GAFA Geometric And Functional Analysis

ON TRIPLES IN ARITHMETIC PROGRESSION

J. Bourgain

0 Summary

A well-known theorem of K. Roth [R] assures us that for any fixed $\delta > 0$, $N \in \mathbb{Z}_+$ sufficiently large and $A \subset \{1, 2, \dots, N\}$,

$$|A| > \delta N \,, \tag{0.1}$$

there are always 3 distinct elements $n_1, n_2, n_3 \in A$ in arithmetic progression

$$n_1 + n_2 = 2n_3. (0.2)$$

His argument yields the density condition

$$\delta > c \frac{1}{\log \log N} \,. \tag{0.3}$$

More recently, it was shown by E. Szemerédi and D. Heath-Brown (see [H] for details) that (0.3) may be replaced by the condition

$$\delta > \frac{1}{(\log N)^c} \tag{0.4}$$

for some (small) constant c > 0; Szemerédi produced an explicit value c = 1/20. Previous arguments are based on the circle method and a comparison of the integrals

$$\delta(A)^3 \int_{\mathbb{T}} S(x)^2 S(-2x) dx$$
 and $\int_{\mathbb{T}} S_A(x)^2 S_A(-2x) dx$, (0.5)

where

$$S(x) = \sum_{n=1}^{N} e^{2\pi i nx}$$
 (0.6)

$$S_A(x) = \sum_{N \in A} e^{2\pi i nx} \tag{0.7}$$

$$\delta(A) = \frac{|A|}{N} \,. \tag{0.8}$$

The main point is the fact that if $||S_A - \delta(A)S||_{\infty}$ is large, i.e.

$$||S_A - \delta(A)S||_{\infty} > \gamma N \tag{0.9}$$

then there is a density increment of A in some arithmetic progression $P\subset\{1,\dots,N\}$

$$\frac{|A \cap P|}{|P|} > \delta(A) + 0(\gamma). \tag{0.10}$$

The key additional idea in the work of Szemerédi and Heath-Brown was to consider the contribution in (0.10) of sets of points $\{\theta_1, \dots, \theta_J\} \subset \mathbb{T}$ rather than a single point.

In this paper, we prove the existence of nontrivial triples in progression under the density assumption in (0.1)

$$\delta > c \left(\frac{\log\log N}{\log N}\right)^{1/2}. \tag{0.11}$$

Again we rely on the circle method but instead of considering arithmetic progressions, we aim to increase the density of A in consecutive "Bohr sets" of the form

 $\Lambda = \Lambda_{\theta,\varepsilon,M} = \{ n \in \mathbb{Z} \mid |n| \le M \text{ and } ||n\theta_j|| < \varepsilon \text{ for } j = 1,\dots,d \}$ (0.12) where $\theta = (\theta_1, \dots, \theta_d) \in \mathbb{T}^d$. This procedure turns out to be more economical than dealing with progressions. Given Λ , we introduce a probability measure λ on \mathbb{Z} defined by

$$\lambda = \frac{1}{|\Lambda|} \mathbb{1}_{\Lambda} \,. \tag{0.13}$$

Our starting point is then to compare

$$\lambda'(A)^2 \lambda''(A) \int_{\mathbb{T}} S'(x)^2 S''(-2x) dx$$
 (0.14)

and

$$\int_{\mathbb{T}} S_A'(x)^2 S_A''(-2x) dx \tag{0.15}$$

where

$$S'(x) = \sum \lambda'_n e^{2\pi i nx} \tag{0.16}$$

$$S''(x) = \sum \lambda_n'' e^{2\pi i nx} \tag{0.17}$$

$$S_A'(x) = \sum_{n \in A} \lambda_n' e^{2\pi i n x}$$

$$\tag{0.18}$$

$$S_A''(x) = \sum_{n \in A} \lambda_n'' e^{2\pi i n x}$$

$$\tag{0.19}$$

$$\lambda'(A) = \sum_{n \in A} \lambda'_n, \lambda''(A) = \sum_{n \in A} \lambda''_n.$$
 (0.20)

Here λ', λ'' are associated by (0.13) to respective Bohr sets Λ', Λ'' and assumed constructed such that

$$\lambda' * \lambda''' \approx \lambda' \,, \tag{0.21}$$

when λ''' is defined by

$$\begin{cases} \lambda_n''' = \lambda_{\frac{n}{2}}'' & \text{if } n \in 2\mathbb{Z} \\ = 0 & \text{otherwise} \,. \end{cases}$$

Thus (0.21) ensures that

$$(0.14) \approx \lambda'(A)^2 \lambda''(A) \left[\sum (\lambda'_n)^2 \right] = \lambda'(A)^2 \lambda''(A) \|\lambda'\|_2^2.$$
 (0.22)

On the other hand, assuming A does not contain a nontrivial triple in progression,

$$(0.15) = \sum_{n \in A} (\lambda'_n)^2 \lambda''_n \le \frac{1}{|\Lambda''|} ||\lambda'||_2^2.$$
 (0.23)

One then proceeds again in analyzing the difference |(0.14)-(0.15)| and the differences $S'_A - \lambda'(A)S'$ and $S''_A - \lambda''(A)S''$ in order to increase the density $\tilde{\lambda}(A)$, $\tilde{\lambda} = \frac{1}{|\tilde{\Lambda}|} \mathbb{1}_{\tilde{\Lambda}}$ for some smaller Bohr set $\tilde{\Lambda}$.

Recall, in the other direction, Behrend's result [B], according to which there are sets $A = A_N \subset \{1, ..., N\}$ for arbitrary N, without triples in progression and satisfying

$$\frac{|A_N|}{N} > \exp\left(-C\sqrt{\log N}\right). \tag{0.24}$$

1 Definitions

Let $\theta \in \mathbb{R}^d$, $d \ge 1$, $\varepsilon > 0$, N a positive integer. Denote

$$\Lambda_{\theta,\varepsilon,N} = \left\{ n \in \mathbb{Z} \mid |n| \le N, \, ||n\theta_j|| < \varepsilon \text{ for } j = 1,\dots,d \right\}$$
 (1.1)

and $\lambda_{\theta,\varepsilon,N} = \lambda$ where

$$\lambda(n) = \begin{cases} |\Lambda_{\theta,\varepsilon,N}|^{-1} & \text{if } n \in \Lambda_{\theta,\varepsilon,N} \\ 0 & \text{otherwise} . \end{cases}$$
 (1.2)

Thus λ is probability measure on \mathbb{Z} .

