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An algorithm is presented which finds (the size of) a maximum independent set of 
an n vertex graph in time O(2°.276”) ’ p lm roving on a previous bound of O(2”13). 
The improvement comes principally from three sources: first, a modified recursive 
algorithm based on a more detailed study of the possible subgraphs around a chosen 
vertex; second, an improvement, not in the algorithm but in the time bound proved, 
by an argument about connected regular graphs; third, a time-space trade-off which 
can speed up recursive algorithms from a fairly wide class. 0 1986 Academic PIM, IX. 

1. INTRODUCTION 

Finding a maximum independent set (m.i.s.) of a graph is a well-known 
NP-hard problem, equivalent to finding a maximum clique of the comple- 
mentary graph [3]. Several algorithms [l, 21 have been published intended to 
give reasonable average behaviour on instances of these problems with some 
input distribution. One algorithm [5] is specially designed to achieve a good 
worst case; it runs in time 0(2’“) for c < l/3 where n is the order of the 
graph and returns the size of a m.i.s.; it is easy to modify it if required to 
return one independent set of this maximum size. 

This paper gives two versions of a new but similar algorithm which 
returns the size of a m.i.s. with the constant c reduced significantly below $. 
The first version runs in polynomial space in time O(2’“) for c < 0.296. The 
second version, which uses exponential space, reduces the value of the 
constant to about 0.276. The way in which use of exponential space can 
speed up an exponential time recursive algorithm is simple and of wider 
applicability. For instance a naive algorithm to decide satisfiability of a 
CNF expression E of n clauses over variables x1,. . . x, (or to decide the 
QBF expression Vx,Sx, . . . x,(E)) would take time O(2”); this can be 
reduced to 0(20.773”) by the same technique. 
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Section 2 of the paper introduces the terminology, notation, and ideas 
which are common to the two versions of the algorithm. Sections 3 and 4 
give the code and analysis of the polynomial space version of the algorithm 
which depends on an auxiliary function, presented separately in Section 5. 
Section 6 discusses the acceleration of this and other algorithms by use of 
exponential space and Section 7 draws some conclusions and suggests 
directions for further work. 

2. BASIC CONCEPTS 

2.1. Notation and Terminology 

Given a graph G or (V, E), if u E V, the degree of u in G will be written 
d(u : G) or simply as d(u) where no ambiguity is likely. N(u) denotes the 
set of neighbours of V in G and N2(u) denotes the set of neighbours in G 
of vertices in N(u) excluding u itself; F(u) = u + N(u). If ZJ E V or 
UC V, we write G-u or G- U for the graph induced on V- {u} or 
V - U by G and in general we write “subgraph” where strictly we mean 
induced subgraph. 

In the program we write edge(u, W) for the predicate that (u, w) E E and 
we adhere to Pascal-like conventions on bracketing, using { } strictly for 
comments and [ ] for set constructors. 

2.2. The Basic Recursiue Structure 

The algorithm is presented as a recursive function ms such that VW(G) = 
]m.i.s. of G]. Most of the ideas in 112s are very simple. The most fundamental 
idea is that given a vertex of G (called B in the program), any maximal 
independent set either contains B (and therefore no neighbour of B) or 
does not contain B. This gives the simple recurrence 

m(G) = max(l + mr(G - N(B)), rm(G - B)). (1) 

If d(B) is large ( 2 8), the subproblem G - R(B) is so much smaller than 
the original that the time bound of k2’” for G follows inductively from the 
same bound for (G - B) and G - B(B) and the inequality 2-9’ + 2-” < 1. 
If the algorithm does not find a vertex with high degree, it must consider 
the neighbourhood of some vertex in more detail. 

2.3. The Auxiliary Function m2 

In the neighbourhood of a vertex (called A) of low degree, another idea is 
useful. If the function is going to consider independent sets containing A, 
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then it may ignore those that contain exactly one element of N(A) since 
such a set has the same size as one containing A instead; even more so it 
may ignore an independent set containing no element of @(A). Thus we 
have another recurrence 

m.s(G) = mux(1 + ms(G - @(A)), ms2(G - A, N(A))). (2) 

Here ms2(G, S) is the maximum size of an independent set of G containing 
at least two elements of S. (In fact the 112s’ we use is not exactly as defined. 
It sometimes “ignores” the extra information S and returns the size of 
some independent set of G which is at least as large as every independent 
set containing two or more elements of S. That change does not invalidate 
Es. (2)). 

