n −
(n/2 log2m) log2m = δ + n/2 > δ.

Consider each clause C with W (C) ≥ 2 lnS. Let H = {i ∈ [m] |
ri(C) ≤ t}. Clearly,

∑

i∈[m]\H 2ri(C) ≤ m2−t+1 = m2−blog2 mc+1 ≤ 2, so

that
∑

i∈H 2−ri(C) ≥ 2 lnS−2. Now consider one of the events di(C) ≥ di

with i ∈ H. Because di(C) = n − δ
(

n−di(c)
δ

)

≥ n − δ
(

bn−di(c)
δ c + 1

)

=

n− δri(C), we have that Pr[di(C) ≥ di] ≥ Pr[n− δri(C) ≥ di] ≥ 2−ri(C).
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Because the events di(C) ≥ di are independent for distinct i:

Pr[∀i ∈ [m], di(C) < di] ≤ Pr[∀i ∈ H, di(C) < di] =
∏

i∈H

(1 − 2−ri(C))

≤ e−
∑

i∈H 2−ri(C) ≤ e−(2 ln S−2) < S−1

Consider each clause with W (C) ≤ 2 lnS. Note that for all i ∈ [m],
δ(ri(C)− 1) ≤ n− di(C). For each i ∈ [m], Pr[di(C) ≥ di − δ] = Pr[di ≤
di(C) − δ] ≤ Pr[di ≤ n− δri(C)] ≤ 22−ri(C). Therefore:

E[|{i ∈ [m] | di(C) ≥ di − δ}|] ≤ 4

m
∑

i=1

2−ri(C) = 4W (C) ≤ 8 lnS

Beause the events are independent, by Corollary 7.4 (Chernoff-Hoeffding
bounds), the probability that |{i ∈ [m] | di(C) ≥ di − δ}| ≥ 16 lnS is
≤ e−(3/8)8 ln S ≤ e−3 ln S < S−1.

Because there are at most S clauses in the refutation Γ, and Property

A fails at each clause with probability < S−1, there is a choice of ~d so
that Property A holds for every clause of Γ. Every clause C such that

∃i ∈ [m], di ≤ di(C) is subsumed by some ~d-axiom
∨

j∈J xi,j. Replace

C by one of the subsuming ~d-axioms, the pseudowidth of the ~d-axiom
is one. Notice that replacing C by C ′ ⊆ C preserves all applications of
the monotone inference rule when C is a hypothesis. We remove any
inferences in which C is a consequent because it has been replaced by a
~d-axiom.

a
11.4. A lower bound on pseudowidth.

Lemma 11.4. Let A be a set of ~d-axioms and let δ > 0 be given with
δ < mini∈[m] di. Every monotone refutation R of A satisfies wd,δ(R) ≥
δ2/(8n ln |A|).

Proof. Let w0 = δ2

8n ln |A| . Suppose for the sake of contradiction that

Γ is a monotone calculus refutation of PHPm
n with pseudowidth < w0.

For each assignment a let Ji(a) = {j ∈ [m] | ai,j = 1}. Set l = d δ
4w0

e.
Let D be the set of partial assignments a such that ∀i1, i2 ∈ [m], i1 6=
i2 ⇒ Ji1(a) ∩ Ji2(a) = ∅ and ∀i ∈ [m], |Ji(a)| ≤ l.

Let |= denote entailment with respect to the assignments of D: Let S
be a set of positive clauses and let C be a positive clause. If for all a ∈ D,
(∀B ∈ S, B(a) = 1) ⇒ (C(a) = 1), then we write S |= C.

For each i ∈ [m] let Ai be the set of axioms from A of the form
∨

j∈J xi,j.

For i ⊆ [m], let AI =
⋃

i∈I Ai. For each C let AC = AI~d,δ
(C). We now

show that for all C ∈ R, AC |= C. This is a contradiction because ∅ ∈ Γ,
yet A∅ is the empty set of clauses so A∅ 6|= ∅.
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For C ∈ A, we have C ∈ AId,δ(C) = AC and thus AC |= C. Now

consider the induction step: AC0 |= C0, AC1 |= C1, and C follows from
C0 and C1 via the monotone rule. By soundness of the monotone rule,
AI~d,δ

(C0) ∪ AI~d,δ
(C1) |= C. Let I ⊆ I~d,δ

(C0) ∪ I~d,δ
(C1) be of minimal size

so that AI |= C. Below we show that I ⊆ I~d,δ
(C), which guarantees that

AI~d,δ
(C) |= C.