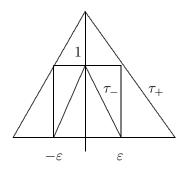
2 Estimates on Bohr Sets

Lemma 2.0.

(i)
$$|\Lambda_{\theta,\varepsilon,N}| > \frac{1}{2}\varepsilon^d N$$
 (2.1)

(ii)
$$|\Lambda_{\theta,\varepsilon,N}| < 8^{d+1} |\Lambda_{\theta,\frac{\varepsilon}{2},\frac{N}{2}}|.$$
 (2.2)

Proof. Consider functions



Thus

$$\sum_{|n| < N} \left(1 - \frac{|n|}{N} \right) \prod_{j=1}^{d} \tau_{-}(n\theta_{j}) < |\Lambda_{\theta, \varepsilon, N}| < 2 \sum_{|n| < 2N} \left(1 - \frac{|n|}{2N} \right) \prod_{j=1}^{d} \tau_{+}(n\theta_{j})$$
(2.3)

and

$$\sum_{|n| < N} \left(1 - \frac{|n|}{N} \right) \prod_{j=1}^{d} \tau_{-}(n\theta_{j}) = \sum_{k \in \mathbb{Z}^{d}} \prod_{j=1}^{d} \widehat{\tau}_{-}(k_{j}) F_{N}(k.\theta)$$

$$= \sum_{k \in \mathbb{Z}^{d}} \prod_{j=1}^{d} \frac{\sin^{2} \pi \varepsilon k_{j}}{\varepsilon \pi^{2} k_{j}^{2}} F_{N}(k.\theta)$$
(2.4)

$$2\sum_{|n|<2N} \left(1 - \frac{|n|}{2N}\right) \prod_{j=1}^d \tau_+(n\theta_j) = 2\sum_{k \in \mathbb{Z}^d} \prod_{j=1}^d \frac{\sin^2 2\pi\varepsilon k_j}{\varepsilon \pi^2 k_j^2} F_{2N}(k.\theta).$$
(2.5)

Clearly, from k = 0 contribution and positivity

$$(2.4) > \varepsilon^d F_N(0) = \frac{1}{2} \varepsilon^d N \tag{2.6}$$

implying (2.1).

Since

$$F_{2N}(x) \le 4F_{N/2}(x)$$

 $\sin^2 2x = 4\sin^2 x \cos^2 x \le 4\sin^2 x \le 16\sin^2 \frac{x}{2}$,

it follows that

$$(2.5) \le 8^{d+1} \sum_{k \in \mathbb{Z}^d} \prod_{j=1}^d \frac{\sin^2 \pi \frac{\varepsilon}{2} k_j}{\frac{\varepsilon}{2} \pi^2 k_j^2} F_{\frac{N}{2}}(k.\theta)$$
 (2.7)

$$\leq 8^{d+1} |\Lambda_{\theta,\frac{\varepsilon}{2},\frac{N}{2}}|, \qquad (2.8)$$

proving (2.2).

3 Regular Values of (ε, N)

LEMMA 3.0. For given (ε, N) , there are

$$\frac{\varepsilon}{2} < \varepsilon_1 < \varepsilon \tag{3.1}$$

$$\frac{N}{2} < N_1 < N \tag{3.2}$$

such that for $0 < \kappa < 1$

$$1 - \kappa < \frac{|\Lambda_{\theta, \varepsilon_2, N_2|}}{|\Lambda_{\theta, \varepsilon_1, N_1|}} < 1 + \kappa \tag{3.3}$$

if

$$|\varepsilon_1 - \varepsilon_2| < \frac{1}{100} \frac{\kappa}{d} \varepsilon_1 \tag{3.4}$$

and

$$|N_1 - N_2| < \frac{1}{100} \frac{\kappa}{d} N_1. \tag{3.5}$$

Proof. Assume for each $t \in [1/2, 1]$ there is $\kappa = \kappa(t) \lesssim 1$ such that

$$\left| \Lambda_{\theta, (1 - \frac{1}{100} \frac{\kappa}{d}) t\varepsilon, (1 - \frac{1}{100} \frac{\kappa}{d}) tN} \right|
< (1 + \kappa)^{-1} \left| \Lambda_{\theta, (1 + \frac{1}{100} \frac{\kappa}{d}) t\varepsilon, (1 + \frac{1}{100} \frac{\kappa}{d}) tN} \right|.$$
(3.6)

From standard covering argument of [1/2,1] by collection of intervals we deduce that

$$\frac{|\Lambda_{\theta,\frac{\varepsilon}{4},\frac{N}{4}}|}{\Lambda_{\theta,2\varepsilon,2N|}} \leq \prod_{\alpha} \frac{|\Lambda_{\theta,(1-\frac{1}{100}\frac{\kappa_{\alpha}}{d})t_{\alpha}\varepsilon,(1-\frac{1}{100}\frac{\kappa_{\alpha}}{d})t_{\alpha}N|}{|\Lambda_{\theta,(1+\frac{1}{100}\frac{\kappa_{\alpha}}{d})t_{\alpha}\varepsilon,(1+\frac{1}{100}\frac{\kappa_{\alpha}}{d})t_{\alpha}N|} \leq \prod_{\alpha} (1+\kappa_{\alpha})^{-1}$$
(3.7)

where the intervals $\left[\left(1-\frac{1}{100}\frac{\kappa_{\alpha}}{d}\right)t_{\alpha},\left(1+\frac{1}{100}\frac{\kappa_{\alpha}}{d}\right)t_{\alpha}\right]$ are disjoint of total measure

$$\frac{1}{50d} \sum \kappa_{\alpha} t_{\alpha} > \frac{1}{4} \,. \tag{3.8}$$

Hence

$$\sum \kappa_{\alpha} > 12d$$

and

$$\prod (1 + \kappa_{\alpha}) > e^{\frac{2}{3} \sum \kappa_{\alpha}} > e^{8d}. \tag{3.9}$$

On the other hand, (2.2) implies that

$$\frac{\left|\Lambda_{\theta,\frac{\varepsilon}{4},\frac{N}{4}}\right|}{\left|\Lambda_{\theta,2\varepsilon,2N}\right|} > 8^{-3(d+1)}.$$
(3.10)

Thus from (3.7), (3.9), (3.10)

$$8^{-3(d+1)} < e^{-8d}, (3.11)$$

a contradiction.