If d(A) is small, then ms2(G - A, N(A)) may be much faster to com- 
pute than ms(G - A). This suggests the algorithm’s overall approach: two 
adjacent vertices are chosen with d(A) small and d(B) large; if d(A) is 
small enough for Eq. (2) to ensure fast computation then it is used; 
otherwise Eq. (1) is used and in the larger subproblem (G - B), the degree 
of A has been reduced producing an approach to a graph where (2) will be 
useful. 

2.4. Regular Graphs 

The approach described above will be least effective in a regular graph 
(one where all vertices have the same degree), because then it is not even 
possible to choose A and B such that d(B) > d(A). For this reason, in the 
algorithm of [5], regular graphs required the most intricate analysis and 
produced the worst behaviour. In this paper we circumvent this problem by 
showing that regular graphs are rare enough to be irrelevant even to the 
worst case behaviour of the algorithm. Since disconnected graphs are easily 
dealt with and a connected regular graph of degree d has no proper 
subgraph which is regular with degree d, any chain of recursive calls can 
include only one regular degree d graph. As shown in Section 4, this implies 
that ignoring regular graphs of degree < 8 affects only the constant hidden 
in the O(2’“) notation. 

2.5. Dominance 

@e last idea is occasionally useful. A vertex A is said to “dominate” B 
if N(A) c N(B). If this is so, any independent set containing B has the 
same size as another containing A instead of B; this gives the recurrence 

m.s(G) = ms(G - B). (3) 
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This is a very restricted form of the notion of dominance discussed in [5]. 
In Section 5 we will also need a slightly more general case where an 
independent subset A of Y “dominates” another subset B in that U,lv< A) 
c U,N(B) and IA( 2 JBI; in this case by similar reasoning there is some 
m.i.s. which does not contain all of B. 

3. THE FUNCTION m.s 

This is the polynomial space version of MS. Since the time bound to be 
shown is 0(p01yn0mial(n)2’“) for graphs of order n, we can omit details 
which merely affect the polynomial. Thus we ‘give the function in a 
Pascal-like language with many graph operations described in a loose 
mixture of English, Pascal, and mathematics on the understanding that they 
can be coded into Pascal procedures which will run in time polynomial in 
the order of the graph. The syntax of Pascal has also been modified to use 
return statements as the method of returning a result from a function and to 
include conditional expressions. 

function ms( G: graph): integer; 
W” 
if not connected (G) then 

begin 
C := smallest connected component of G; 
return ms(G - C) + (if /Cl I 2 then 1 else m(C)) 
end; 

if ICI I 1 then return ICI; 
choose A, B vertices of G such that 
(i) d(A) is minimal and 
(ii) (A, B) is an edge of G and d(B) is maximal over all neighbours of 
vertices with degree d(A); 
if d(A) = 1 then return 1 + ms(G - p(A)); 
if d(A) = 2 then 

begin 
B’ := N(A) - B; {the other neighbour of A } 
if edge( B, B’) then return 1 + ms(@ - N(A)); 
return mux(2 + ms(G - F(B) - N(B’)), 1 + mr2(G - #(A), N2(A))) 
end; 

if d(A) = 3 then return mux(mr2(G - A, N(A)),1 + WI.S(G - p(A))); 
if A dominates B then return ms(G --B); 
return max(ms(G - B), 1 + mr(G - N(B))) 
end: 



ALGORITHMS FOR MAXIMUM INDEPENDENT SETS 429 

Only the case d(A) = 2 should need any further explanation. If (B, B’) 
is an edge then clearly there is some m.i.s. containing A. Otherwise the 
function considers independent sets containing either (B and B’) or (A and 
at least two elements of N*(A)); there must be some m.i.s. of one of these 
forms since one containing A and at most one element of N2(A) could be 
modified to include B and B’ instead, without decreasing its size. 

4. ANALYSIS OF ms 

4.1. Irregular Graphs 

In this section a time bound of O(polynomial (n)2’“) is proved for the 
running time of ms with c < 0.296. This bound depends for the moment on 
an oracle which returns the value of ms on regular graphs of order 4 to 7 
and on assumptions about the speed of the auxiliary function ms2. Section 
4.2 shows that the dependence on the oracle can be removed with only a 
multiplication of the time bound by a constant. Section 5 gives the function 
ms* and justifies the assumptions used here. 

The central fact to be proved is that a call of ms on a graph of order n 
produces at most k2 En “trivial” calls of ms, that is, calls which return a 
result with no recursion. Since a nontrivial call involves a polynomial 
bounded amount of work plus one or more calls on smaller graphs, this 
implies the stated time bound of O(polynomia1 (n)2’“). k is chosen so that 
the result is true for all small graphs and the result is then proved by 
induction on n. In the interests of brevity we use a somewhat loose 
terminology and refer to the number of trivial calls arising from a call of ms 
or ms* as the “time” taken by that call. 