We now show that I ⊆ Id,δ(C). Suppose not and choose i0 ∈ I \Id,δ(C).
By minimality, AI\{i0} 6|= C. Choose a ∈ D, so that a satisfies AI\{i0}

but a does not satisfy C. Because all clauses in Γ are positive, we may
assume that aij = 0 for all i 6∈ I \ {i0}. Set J0 =

⋃

i∈I Ji(a) ∪ Ji0(C) and
set J1 = [n]\J0. Notice that for every j ∈ J1, the assignment a∪ai0,j = 1
also falsifies C, and that we have |J1| ≥ n−(2w0l+di0−δ) ≥ n−di0 +δ/2.

Uniformly select an set J from
(

J1
l

)

. Extend a to aJ by setting ai0,j = 1

for all j ∈ J . Notice that for all J ∈
(

J1
l

)

, aJ ∈ D because |J | = l, and

J ⊆ J1 ⊆ [n] \
(
⋃

i∈I Ji(a)
)

. Consider A ∈ Ai0. Since |Ji0(A)| ≥ di0 we
have that |Ji0(A)∩J1| ≥ δ/2, and thus |Ji0(A)∩J1| ≥ dδ/2e. Therefore:

PrJ [A(aJ) 6= 1] = PrJ [Ji0(A) ∩ J = ∅] ≤
dδ/2e
∏

k=1

(

1 − l

|J1| − k

)

<

dδ/2e
∏

k=1

(

1 − l

n− di0 + δ/2 − k

)

<

dδ/2e
∏

k=1

(

1 − l

n

)

≤ e−
δl
2n = e−

δdδ/4w0e
2n ≤ e

− δ2

8n(δ2/(8n ln |A|))

= e− ln |A| = |A|−1

By the union bound, the probability over choices of J that there exists
A ∈ Ai0 that is not be satisfied is < 1. Therefore there is some J ∈

(

J1
l

)

such that aJ satsfies every clause of Ai0 . Moreover, because aJ extends a,
aJ satisfies every clause of AI\{i0}. On the other hand, because J ⊆ J1,

aJ falsifies C. We have demonstrated aJ ∈ D such that aJ satisfies every
clause of AI but aJ falsifies C, so AI 6|= C, contradicting the choice of I.

a

11.5. The proof of Theorem 11.1. Let Γ be a monotone calculus

refutation of PHPm
n of size S. Apply Lemma 11.3 and choose ~d with

δ = n/2 log2m so that w~d,δ
(Γ) ≤ 16 lnS. By Lemma 11.4, however,

w~d,δ
(Γ) ≥ δ2/(8n lnS) = (n/2 log2m)2/8n lnS = n/(32(log2m)2(lnS)).

Therefore 16 lnS ≥ n2/(32(log2m)2(lnS)), and thus lnS ≥
√

n
512(log2 m)2

.
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Because a monotone calculus refutation of size S can use at most S
axioms, each mentioning at most two pigeons, we always have the re-

lation that m ≤ 2S. Therefore lnS ≥
√

n
512(log2 2S)2 . Rearranging

(and bounding some sloppy constants) reveals that 8 ln4 S ≥ n
512 so that

lnS ≥ 4
√

n
4096 . By Lemma 11.2, these bounds also apply to resolution

refutations of PHPm
n .

Part 3. Open problems, further reading, acknowledgments

There are several propositional proof systems for which we do not yet
have superpolynomial size lower bounds. Of particular interest are the the
Lovász-Schrijver systems and constant-depth Frege systems with modular
counting gates, as superpolynomial formula size bounds are known for
the formulas of these proof systems but no superpolynomial size lower
bounds are known for the proof systems. Lower bounds for Frege proofs
conditioned upon a complexity theoretic assumption weaker than NP 6=
coNP would also be very interesting.

Are there polynomial size, constant-depth Frege refutations of PHP 2n
n ?

And if so, can I∆0(R) prove prove php2n
n (R)? A positive resolution to

this problem would solve the long-standing open problem of whether or
not I∆0 can prove the infinitude of the primes, and its negative resolution
would require new techniques that distinguish between computability by
constant-depth formulas and provability by constant-depth proofs [136].

There are several propositional proof systems for which the complexity
of refuting random 3-CNFs is unknown, such as cutting planes, Lovász-
Schrijver refutations, OBDD refutations and constant-depth Frege sys-
tems. Results for any of these would be interesting. Moreover, it would
be nice if size lower bounds for refuting random 3-CNFs by arbitrary
propositional proof systems could be established under a plausible com-
plexity theoretic conjecture.

The current notion of automatizability considers only the time complex-
ity of finding reasonably small refutations when very small refutations are
known to exist. However, as discussed in Subsection 6.1, for many satis-
fiability algorithms, space consumption is also a bottleneck. So what can
be said about automatizability that takes to accout both time and space?

Our understanding of whether or not there exists a p-optimal proposi-
tional proof system is still somewhat hazy. It would be wonderful if the
(non)-existence of a p-optimal system could be shown to follow from a
plausible hypothesis or to entail an implausible consequence. Metamath-
ematical apsects could be worth investigating as well.