Let $t_1 \in [1/2, 1]$ be such that for all $0 \le \kappa \le 1$

$$(1+\kappa)|\Lambda_{\theta,(1-\frac{1}{100}\frac{\kappa}{d})t_1\varepsilon,(1-\frac{1}{100}\frac{\kappa}{d})t_1N}| \ge |\Lambda_{\theta,(1+\frac{1}{100}\frac{\kappa}{d})t_1\varepsilon,(1+\frac{1}{100}\frac{\kappa}{d})t_1N}|$$
(3.12)

and take

$$\varepsilon_1 = t_1 \varepsilon, \quad N_1 = t_1 N.$$
 (3.13)

If (3.4), (3.5) hold, then

$$\Lambda_{\theta,(1-\frac{\kappa}{100d})\varepsilon_1,(1-\frac{\kappa}{100d})N_1} \subset \Lambda_{\theta,\varepsilon_2,N_2} \subset \Lambda_{\theta,(1+\frac{\kappa}{100d})\varepsilon_1,(1+\frac{\kappa}{100d})N_1}$$
(3.14)

and by (3.12)

$$\frac{1}{1+\kappa} < \frac{|\Lambda_{\theta,\varepsilon_2,N_2}|}{|\Lambda_{\theta,\varepsilon_1,N_1}|} < 1+\kappa. \tag{3.15}$$

This proves the lemma.

DEFINITION. We call (ε_1, N_1) satisfying Lemma 3.0 regular.

LEMMA 3.16. Let $\lambda = \lambda_{\theta,\varepsilon,N}$ with (ε,N) regular and $\lambda' = \lambda_{\theta,\frac{\kappa}{100d}\varepsilon,\frac{\kappa}{100d}N}$. Then

$$\|\lambda * \lambda' - \lambda\|_1 \equiv \|\lambda * \lambda' - \lambda\|_{\ell^1(\mathbb{Z})} < 2\kappa. \tag{3.17}$$

Proof. Write

$$(\lambda * \lambda')(n) = \sum_{m} \lambda'(m)\lambda(n-m).$$

If $(\lambda * \lambda')(n) \neq 0$, then there is m

$$|m| < \frac{\kappa}{100d}N, \quad |n - m| < N \tag{3.18}$$

such that

$$||m\theta_j|| < \frac{\kappa}{100d}\varepsilon \tag{3.19}$$

$$\|(n-m)\theta_i\| < \varepsilon. \tag{3.20}$$

Hence, from (3.18)-(3.20)

$$|n| < \left(1 + \frac{\kappa}{100d}\right)N\tag{3.21}$$

$$||n\theta_j|| < \left(1 + \frac{\kappa}{100d}\right)\varepsilon\tag{3.22}$$

and

$$n \in \Lambda_{\theta, (1 + \frac{\kappa}{100d})\varepsilon, (1 + \frac{\kappa}{100d})N}. \tag{3.23}$$

Similarly, one sees that if

$$n \in \Lambda_{\theta, (1 - \frac{\kappa}{100d})\varepsilon, (1 - \frac{\kappa}{100d})N}$$
, (3.24)

then

$$(\lambda * \lambda')(n) = \frac{1}{|\Lambda|} = \lambda(n). \tag{3.25}$$

From the preceding

$$\|\lambda * \lambda' - \lambda\|_{1}$$

$$= \|(\lambda * \lambda') - \lambda\|_{\ell^{1}(\Lambda_{\theta,(1+\frac{\kappa}{100d})\varepsilon,(1+\frac{\kappa}{100d})N}\setminus\Lambda_{\theta,(1-\frac{\kappa}{100d})\varepsilon,(1-\frac{\kappa}{100d})N})}$$
(3.26)

974 J. BOURGAIN GAFA

$$\leq \frac{1}{|\Lambda|} \left[|\Lambda_{\theta, (1 + \frac{\kappa}{100d})\varepsilon, (1 + \frac{\kappa}{100d})N}| - |\Lambda_{\theta, (1 - \frac{\kappa}{100d})\varepsilon, (1 - \frac{\kappa}{100d})N}| \right]$$

$$(3.27)$$

$$<2\kappa\,, (3.28)$$

using Lemma (3.0).

This proves (3.17).

Lemma 3.29. Under the assumptions of Lemma 3.16, we also have

$$\|(\lambda * \lambda') - \lambda\|_2 < 2\sqrt{\kappa} \|\lambda\|_2. \tag{3.30}$$

Proof. Write by (3.17) and definition of λ , i.e. (1.2)

$$\begin{aligned} \left\| (\lambda * \lambda') - \lambda \right\|_2 &\leq \left\| (\lambda * \lambda') - \lambda \right\|_1^{1/2} \left\| (\lambda * \lambda') - \lambda \right\|_{\infty}^{1/2} \\ &\leq \sqrt{2\kappa} \left(2\|\lambda\|_{\infty} \right)^{1/2} \\ &= 2\sqrt{\kappa} |\Lambda|^{-1/2} \\ &= 2\sqrt{\kappa} \|\lambda\|_2 \,. \end{aligned}$$

4 Estimation of Exponential Sum

Let $\theta \in \mathbb{T}^d, \, \lambda = \lambda_{\theta,\varepsilon,N}$ with (ε,N) regular.