In order to complete the inductive step of the proof, we need to 
strengthen the bound claimed for certain classes of graphs. To be precise we 
prove the following theorem. 

THEOREM 1. For c 2 0.296 there exists k such that the time taken by ms 
on a graph G is at most t(G, ICI) p rovided calls on regular connected graphs G 
of degree 4 to 7 are replaced by calls on an oracle which uses time t(G, ICI), 
where 
t(G, n) = if G has a vertex of degree 1 then k2’(“-*) 

else if G has a vertex of degree 2 then k2’(“-‘f) 
else if G has a vertex of degree 3 then c,k2’” 
else if G is not connected then kj’(“-l) 
else if G has a vertex of degree 4 then c,k2’” 
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else if G has a vertex of degree 5 then c,k2’” 
else k2’” 

and cj = 2-4’ + 2-” < 0.799 
c4 = c,2-c/(l - 2-67 < 0.919 
c5 = c42-‘/(l - 2-“) < 0.982, 

on the assumption that the function m.s2 on graphs G, S takes time 
t2(G IGI, S, ISI> 
where t2(G, n, S, m) = 

if m 2 5 then t(G, n) 
else if m = 4 then k2’(“-‘) 
else if m = 3 or m = 2 then 

if S has a vertex of degree 0 (in G) then k2c(“-2) 
else if S has a vertex of degree 1 (in G) then k2’(“-‘) 
else k2c(“-4) 

else 1. 

Proof: The proof is by induction on n. k is chosen > 1 and such that 
the result holds for ah graphs of order < 11. Next we assume the result 
proved for all n’ c n and prove it for n. 

The structure of the inductive step follows that of the function. We write 
t(n; condition) for the maximum of t(G, IG[) over graphs G such that 
IGl = n and condition holds; t(n) is an abbreviation for t(n, true), that is, 
k2’“. Similarly we write t’(n, m; condition) for the maximum of 
t2(G IGlt S, ISI) over graphs G and S such that IGl = n, [Sl = m and 
condition holds; t 2( n, m) is an abbreviation for t 2( n, m; true). 

(i) If G is not connected and ICI = i, 
time < t(i) + t(n - i) which is maximised by minimising i but i = 1 
and i = 2 are special cases, giving 
time I max(t(n - l), t(3) + t(n - 3)) 

= t(n - 1). 
Moreover if G has a vertex of degree 1, 2, or 3, then 
either (i > this degree and C has the low degree vertex) 
or (G - C has the low degree vertex). 
In each case this establishes the stronger bound; for instance, for 
degree 1, 

time I max(t(n - 1; G has a vertex with degree l), 
t(3) + t(n - 3; G has a vertex with degree l), 
t(3; G has a vertex with degree 1) + t(n - 3)) 

I max(t(n - 3), t(1) + t(n - 3)) 
< t(n - 2). 

(ii) if d(A) = 1, there is one recursive call ms(G - &A)) giving 
time I t(n - 2) as required. 
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(iii) If d(A) = 2, there are two_recursive_ca.IIs (except in the case edge( B, B’) 
which is trivial), nzr( G - N(B) - N(B’))and ms2(G - N(A), N’(A)); 
let x = 1X2(A)\. 
(ma) If x I 1, the ms2 caII is trivial giving 

time I 1 + t(n - 3) < t( n - 2); 
(iiib) if x = 2, time I t(n - 5) + t2(n - 3,2) 

< 2t(n - 5) < k2’(“-‘9; 
(iiic) If x = 3, time I t(n - 6) + t2(n - 3,3) 

I t(n - 6) + t(n - 5) < k2’(“-‘f); 
(iiid) if x = 4, time I t(n - 7) + t2(n - 3,4) 

I t(n - 7) + t(n - 4) < k2’(“-‘9; 
(iiie) if x 2 5, time I t(n - 8) + t(n - 3) c k2’(“-‘:) as required. 