Further reading. For more on theories of bounded arithmetic, con-
sult [50, 134, 100]. A survey by Alexander Razborov [144] provides further
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material on the proof complexity of the propositional pigeonhole princi-
ple, and gives proofs for a connection with the provability of circuit lower
bounds. A survey by Jacobo Torán [158] provides further information on
connections between between resolution space, size, and width.

This far from the first survey on propositional proof complexity, and
the others offer a different emphasis. Results prior to 1995 are more thor-
oughly covered in [159] and [100]. Parallels between circuit and proof
complexity are dealt with more thoroughly in [31]. Feasible interpola-
tion, automatizability, and lower bounds for constant-depth systems via
H̊astad’s switching lemma are covered more thoroughly in [26] than in
this article.
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On August 5th, 2006, propositional proof complexity lost one of its lead-
ing young contributors when Misha Alekhnovich was killed in a kayaking
accident in Russia. This survey is dedicated to his memory.
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[102] J. Kraj́ıček, On the weak pigeonhole principle, Fudamenta Mathematicae,
vol. 170 (2001), pp. 123–140.
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Appendix A. Notation. For a binary string s we let |s| denote the

length of s. For a set S and a natural number k we write
(

S
k

)

to denote
the set of all size k subsets of S. For a graph G, we will write ∼G to
denote the adjacency relation of G.
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A literal is a variable or its negation. For a variable x, we sometimes
write x0 to denote the literal ¬x and x1 to denote the literal x. The literal
x is said to be positive, and the literal ¬x is said to be negative.

A clause is a constant 0 or 1 or a disjunction of literals. Our convention
is that a clause is specified as a set of literals, with 0 corresponding to
the empty set and 1 to any literal and its negation. We say that a clause
C contains a literal l if l ∈ C, and that a clause C contains a variable
x if either x ∈ C or ¬x ∈ C. Dually, a term is a constant 0 or 1 or a
conjunction of literals. Our convention is that a term is specified as a set
of literals, with 1 corresponding to the empty set and 0 to any literal and
its negation. We say that a term T contains a literal l if l ∈ T , and that a
term T contains a variable x if either x ∈ T or ¬x ∈ T . We often identify
literals with clauses and terms of size one, and will write l instead of {l}.
A DNF is a disjunction of terms, specified as a set of terms. A k-DNF
is a DNF whose terms are each of size at most k. A clause is a 1-DNF,
i.e. a disjunction of literals. The width of a clause C, written w(C), is
the number of literals appearing in C. The width of a set of clauses is
the maximum width of any clause in the set. A CNF is a conjunction of
clauses, specified as a set of clauses. A k-CNF is a CNF whose clauses
are each of width at most k. Two terms t and t′ are consistent if there is
no literal l with l ∈ t and ¬l ∈ t′.

The notation
∨m

i=1 Fi denotes the disjunction of formulas Fi and the
notation

∧m
i=1 Fi denotes their conjunction; the order of parenthesization

is not relevant in contexts that use this notation.
For a Boolean formula F , the alternation depth of F , written dp(F ),

is the maximum number of alternations between connectives along any
path from F ’s root connective to a literal. A literal has depth zero.

A substitution is a mapping from propositional variables to proposi-
tional formulas. When F is a formula and σ is a substitution, F [σ] de-
notes the formula obtained by simultaneously replacing every variable by
its image under σ. There is no further simplification of the formula.

A restriction is a mapping from a set of variables to {0, 1, ∗}. This is
thought of as a substition that maps every x to either 0, 1 or x (where
ρ(x) = ∗ in the event that x maps to x- “x is unset”). For a formula F
and a restriction ρ, the restriction of F by ρ, F �ρ is defined a defined as
usual, simplifying when a sub-expression has become explicitly constant.
For any restriction ρ, let dom(ρ) denote the set of variables to which ρ
assigns the value 0 or 1. Sometimes, we represent a restriction by a set of
literals π, with the interpretation that a variable x maps to 0 if ¬x ∈ π,
to 1 if x ∈ π and it is unchanged otherwise.

When F and G are Boolean formulas we write G |= F to mean that
whenever G is satisfied, then F is also satisfied. Similarly, if S is a set of
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formulas and F is a formula, S |= F means that whenever every formula
of S is satisfied, F is also satisfied.

Let f and g be functions from N to N. We write f = O(g) if there exists
c > 0 and n0 ∈ N so that ∀n ≥ n0, f(n) ≤ c · g(n). We write f = Ω(g) if
there exists c > 0 and n0 ∈ N so that ∀n ≥ n0, g(n) ≤ c · f(n). We write
f = Θ(g) if f = O(g) and f = Ω(g).
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