Lemma 4.0. Assume $x \in \mathbb{T}$ and

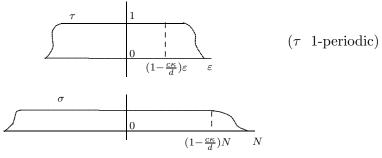
$$\left| \sum \lambda_n e^{inx} \right| > \kappa. \tag{4.1}$$

Then, there is $k \in \mathbb{Z}^d$ s.t.

$$|k_j| < Cd^4 \kappa^{-2} \left(\log \frac{1}{\varepsilon}\right)^2 \frac{1}{\varepsilon} \tag{4.2}$$

$$||x - k.\theta|| < Cd^4\kappa^{-2} \left(\log \frac{1}{\varepsilon}\right)^2 \frac{1}{N}. \tag{4.3}$$

Proof. Consider the following functions



(with c appropriately chosen constant) such that the Fourier transform $\hat{\tau}, \hat{\sigma}$ satisfy decay estimate

$$|\hat{\tau}(k)| < 2\varepsilon \exp\left(-\left(\frac{\kappa\varepsilon}{Cd}|k|\right)^{1/2}\right)$$
 (4.4)

$$|\widehat{\sigma}(\lambda)| < 2N \exp\left(-\left(\frac{\kappa N}{Cd}|\lambda|\right)^{1/2}\right).$$
 (4.5)

Thus

Thus
$$\left| \sum_{n} \sigma_n e^{2\pi i n x} \right| < CN \exp\left(-\left(\frac{\kappa N}{Cd} \|x\|\right)^{1/2}\right). \tag{4.6}$$
 Clearly, from definition of τ, σ , we get

$$\left| \sum \lambda_n e^{2\pi i n x} - \frac{1}{|\Lambda|} \sum \sigma_n \prod_{j=1}^d \tau(n\theta_j) e^{2\pi i n x} \right|$$

$$< \frac{1}{|\Lambda|} \left(|\Lambda_{\theta, \varepsilon, N}| - |\Lambda_{\theta, (1 - \frac{c\kappa}{d})\varepsilon, (1 - \frac{c\kappa}{d})N|} \right) < \frac{\kappa}{10}$$
 (4.7)

for appropriate choice of c (cf. §3).

Thus, if (4.1)

$$\left| \sum_{j=1}^{d} \sigma_n \prod_{j=1}^{d} \tau(n\theta_j) e^{2\pi i n x} \right| > \frac{\kappa}{2} |\Lambda| > \frac{\kappa}{2} \varepsilon^d N, \qquad (4.8)$$

by (2.1). Hence

$$\sum_{k \in \mathbb{Z}^d} \prod |\widehat{\tau}(k_j)| \Big| \sum_n \sigma_n e^{2\pi i n(x+k.\theta)} \Big| > \frac{\kappa}{2} \varepsilon^d N, \qquad (4.9)$$

and from (4.4), (4.6)

$$\sum_{k \in \mathbb{Z}^d} \exp -\left[\left(\frac{\kappa \varepsilon}{Cd} \right)^{1/2} \sum_{j=1}^d |k_j|^{1/2} + \left(\frac{\kappa N}{Cd} \right)^{1/2} ||x + k \cdot \theta||^{1/2} \right] > c^d \kappa . \quad (4.10)$$

One has

$$\sum_{k \in \mathbb{Z}} \exp\left[-\left(\frac{\kappa \varepsilon |k|}{Cd}\right)^{1/2}\right] < \frac{Cd}{\kappa \varepsilon} \tag{4.11}$$

$$\sum_{|k|>k_0} \exp\left[-\left(\frac{\kappa\varepsilon|k|}{Cd}\right)^{1/2}\right] < \frac{Cd}{\kappa\varepsilon} \exp\left[-\frac{1}{2}\left(\frac{\kappa\varepsilon k_0}{Cd}\right)^{1/2}\right]. \tag{4.12}$$

Split the sum in (4.10) as

$$\sum_{|k_j| < k_0} + \sum_{\max |k_j| > k_0} = (I) + (II). \tag{4.13}$$

Then, by (4.11)

$$(I) < \left(\frac{Cd}{\kappa \varepsilon}\right)^d \max_{|k_i| < k_0} \exp\left(-\left[\frac{\kappa N}{Cd} \|x + k\theta\|\right]^{1/2}\right)$$
(4.14)

and by (4.12)

$$(II) < d \left(\frac{Cd}{\kappa \varepsilon}\right)^d \exp\left(-\frac{1}{2} \left(\frac{\kappa \varepsilon k_0}{Cd}\right)^{1/2}\right). \tag{4.15}$$

Take thus

$$k_0 > \frac{Cd}{\kappa \varepsilon} d^2 \left(\log \frac{Cd}{\kappa \varepsilon} \right)^2$$
 (4.16)

976 J. BOURGAIN GAFA

to insure that

$$(II) < \frac{1}{2}c^d\kappa \,. \tag{4.17}$$

Hence, by (4.10), (4.13), (4.14), (4.17) we get for some $k \in \mathbb{Z}^d$

$$|k_j| < k_0 \qquad (1 \le j \le d)$$
 (4.18)

that

$$\exp - \left[\frac{\kappa N}{Cd} \|x + k\theta\|\right]^{1/2} > \frac{1}{2} \left(\frac{\kappa \varepsilon}{Cd}\right)^d c^d \kappa \tag{4.19}$$

$$||x + k\theta|| < \frac{Cd}{\kappa N} d^2 \left[\log \frac{Cd}{\kappa \varepsilon} \right]^2$$
$$< \frac{Cd^4}{\kappa^2 N} \left(\log \frac{1}{\varepsilon} \right)^2. \tag{4.20}$$

From (4.18), (4.16), (4.20), the conclusion (4.2), (4.3) in Lemma 4.0 clearly follows.

5 Density

Let $A \subset \{1, \dots, N\}$ satisfying

$$|A| > \delta N. \tag{5.1}$$

For λ a probability measure on \mathbb{Z} , define

$$\lambda(A) = \sum_{n \in A} \lambda_n \,. \tag{5.2}$$

Starting from $\lambda_0 = \frac{1}{2N+1} \mathbb{1}_{\{-N,\dots,N\}}$ and assuming A does not contain a nontrivial triple in progression, we will construct a sequence of probability measures λ of the form $\lambda = \lambda_{\theta,\varepsilon,M}$ for varying $d,\theta \in \mathbb{T}^d,\varepsilon$ and M, such that at each step $\lambda(A')$ will increase by at least $c\lambda(A')^2$ for some translate A' of A. Thus, by (5.1), this leads to a contradiction after at most $\sim \delta^{-1}$ steps.

We agree, when introducing measures of the form $\lambda_{\theta,\varepsilon,M}$, to always assume (ε,M) regular.

The main issue in the argument is then how $d, \theta, \varepsilon, M$ will evolve along the iteration.