(iv) If d(A) _’ 3, there are two recursive calls m2(G - A, N(A)) and 
ms(G - N(A)) taking time 

5 t2(n - 1,3; G has no vertex 
with degree < 2) + t(n - 4) 

5 t(n - 5) + t(n - 4) = c,k2’“. 
(v) If G is not connected but has no vertices of degree s 3, ms(C) is 

called for each C a connected component of G. Each component must 
have order at least 5 giving 

time 5 t(5) + t(n - 5) with n 2 10 
5 k(3 + 2C(n-1)2-4C) 
< k(3 + 2=(“-l)-l) 
< k2’(“-‘) since 29c > 6 

(vi) Otherwise, unless A dom@tes B there are tie recursive cabs 
ms(G - B) and ms(G - N(B)). 
(via) If d(A) 2 7, d(B) 2 8 since G cannot be regular with degree 7; 

hence 
time 5 t(n - 1) + t(n - 9) I k2’“; 

(vib) if d(A) = 6, d(B) 2 7 and d(A : G - B) = 5; hence 
time < c,k2c(“-1) + k2’(“-@ 

I k2”“; 
(vie) if d(A) = 4 or 5, d(B) 2 d(A) + 1, and if 

d(B) = d(A) + 1 then there is another vertex B’ E N(A) 
such that d(B’) = d(A) or d(A) + 1 and (B, B’) is not an edge 
(from the choice of A and B and the fact that A does not 
dominate-B). 

Hence either IG - N_(B)1 < n - d(A) - 2 
or )G - N( B)I = n - d(A) - 2 and G - g(B) has a vertex of 
degree s d( A : G); 
thus r(G, n) I cd(,+-i k2’(“- 1) 

+ mux(k2C(n-d(A)-3), cdCAjk2c(n-d(A)-2)) and the 
second term of the MUX is larger in each case since c.,, cS > 2-‘. 



432 J. M. ROBSON 

Thus finally t(G, n) I ~~(,+ik2’(~-‘) + /c~~(“-~(~)-~)c~(~) 
= c,C,,k2C” as required 

by the definitions of cq and cg. 

4.2. Regular Graphs 

We now justify the claim that reliance on the oracle for regular connected 
graphs of degree 4 to 7 only affects the constant k in the time bound. If we 
drop the oracle for degree 4 graphs we have an algorithm which does work 
in time 5 t(n) for any graph which has no subgraph which is regular with 
degree 4; hence it works in time I t(n) for any graph which is a proper 
subgraph of a connected regular degree 4 graph. Now looking at the time 
taken by ms on a regular degree 4 connected graph, we see that the two 
recursive calls ms(G - B) and ms(G - F(B)) take time I t( n - 1) + t(n 
- 5) I k’2’” for k’ = 1.17k. Thus by the same inductive argument as 
before, we prove that the new algorithm, using the oracle only for degree 5 
to 7, runs in time I k’2’” for all graphs. 

Repeating the same argument three more times gives eventually an 
algorithm which uses no oracle at all and runs in time I k”2’” for 
k” = 1.38k on all graphs. 

5. THE AUXILIARY FUNCTION ms2 

Next .we present the auxiliary function ms2(G, S) and justify the as- 
sumptions about its running time used in Section 4.1. The discussion of 
timing is simple and will be included as comment in the program text. After 
a few trivial but tedious special cases have been disposed of, the logic is 
very straightforward: if s is an element of S, a m.i.s. must either contain s 
and one other element of S or contain not s but two other elements of S. 
Another function rns’ is sometimes used to handle the first of these; in the 
second we use the same idea as in ms and consider only independent sets 
containing two or more neighbours of s. 

function m.r *( G: graph; S: vertexset): integer; 
{first comes the declaration of ms’ which is defined similarly to ms* but 
concerns sets S of which one element is to be in the independent set} 

function m.r’( G: graph; S: vertexset): integer; 
{This is only called with S a two element subset of the vertices of G. It 
returns the size of an independent set of G at least as large as the largest 
such set which contains an element of S. 
The elements of S are si and s2 with d(s,) I d(rZ). 
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The time to compute ms’(G, S) 
I t(n - 1) if (st, s2) is an edge of G or d(s,) I 1 
I t(n - 2) otherwise. 

t’ is defined analogously to t * } 
besin 
if d(s,) I 1 then return ms(G); {time I t( n - 1)) 
if edge(s,, s2) then 

if d(s,) I 3 then return ms(_G) {time I t(n 1 1)) 
else return mux(ms(G - N(Q), ms(G - N(s2))) + 1; 
{time I2t(n - 5) C t(n - 1)) 

if N(s,) n N(s~)()c#I then return ms’(G - N(s,) n N(s,), S); 
{time I t’(n - 1) < t(n - 2)) 

if d(sZ) = 2 then 
begin 
E, F := the elements of N(s,); 
(independent sets to be considered contzjn s1 or (s2, E and F)) 
if edge(E, F) then return 1 + ms(G - N(s,)); 

{time I t(n - 3)) 
if NLE) + NLF) - s1 c N(s2) then return 3 + ms(G - F(s,) - s(sz)) 

{ N(s,) + N(Q) has no 4 element independent set containing sr or s2 
and [E, F, sz] dominates every other 3 element independent set 
time I t(n - 6)) 
return max(1 + ms(G - 

Rs*N) 

H(s,)), 3 + ms(G - r(E) - m(F) - 

{time I t( n - 3; G has a vertex of degree 2) + t(n - 7) 
I t(n - 49 + t(n - 7) 
-c t(n - 2)) 

end; 
return mux(ms(G - R(s*)), ms*(G - z(q) - s2, N(s~))) + 1 

{independent set contains s2 or (st Ed two elements of N(s,)) 
if d(s,: G) = 2 then also d(s,: G - N(Q)) = 2, giving 

if d(s2) = 3 time 5 t(n - 5t) f t2(m - 4,3) < t(n - 2) 
if d(s,) = 4 time I l(n - 6:) + t2(n - 4,4) < t(n - 2) 
if d(sZ) >; 5 time < t(n - 79 + t(n - 4) < t(n - 2) 

if d(s,: G) =*3 then also d(s,: G - N(s*)) = 3, giving 
if d(sZ) = 3 time I t(n - 5) + t*(n - 5,3) < t(n - 2) 
if d(s,) > 3 time < t(n - 6) + t(n - 5) < t(n - 2) 

if d(s,) 2 4 then time I t(n - 5) + t( n - 6) < t(n - 2)) 
end {of ms’}; 
begin { ms*. The elements of S are sr, s2,. . . with d(si) I d(s,+,)} 
if ISI s 1 then return 0; 
if ISI = 2 then if edge(s,, sl) *en return 0 

else return 2 + ms(G - N(s,) - F(s,)); 
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{time I t(n - 2 - d(s,))} 
if ISI = 3 then 

{This is the only complicated case and is the crucial one arising from m.r 
with d(A) = 3.) 
begin 
if d(s,) = 0 then return 1 + ms’(G - sl, S - s,); 

{time 5 t’(n - 1) I t(n - 2)) 
if edge(s,, s2) and edge(s,, So) and edge(s,, sr) then return 0; 
if edge(s,, sj) and edge@,, sk)(j()k) then 

return 2 + ms(G - N(sj) - N(s,)); 
{time I t(n - 2 - d(sj))} 

if edge(s,, sj) then return 1 + ms’(G - F(sk),[si, sj])(i()k()j): 
{independent set cannot contain si and sj and so contains one of 
them and sk. 
time I t’(n - 1 - d(sk)) I t(n - 2 - d(sk))} 

if vertex u E N(s,) n N(sj)(i()j) then return ms2(G - u, S); 
{independent set contains si or sj and so not u. 
time I t *(n - 1, ]Sl; degrees reduce_d by at most 1)) 

if d(s,) = 1 then return 1 + ms’(G - N(s,), S - s,); 
time I t’( n - 2) i t(n -3)) 

return mux(1 + m.r’(G - N(s,), S - sl), ms2(G - F(s2) - H(s3) - 
Sl? w m  

{if d(s,) = 2 time I t(n - 5) + ~*(n - 7,2) < t(n - 5) + t(n - 9) 
c t(n - 3) 
if d(s,) = 3 time < t(n - 6) + t2(n - 9,3) I t(n - 6) + t(n - 11) 
< t(n - 4) 
if d(s,) 2 4 time I r(n - 7) + t(n - 11) < r(n - 4) 
since, in all three cases, the call of ms’ has its second parameter 
s - s1 
a set of two vertices of degree 2 2 with no edge between them} 

end (1st = 3); 
if ISI = 4 then 

if G has a vertex of degree I Lthen return ms(G) {time I r( n - 1)) 
else return mux(1 + ms(G - N(s,)), ms2(G - sir S - sl)); 
{time I t( n - 5) + r2(n - 1,3; members of S have degree 2 3) 

I 2r(n - 5) 
< r(n - 1)) 

return ms(G){ ISI 2 5: time I r(n)} 
end; 

{In each case the time has been shown to be bounded as assumed in 
Theorem 1. Strictly the proof of Theorem 1 and the bounds on msl and 
ms2 are a triple simultaneous induction.} 
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6. A TIME-SPACE TRADE-OFF 

6.1. Accelerating Exponential Recursive Algorithms 

It is a commonplace observation that functions on integer arguments 
may be most simply expressed recursively but be grossly inefficient in their 
recursive form because of a tendency to repeat some subcomputations very 
many times. This tendency can be removed, either by a dynamic program- 
ming approach or by what we call the “memory” method, that is, by 
retaining the recursive structure while storing all values of the function 
which have already been computed and never reevaluating such a stored 
value. The same technique can be used with functions on combinatorial 
arguments such as graphs and enables us to reduce the constant c in our 
time bound for ms to about 0.276. 