Assume for some translate A' of A

$$\lambda(A') = \delta_1 \ge \delta \tag{5.3}$$

where $\lambda = \lambda_{\theta,\varepsilon,M}$.

Fix $\kappa > 0$, to be specified, and define

$$\lambda' = \lambda_{\theta, \frac{c\kappa}{d}\varepsilon, \frac{c\kappa}{d}M} \tag{5.4}$$

$$\lambda'' = \lambda_{\theta, (\frac{c\kappa}{d})^2 \varepsilon, (\frac{c\kappa}{d})^2 M}. \tag{5.5}$$

Let λ''' denote the measure

$$\lambda_n''' = \lambda_{n/2}''$$
 if $n \in 2\mathbb{Z}$
= 0 otherwise. (5.6)

Thus

$$\lambda''' = \lambda_{\tilde{\theta}, (\frac{\epsilon \kappa}{d})^2 \varepsilon, 2(\frac{\epsilon \kappa}{d})^2 M} \tag{5.7}$$

where

$$\tilde{\theta} = \frac{\theta}{2} \cup \left\{ \frac{1}{2} \right\} \,. \tag{5.8}$$

Observe that

$$\Lambda_{\tilde{\theta},\varepsilon',M'} \subset \Lambda_{\theta,2\varepsilon',M'}. \tag{5.9}$$

According to Lemma 3.16 and preceding regularity assumption, it follows that

$$\|\lambda - (\lambda * \lambda')\|_{1} < \kappa \tag{5.10}$$

$$\|\lambda' - (\lambda' * \lambda'')\|_1 < \kappa \tag{5.11}$$

$$\left\|\lambda' - (\lambda' * \lambda''')\right\|_1 < \kappa \tag{5.12}$$

(for appropriate choice of constants c in (5.4), (5.5), (5.7)).

Assume for each $m \in \mathbb{Z}$

$$|\lambda'(A'+m) - \lambda(A')| > 10\kappa$$
 or $|\lambda''(A'+m) - \lambda(A')| > 10\kappa$. (5.13)

Then, clearly, for either $\lambda^1 = \lambda'$ or $\lambda^1 = \lambda''$

$$\sum \lambda_m |\lambda^1(A'-m) - \lambda(A')| > 5\kappa.$$
 (5.14)

Since, by (5.10), (5.11), also

$$\left| \sum \lambda_m \left[\lambda^1 (A' - m) - \lambda(A') \right] \right| = \left| (\lambda * \lambda^1) (A') - \lambda(A') \right|$$

$$< \left\| (\lambda * \lambda^1) - \lambda \right\|_1$$

$$< 3\kappa$$
(5.15)

it follows that for some m

$$\lambda^{1}(A'+m) > \lambda(A') + \kappa. \tag{5.16}$$

Hence, there is either some translate A'' = A' + m of A satisfying

$$\left|\lambda'(A'') - \lambda(A')\right| < 10\kappa; \quad \left|\lambda''(A'') - \lambda(A')\right| < 10\kappa, \tag{5.17}$$

or, for some translate A'' = A' + m, there is a density increment

$$\lambda'(A'') > \lambda(A') + \kappa \quad \text{or} \quad \lambda''(A'') > \lambda(A') + \kappa.$$
 (5.18)

In the preceding, we let

$$\kappa = 10^{-8} \delta_1^2 \,. \tag{5.19}$$

6 Comparison of the Integrals

Assume (5.17) for some translate A'' of A. Following the circle method, consider the sums

$$S' = \sum \lambda'_n e^{2\pi i n x} \tag{6.1}$$

$$S_A' = \sum_{n \in A''} \lambda_n' e^{2\pi i n x} \tag{6.2}$$

$$S'' = \sum \lambda_n'' e^{2\pi i n x} \tag{6.3}$$

$$S_A'' = \sum_{n \in A''} \lambda_n'' e^{2\pi i n x} \tag{6.4}$$

$$S''' = \sum \lambda_n''' e^{2\pi i n x}. \tag{6.4'}$$

Since A hence A'' does not contain a nontrivial triple in progression

$$I_1 \equiv \int_{\mathbb{T}} S_A'(x)^2 S_A''(-2x) dx$$
$$= \sum_{n \in A''} (\lambda_n')^2 \lambda_n''. \tag{6.5}$$

On the other hand

$$I_{2} \equiv \int_{\mathbb{T}} \left[\lambda'(A'')S'(x) \right]^{2} \left[\lambda''(A'')S''(-2x) \right] dx$$

$$= \lambda'(A'')^{2} \lambda''(A'') \sum_{n_{1}+n_{2}=2m} \lambda'_{n_{1}} \lambda'_{n_{2}} \lambda''_{m}$$

$$= \lambda'(A'')^{2} \lambda''(A'') \sum_{n,m} \lambda'_{n} \lambda'_{n-2m} \lambda''_{m}.$$
(6.6)

By construction of $\lambda', \lambda'', \lambda'''$, cf. (5.6), (5.12) we have

$$\sum_{m} \left| \lambda'_{n} - \left(\sum_{m} \lambda'_{n-2m} \lambda''_{m} \right) \right| < \left\| \lambda' - (\lambda' * \lambda''') \right\|_{1} < \kappa \tag{6.7}$$

$$\left(\sum_{n} \left| \lambda'_{n} - \left(\sum_{m} \lambda'_{n-2m} \lambda''_{m}\right) \right|^{2}\right)^{1/2} < \kappa^{1/2} \|\lambda'\|_{\infty}^{1/2} = \kappa^{1/2} \|\lambda'\|_{2}.$$
(6.8)

Hence, from (5.17), (6.8)

$$(6.6) > (\delta_1 - 10\kappa)^3 (1 - \kappa^{1/2}) \|\lambda'\|_2^2 \tag{1}$$

$$\stackrel{(5.19)}{>} \frac{1}{2} \delta_1^3 \|\lambda'\|_2^2. \tag{6.9}$$

We will assume that throughout the construction of the measures $\lambda = \lambda_{\theta,\varepsilon,M}, \, \theta \in \mathbb{T}^d$, the condition

$$\log M \gg d \left(\log \frac{1}{\varepsilon} + \log \frac{1}{\delta} + \log d\right) \tag{6.10}$$

is fulfilled.