In the case of integer arguments an array is probably suitable for storing 
the already computed values. For combinatorial arguments, if the algorithm 
is to run on a random access machine, it will generally be effective to store 
(argument, value) pairs in a balanced tree structure using the argument as 
key; this depends on having an easily computable ordering of the argument 
type. In the case of graphs, it is probable that no easily computable 
ordering exists, so we regard the arguments as subsets of the vertices V of 
the original graph and order them by the natural ordering of 2”. 

If the algorithm is required to run on a Turing Machine, a slightly more 
complex approach achieves the same result. This will be discussed in 
Section 6.4. 

First we use a simple argument to show that ms modified in this way 
runs in time O(2’“) for c = 0.282. Section 6.2 uses a rather more complex 
argument on a slightly different ms to reduce the bound still further. 

The time taken by the modified MS on a graph of order n is divided into 
two parts, that on small graphs (graphs of order < (in where OL is a 
constant to be decided later) and that on large graphs (we have now 
dropped the definition of time as the number of trivial calls arising). 

The time taken on small graphs is bounded by the observation that the 
number of such graphs is I X~$,( 1) giving a time bound of polynomial 

(nNa”n)* 
The extra time taken on any large graph (order n’ > an) is seen to be 

bounded by k2c(n’-crn) by the same inductive argument used in Section 4. 
Hence 

total time I polynomial(n) 2C(1-n)n + 
i 

(@(I -:)(1-y i 

and choosing a = 0.048 to balance the two terms gives the bound of 
0(2O=9. 
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6.2. Connected Subgraphs 

The argument of Section 6.1 can be slightly strengthened by the observa- 
tion that the time spent on small graphs is determined essentially by the 
number of connected small graphs. Any small graph simply causes at most 
an/3 evaluations of ms on connected small graphs. For the moment we 
limit the discussion to graphs of degree I 8 and show, for small (Y, an 
upper bound on the number of connected subgraphs which is much less 
than (&). 

LEMMA. If G = (V, E) is a graph of order n and degree 5 8, the number 
of connected induced subgraphs of G order n’ = 0( polynomial( n)(776 -6)“). 

Proof. We show a simple l-many mapping from connected induced 
subgraphs of order n’ (other than connected components of G) to triples 
(u, e, t) where u E V, e E E and t is a 7-ary tree of order n’. The 
conclusion follows by the enumeration of the 7-ary trees of order n’ [4] and 
Stirling’s approximation. 

Choose an arbitrary ordering of the edges E and let C be a connected 
induced subgraph of G (not a component). Let u be a vertex of C such that 
d( u : C) I 7; if d( u : G) = 8, choose e an edge in E which is incident on u 
and is not an edge of C, otherwise choose e arbitrarily in E. Choose T a 
spanning tree of C with root u. 

T has out degree I 7 at each vertex and, given the ordering of E, gives 
the 7-ary tree t in an obvious way; the seven subtrees at a node are ordered 
according to the ordering of the edges and an edge which is not in T gives 
an empty subtree in t. 

It is clear that, given U, e, and t, it is possible to reconstruct T and 
thereby C, establishing that the mapping is indeed l-many and completing 
the proof of the lemma. 

THEOREM 2. 
o(20.276”): 

If ms is modified in the following two ways its running time is 

(i) use of memory to avoid repeated computation on the same subgraph; 
(ii) whenever-G has a vertex V of degree > 8, returning max(ms(G - 

V), 1 + m.r(G - N(V)). 

Proof: We prove the result first for graphs of degree I 8. By the lemma 
the time spent on graphs of order s an is polynomial(n)(776-6)““. By the 
usual inductive argument, the extra time spent on large graphs resulting 
from a graph of order n’ is 0(2”(“‘-““)). Choosing (Y = 0.0667 gives a total 
time of O(2°.276”). 
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The general result is proved inductively where the induction is based on 
the degree I 8 case. G either has degree I 8 or is dealt with by 
modification (ii) b time 5 20.276("-1) + 20.276(n-10) < 20.276n since 2-0.276 

+ 2-2.76 < 1. 