Thus

$$(6.5) < \frac{1}{|\Lambda''|} \sum_{n} (\lambda'_n)^2 < \frac{1}{(\frac{c\kappa}{d})^{2(d+1)} \varepsilon^d M} \|\lambda'\|_2^2 < M^{-1/2} \|\lambda'\|_2^2$$
 (6.11)

and from (6.6), (6.9), (6.11)

$$|I_1 - I_2| > \frac{1}{2} \delta_1^3 ||\lambda'||_2^2$$
 (6.12)

Estimate

$$|I_1 - I_2| \le \left[\int_{\mathbb{T}} |S'_A(x)|^2 dx \right] ||S''_A - \lambda''(A'')S''||_{\infty}$$
 (6.13)

+
$$\int_{\mathbb{T}} \left| S_A'(x)^2 - \left[\lambda'(A'')S'(x) \right]^2 \right| \lambda''(A'') |S''(-2x)|$$
 (6.14)

Write by (6.2), (5.12)

$$(6.13) = \frac{1}{|\Lambda'|^2} |\Lambda' \cap A''| \|S_A'' - \lambda''(A)S''\|_{\infty}$$

$$= \lambda'(A'') \|\lambda'\|_2^2 \|S_A'' - \lambda''(A)S''\|_{\infty}$$

$$< 2\delta_1 \|\lambda'\|_2^2 \|S_A'' - \lambda''(A)S''\|_{\infty}.$$
(6.15)

Thus, if $(6.13) > \frac{1}{6}\delta_1^3 \|\lambda'\|_2^2$, it follows from (6.15) that

$$||S_A'' - \lambda''(A)S''||_{\infty} > \frac{1}{12}\delta_1^2.$$
 (6.16)

Estimate

$$(6.14) \leq \lambda''(A'') [\|S_A'\|_2 + \lambda'(A'')\|S'\|_2] \| |S_A'(x) - \lambda'(A'')S'(x)| |S''(-2x)| \|_2$$

$$< 2\lambda''(A'')\lambda'(A'')^{1/2} \|\lambda'\|_2 \| |S_A'(x) - \lambda'(A'')S'(x)| |S''(-2x)| \|_2$$

$$< 8\delta_1^{3/2} \|\lambda'\|_2 \| |S_A'(x) - \lambda'(A'')S'(x)| |S''(-2x)| \|_2$$

$$(6.17)$$

and it follows that if $(6.14) > \frac{1}{6}\delta_1^3 \|\lambda'\|_2^2$, then

$$\| |S'_A(x) - \lambda'(A'')S'(x)| |S''(-2x)| \|_2 > \frac{1}{48} \delta_1^{3/2} \|\lambda'\|_2.$$
 (6.18)

We will show in the next 2 sections that both (6.16), (6.18) imply a density increment

$$\lambda_1(A_1) > \lambda(A') + 0(\delta_1^2) = \delta_1 + 0(\delta_1^2)$$
 (6.19)

for some $\lambda_1 = \lambda_{\theta_1, \varepsilon_1, M_1}$ and translate A_1 of A.

7 Density Increment (1)

Assume (6.16)

Thus from some $x_0 \in \mathbb{T}$

$$\left| S_A''(x_0) - \lambda''(A'')S''(x_0) \right| > \frac{1}{12}\delta_1^2.$$
 (7.1)

Recalling (5.5) where $\theta \in \mathbb{T}^d$, replace d by d+1, θ by $\tilde{\theta} = \theta \cup \{x_0\} \in \mathbb{T}^{d+1}$ and let

$$\tilde{\lambda} = \lambda_{\tilde{\theta}, (\frac{CK}{d})^3 \varepsilon, (\frac{CK}{d})^3 M}. \tag{7.2}$$

Then

$$S_A''(x_0) = \sum_{n \in A''} \lambda_n'' e^{2\pi i n x_0}$$

$$= \sum_{m,n \in A''} \lambda_m'' \tilde{\lambda}_{n-m} e^{2\pi i n x_0} + 0 (\|\lambda'' - (\lambda'' * \tilde{\lambda})\|_1)$$
 (7.3)

$$\stackrel{(3.16)}{=} \sum \lambda_m'' e^{2\pi i m x_0} \tilde{\lambda}(A'' - m)$$

$$+ 0 \left(\sum \tilde{\lambda}_n |e^{2\pi i n x_0} - 1| + \kappa \right)$$

$$(7.4)$$

$$= \sum \lambda_m'' \tilde{\lambda} (A'' - m) e^{2\pi i m x_0} + 0 \left(\left(\frac{c\kappa}{d} \right)^3 \varepsilon + \kappa \right)$$
 (7.5)

where $\kappa = 10^{-8} \delta_1^2$, cf. (5.14).

Thus (7.1), (7.5) imply that

$$\left| \sum_{m} \lambda_m'' \left[\tilde{\lambda}(A'' - m) - \lambda''(A'') \right] e^{2\pi i m x_0} \right| > \frac{1}{13} \delta_1^2 \tag{7.6}$$

$$\sum \lambda_m'' |\tilde{\lambda}(A'' - m) - \lambda''(A'')| > \frac{1}{13}\delta_1^2.$$
 (7.7)

Again

$$\left| \sum \lambda_m'' \left[\tilde{\lambda}(A'' - m) - \lambda''(A'') \right] \right| = \left| (\lambda'' * \tilde{\lambda})(A'') - \lambda''(A'') \right| < \kappa$$
 (7.8)

and (7.7), (7.8), (5.17) permit us to ensure that

$$\tilde{\lambda}(\tilde{A}) > \lambda''(A'') + \frac{1}{30}\delta_1^2 > \lambda(A') - 10\kappa + \frac{1}{30}\delta_1^2 > \delta_1 + \frac{1}{40}\delta_1^2$$
 (7.9)

for some translate $\tilde{A} = A'' - m$ of A.

Thus (7.9) produces the required density increment (6.19).

8 Density Increment (2)

Assume next (6.18).

Since

$$||S'_{A} - \lambda'(A'')S'||_{2} \le ||S'_{A}||_{2} + \lambda'(A'')||S'||_{2} < 2\lambda(A'')^{1/2}||\lambda'||_{2}$$

$$< 4\delta_{1}^{1/2}||\lambda'||_{2}$$
(8.1)

it follows from (6.18) that

$$\|[S_A' - \lambda'(A'')S']\|_{\mathcal{I}}\|_2 > \frac{1}{10^2}\delta_1^{3/2}\|\lambda'\|_2$$
 (8.2)

where

$$\mathcal{F} = \left\{ x \in \mathbb{T} \mid |S'''(-2x)| > 10^{-3} \delta_1 \right\} = \left\{ x \in \mathbb{T} \mid |S'''(-x)| > 10^{-3} \delta_1 \right\}. \tag{8.3}$$

In order to specify \mathcal{F} , apply Lemma 4.0 with λ replaced by λ''' given by (5.7). Thus if $x \in \mathcal{F}$, there is $k \in \mathbb{Z}^d$ s.t.

$$|k_{j}| < Cd^{4}\delta_{1}^{-2} \left(\log \frac{d^{2}}{\delta_{1}^{4}} \frac{1}{\varepsilon}\right)^{2} \frac{d^{2}}{\delta_{1}^{4}} \frac{1}{\varepsilon}$$

$$< C\frac{d^{7}}{\delta_{1}^{7}} \left(\log \frac{1}{\varepsilon}\right)^{2} \frac{1}{\varepsilon} \qquad (1 \le j \le d)$$
(8.4)

and

$$||x - k\tilde{\theta}|| < C\frac{d^7}{\delta_1^7} \left(\log \frac{1}{\varepsilon}\right)^2 \frac{1}{M}, \tag{8.5}$$

where $\hat{\theta}$ is given by (5.8).

Thus if we let

$$\overset{\approx}{\tilde{\Lambda}} = \Lambda_{\tilde{\theta}, \overset{\approx}{\varepsilon}, \overset{\approx}{M}} \tag{8.6}$$

with

$$\widetilde{\varepsilon} = c \frac{\delta_1^9}{d^8} \left(\log \frac{1}{\varepsilon} \right)^{-2} \varepsilon \tag{8.7}$$

$$\stackrel{\approx}{M} = c \frac{\delta_1^9}{d^7} \left(\log \frac{1}{\varepsilon} \right)^{-2} M \tag{8.8}$$

 $\overset{\approx}{M} = c \frac{\delta_1^9}{d^7} \left(\log \frac{1}{\varepsilon}\right)^{-2} M$ it follows from (8.4), (8.5) that (for an appropriate constant c)

$$||nx|| < 10^{-3} \delta_1^2 \text{ for } x \in \mathcal{F}, \quad n \in \overset{\approx}{\Lambda}.$$
 (8.9)

Recalling (5.4)

$$\lambda' = \lambda_{\substack{\theta, c \frac{\delta_1^2}{d} \in c, c \frac{\delta_1^2}{d} M}}$$

$$\approx (8.10)$$

the multiplier $\overset{\approx}{\lambda}$ associated with $\overset{\approx}{\Lambda}$ will also satisfy

$$\|(\lambda' * \overset{\approx}{\lambda}) - \lambda'\|_{1} < 10^{-6} \delta_{1}^{7}$$
 (8.11) from (8.7), (8.8), (3.16). Hence

$$\|(\lambda' * \overset{\approx}{\lambda}) - \lambda'\|_{2} < 10^{-3} \delta_{1}^{7/2} \|\lambda'\|_{2}.$$
 (8.12)

Write

$$S'_{A}(x) = \sum_{n \in A''} \lambda'_{n} e^{2\pi i n x}$$

$$= \sum_{n \in A''} (\lambda' * \overset{\approx}{\lambda})_{n} e^{2\pi i n x}$$
(8.13)

$$+\sum_{n\in A''} \left(\lambda' - \left(\lambda' * \overset{\approx}{\lambda}\right)\right)_n e^{2\pi i n x}. \tag{8.14}$$

From (8.12)

$$\|(8.14)\|_{2} \le \|\lambda' - (\lambda' * \tilde{\lambda})\|_{2} < 10^{-3} \delta_{1}^{7/2} \|\lambda'\|_{2}.$$
 (8.15)

Write

$$(8.13) = \sum_{m,n \in A''} \lambda'_m \widetilde{\widetilde{\lambda}}_{n-m} e^{2\pi i nx}$$

982 J. BOURGAIN GAFA

$$= \sum_{m} \lambda'_{m} e^{2\pi i m x} \overset{\approx}{\lambda} (A'' - m)$$
 (8.16)

$$+\sum_{m,n\in A''}\lambda_m'\widetilde{\lambda}_{n-m}(e^{2\pi inx} - e^{2\pi imx}). \tag{8.17}$$

One has for $x \in \mathcal{F}$, by (8.9)

$$|(8.17)| = \Big| \sum_{m,n \in A''} \lambda'_{n-m} \widetilde{\lambda}_m (e^{2\pi i n x} - e^{2\pi i (n-m)x}) \Big|$$

$$= \Big| \sum_m \widetilde{\lambda}_m (e^{2\pi i m x} - 1) \Big[\sum_{n \in A''} \lambda'_{n-m} \ e^{2\pi i (n-m)x} \Big] \Big|$$

$$\leq 10^{-3} \delta_1^2 \sum_m \widetilde{\lambda}_m \Big| \sum_{k \in A''-m} \lambda'_k e^{2\pi i k x} \Big|$$
(8.18)

hence

$$\|(8.17)|_{\mathcal{F}}\|_{2} \le 10^{-3} \delta_{1}^{2} \sum_{m} \widetilde{\lambda}_{m} \|\lambda'\|_{2} = 10^{-3} \delta_{1}^{2} \|\lambda'\|_{2}.$$
 (8.19)