6.3. An Application to Some Logical Problems 

The same approach of using memory to avoid recomputation can also 
achieve a substantial speedup in solving QBF (Quantified Boolean For- 
mula) problems over a fairly wide set of expressions including as a small 
subset formulae in CNF with a number of clauses equal to the number of 
variables. The special case where all the quantifiers are existential gives the 
same result for SAT over the same set of expressions. The expressions in 
question are most easily character&d in terms of boolean circuits rather 
than syntactically. They can be computed from 2n inputs a,, . . . , a,, 
,a,, . . . , ,a, by circuits of a number (linear in n and less than about 
1.29n) of and and or gates of unbounded fan-in and fan-out subject to the 
restriction, for each i independently, that either no input ai or -,a, goes 
directly into any and gate or no input a, or 7ai goes directly into any or 
gate. For simplicity we consider only the case where the number of gates is 
the same as n the number of variables. 

A simple approach to solving such a problem would recursively solve the 
two subproblems obtained by setting aouter (the variable of the outermost 
quantification) to true and to false and combine the two results ap- 
propriately. A slightly more sophisticated algorithm would first simplify the 
circuit after each assignment by removing gates whose output was “obvi- 
ous” (a gate’s output is “obvious” if it is directly implied by those inputs 
which are either the obvious outputs of other gates or already assigned 
literals) and second notice cases where the function computed by the 
current circuit was obviously monotonic in aouter (because either aouter or 
la 0Uter was not connected to any gate) and solve only one subproblem in 
these cases; for instance if the circuit is monotonic increasing in aouter, this 
variable will be set to true if existentially quantified or to false if universally 
quantified. This algorithm will still take time O(2”) but its “memorising” 
version will run in time O(2°.773” ). The reason is simply that whenever two 
assignments to a variable are possible, each of them reduces the number of 
gates by at least one and that a nontrivial subproblem can be specified by 
the number of assignments made and which gates remain. 

Now after n’ variables have been assigned a value which was not dictated 
by the “monotonic” rule, the number of possible subproblems is bounded 
in two ways; first it is at most 2”’ since n’ choices have been made; second 
it is at most (n - n’ + l)E~$( :) since the number of variables assigned to 
is in the range [n, n’] and at most (n - n’) gates remain. 
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Thus choosing n’ = 0.773n so that 2”’ = (l,) ensures that the time spent 
on problems with at most n’ such assignments and the time spent on those 
with more than n’ are both O(polynomial(n)2°.773”). 

If we remove the restriction on the gates into which inputs may go, we 
still obtain a slight improvement over time O(2”) by a slightly more 
complex argument. It can be shown that the time in this case is 

= 20.9121~ 

6.4. Achieving the Time-Space Trade-off with a Turing Machine 

Since the “memorising” algorithms have space complexity almost as 
great as their time complexity, simulating them by a Turing Machine might 
almost square their time bound producing an algorithm much slower than 
the polynomial space version. This can be avoided by a more careful Turing 
Machine version of the algorithm which can still obtain exactly the same 
reduction in the exponent of the time bound. 

The significant fact is that the later part of the sequence of recursive calls 
produced from a given call does not depend on the results of earlier calls. 
This means that, instead of making the recursive calls in sequence, we could 
make them in parallel or interleave them. Now a large number of references 
to the memory can be batched together and such a batch of references can, 
by sorting them, be made much more efficiently than if they had to be done 
sequentially. 

In order to make it clear that the method being described applies to both 
the ms function and to QBF, we give some fairly general conditions for it to 
be applicable instead of describing it in terms of a particular function. 

THEOREM 3. Zf f is a function with domain D and range R such that 

(i) 3 functions fi, fi, f3 such that 
(ia) f,(d) = (d19&. . . y d,& (an element of D * ) 
(ib) f(d) = fd4 f(4), . . . , f (d,&) (the recursive definition 
off> 
(ic) f,, f2 andf, are in Ptime, 

(ii) if T( d ) is the computation tree formed by adding to d instances of the 
trees T(di) of the elements of f,(d) then 
(iia) the depth of T(d) is bounded by a polynomial in (dl 
(iib) any element t of T(d) has ItI bounded by a polynomial in (d(, 

(iii) 3 a total ordering 5: on D computable in Ptime, 
then f(d) is computable by a multitape Turing Machine in time 
bounded by polynomial( Id I) X (# distinct elements of D in T(d)). 
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Proof. Before proceeding to describe the Turing Machine computation, 
we note that conditions (ic) and (iib) ensure that the degree of elements of 
T(d) is bounded by polynomial(ldl) and so (iia) ensures that log(# 
elements in T(d)) = O(polynomial(Jd1)) so that elements of T(d) can be 
sorted in O(polynomial( Id 1)) passes. 