Thus, from (8.15), (8.19)

$$\begin{split} \left\| \left[S_{A}' - \lambda'(A'')S' \right] \right\|_{\mathcal{F}} \right\|_{2} &< \left\| \sum_{m} \lambda_{m}' e^{2\pi i m x} \widetilde{\lambda}(A'' - m) - \lambda'(A'')S' \right\|_{2} \\ &+ \frac{1}{500} \delta_{1}^{2} \|\lambda'\|_{2} \\ &= \left(\sum_{m} (\lambda_{m}')^{2} \left[\lambda'(A'') - \widetilde{\lambda}(A'' - m) \right]^{2} \right)^{1/2} + \frac{\delta_{1}^{2}}{500} \|\lambda'\|_{2} \,. \end{split}$$

$$(8.20)$$

Consequently, (8.2), (8.20) give

$$\left(\sum_{m} (\lambda'_{m})^{2} \left[\lambda'(A'') - \widetilde{\widetilde{\lambda}}(A'' - m)\right]^{2}\right)^{1/2} > \frac{\delta_{1}^{3/2}}{200} \|\lambda'\|_{2}$$
(8.21)

$$\sum \lambda'_{m} \left[\lambda'(A'') - \tilde{\lambda}(A'' - m) \right]^{2} > \frac{\delta_{1}^{3}}{4.10^{4}}$$
(8.22)

$$\left[\lambda'(A'') + \max_{m} \widetilde{\lambda}(A'' - m)\right] \left[\sum_{m} \lambda'_{m} \left| \lambda'(A'') - \widetilde{\lambda}(A'' - m) \right| \right] > \frac{\delta_{1}^{3}}{4.10^{4}}.$$
(8.23)

From (8.23), either for some m

$$\stackrel{\approx}{\lambda}(A'' - m) > \frac{4}{3}\delta_1 \tag{8.24}$$

or

$$\sum \lambda'_m |\lambda'(A'') - \overset{\approx}{\lambda} (A'' - m)| > \frac{\delta_1^2}{10^5}.$$
 (8.25)

Since again

$$\left| \sum_{m} \lambda'_{m} \left[\lambda'(A'') - \overset{\approx}{\lambda} (A'' - m) \right] \right| = \left| \lambda'(A'') - (\lambda' * \overset{\approx}{\lambda}) (A'') \right|$$

$$\stackrel{(8.11)}{<} 10^{-6} \delta_{1}^{7}.$$

$$(8.26)$$

(8.25), (8.26) imply for some m

$$\overset{\approx}{\lambda}(A''-m) - \lambda'(A'') > \frac{1}{2} \left(\frac{\delta_1^2}{10^5} - \frac{\delta_1^7}{10^6} \right) > \frac{\delta_1^2}{10^6}$$

$$\stackrel{\approx}{\lambda} (A'' - m) \stackrel{(5.17)}{>} \lambda(A') - 10\kappa + 10^{-6} \delta_1^2 > \delta_1 + 10^{-7} \delta_1^2$$
(8.27)

for some m. Thus (8.24), (8.27) give again the increment

$$\overset{\approx}{\lambda}(\overset{\approx}{A}) > \delta_1 + 10^{-7}\delta_1^2 \tag{8.28}$$

for some translate

$$\stackrel{\approx}{A} = A'' - m \text{ of } A, \text{ i.e. (6.19)}.$$
 (8.29)

9 Conclusion

Taking into account (5.13), (7.9), (8.28), it follows that starting from $\lambda = \lambda_{\theta,\varepsilon,M}, \theta \in \mathbb{T}^d$ such that

$$\lambda(A') = \delta_1 > \delta \tag{9.1}$$

for some translate A' of A, one of the following holds

$$\lambda'(A_1) > \delta_1 + 10^{-8} \delta_1^2 \tag{9.2}$$

$$\lambda''(A_1) > \delta_1 + 10^{-8}\delta_1^2 \tag{9.3}$$

$$\tilde{\lambda}(A_1) > \delta_1 + \frac{1}{40}\delta_1^2 \tag{9.4}$$

$$\stackrel{\approx}{\lambda}(A_1) > \delta_1 + 10^{-7} \delta_1^2 \tag{9.5}$$

for some translate A_1 of A.

Here $\lambda', \lambda'', \tilde{\lambda}, \tilde{\lambda} \approx 1$ are given by (5.4), (5.5), (7.2), (8.6)-(8.8) respectively. Hence

$$\lambda_1(A_1) > \delta_1 + 10^{-8} \,\delta_1^2 \tag{9.6}$$

where λ_1 is of the form

$$\lambda_1 = \lambda_{\theta_1, \varepsilon_1, M_1} \tag{9.7}$$

with

$$\theta_1 \in \mathbb{T}^{d+1} \tag{9.8}$$

$$\varepsilon_1 > c\delta_1^9 d^{-8} \left(\log \frac{1}{\varepsilon}\right)^{-2} \varepsilon$$
 (9.9)

$$M_1 > c\delta_1^9 d^{-8} \left(\log \frac{1}{\varepsilon}\right)^{-2} M$$
 (9.10)

Starting from $\lambda_0 = \frac{1}{2N+1} \mathbb{1}_{\{-N,\dots,N\}}, \lambda_0(A) > \delta$, it follows indeed from (9.6) that one needs at most $\sim 1/\delta$ iteration steps to reach a contradiction. Thus the number d is bounded by

$$d \le C\delta^{-1} \tag{9.11}$$

(9.9) implies at each step α

$$\varepsilon_{\alpha+1} > c\delta^{17} \left(\log \frac{1}{\varepsilon_{\alpha}}\right)^{-2} \varepsilon_{\alpha}$$
 (9.12)

hence

$$\varepsilon_{\alpha} > c\delta^{20\alpha} > \delta^{C\delta^{-1}}$$
. (9.13)

Similarly

$$M_{\alpha+1} > c\delta^{17} \left(\log \frac{1}{\varepsilon_{\alpha}}\right)^{-2} M_{\alpha} > c\delta^{20} M_{\alpha}$$
 (9.14)

$$M_{\alpha} > \delta^{C\delta^{-1}} N. \tag{9.15}$$

Coming back to condition (6.10), we get from (9.11), (9.13), (9.15) the restriction

$$\log N \gg \delta^{-2} \log \frac{1}{\delta} \tag{9.16}$$

i.e.

$$\delta > C \left(\frac{\log\log N}{\log N}\right)^{1/2}.\tag{9.17}$$

Thus, if (9.17) holds, the set A must contain a nontrivial triple in progression.

References

- [B] F.A. Behrend, On sets of integers which contain no three terms in arithmetic progression, Proc. Nat. Acad. Sci. USA 32 (1946), 331–332.
- [R] K.F. ROTH, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.
- [H] D.R. Heath-Brown, Integer sets containing no arithmetic progressions, J. London Math. Soc. (2) 35 (1987), 385–394.

Jean Bourgain
Institute of Advanced Study
Olden Lane
Princeton, NJ 08540
USA
bourgain@math.ias.edu