The Turing Machine computation proceeds in two phases. The first phase 
constructs top-down the representation of the directed acyclic graph G(d) 
formed from T(d) by identifying nodes with the same element of D and 
directing edges upwards; duplicated representations of nodes of G are 
avoided by regular sorting which brings duplicates together so that they can 
be dealt with. The second phase evaluates f at leaves and then propagates 
results back up through the graph evaluating f at each node when the 
results of its recursive calls are available; again sorting is used, this time to 
move results from where they are computed to where they are needed. 

The representation of the graph G(d) is as follows: if (A + B) is an edge 
of the graph, there are two records of it, (A, ‘ --f ‘, B) and (B, ‘ * ‘, A); the 
whole graph is represented by the records of its edges sorted lexicographi- 
tally (so that for each vertex A there is a contiguous sequence of records 
corresponding to all the edges into and out of A). 

This representation of G(d) is easily computed in an order correspond- 
ing to a breadth first scan of the tree. Initially the records (di, ‘ --) ‘, d) are 
placed on tape 1 (for di the elements of f,(d)) and are “ unmarked”; then 
in successive stages tape 1 is scanned for all unmarked records of the form 

‘ + ‘, Y), these records are “marked” and records (Xi, ‘ + ‘, X) and 
&, Xi) are added to tape 2 for Xi the elements of fi( X) with the 
‘ --, ’ records unmarked; then the records on tape 2 are sorted and merged 
into tape 1; finally, if tape 1 contains repeated sequences of records (V, 
‘ --, ‘, IV) for the same V, then if one is already marked the rest are now 
marked and if all are unmarked all but one are now marked. The number of 
these stages required is bounded by the depth of T(d) so that the total time 
for this first phase is bounded by polynomial( Id I) x (G( d )I as required. 

The second phase now gradually overwrites all the records of the form 
(4 ‘ + ‘3 Ai) meaning that f(A) depends on f(Ai) with records (A, ‘ + ‘, 
Ai, f(A,)); when this has happened for all Ai, f(A) can be computed and 
passed up to all those B such that a (A, ‘ --* ‘, B) record exists. Eventually 
we are left only with the records (d, ‘ - ‘, di, f(di)) needed to compute the 
value f(d). 

In more detail, this phase also consists of a number of stages. At each 
stage, for every vertex A such that each (A, ‘ + ‘, Ai) record has been 
replaced by (A, ‘ + ‘, Ai, f( A,)), f(A) is computed and then for every (A, 
‘ + ‘, B) record, a new record (B, ‘ + ‘, A, f(A)) is written on tape 2 (and 
all records of the form (A,...) are cleared from tape 1); then tape 2 is 
sorted and finally merged into tape 1 with records of the form (X, ‘ + ‘; 
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Y, f(Y)) with X # d replacing the original record (X, ‘ + ‘, Y). Again this 
process terminates after a number of stages bounded by the depth of T(d) 
and the whole computation is now completed in a total time of 
polynomial()d() X IG(d)l. 

7. CONCLUSIONS 

The bound of 0(2n/3) in [5] on the time to find a maximum independent 
set has been reduced to 0(2°.276” ) by three main methods. First, a deeper 
study of the neighbourhood of a chosen vertex in the graph has been made 
but without a more complex case structure in the program; this was made 
possible by the auxiliary functions ms* and msl which by being mutually 
recursive hide some indefinitely complex case analysis. Second, the argu- 
ment that low degree regular graphs can be discounted removed a lot of 
awkward cases. Third, if one is willing to use exponential space, an 
essentially trivial way of utilising the store achieves a nontrivial reduction in 
the exponent. Although the reduction of about 0.05 in the exponent by 
these three methods may sound modest, it looks better if thought of as a 
reduction of 99.9% in the time to compute ms for a 200 vertex graph. 

Quite apart from the large probability that another algorithm can improve 
on this bound, it is quite possible that the algorithm given here can be 
proved to obey a lower bound. First, a more careful analysis of the possible 
graph structure around the edge (A, B) may show more about the possible 
sequences of recursive calls, thereby giving a better bound for the poly- 
nomial space version, and second, a more accurate enumeration of the 
small subgraphs which can arise may reveal more about the effectiveness of 
the “memory” modification. 
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