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ON TRIPLES IN ARITHMETIC PROGRESSION

J. BOURGAIN

0 Summary

A well-known theorem of K. Roth [R] assures us that for any fixed § > 0,
N € Z; sufficiently large and A C {1,2,...,N},

|A| > 6N, (0.1)
there are always 3 distinct elements n1,n2,n3 € A in arithmetic progression
n1 +ne = 2n3. (0.2)

His argument yields the density condition
—_—. 0.3
Clog log N (03)
More recently, it was shown by E. Szemerédi and D. Heath-Brown (see [H]
for details) that (0.3) may be replaced by the condition
1
> —
(log V)©
for some (small) constant ¢ > 0; Szemerédi produced an explicit value ¢ =
1/20. Previous arguments are based on the circle method and a comparison
of the integrals

(0.4)

/ S(x —2x)dxr and / Sa(x)*S4(—22)dx, (0.5)
where
Z eanm (0.6)
Z eanz (07)
NeA
5(A) = AL (0.8)
The main point is the fact that if ||S4 — 6(A)S ||« is large, i.e.
|54 = 6(A)S||, >N (0.9)

then there is a density increment of A in some arithmetic progression P C

1,...,N}
AN P

P

> 5(A) +0(7) . (0.10)
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The key additional idea in the work of Szemerédi and Heath-Brown was to
consider the contribution in (0.10) of sets of points {61, ...,60;} C T rather
than a single point.

In this paper, we prove the existence of nontrivial triples in progression
under the density assumption in (0.1)

loglog N 1/2
—_— . A1
0>c ( log N ) (0.11)

Again we rely on the circle method but instead of considering arithmetic
progressions, we aim to increase the density of A in consecutive “Bohr sets”
of the form

A=Ageryy={neZ||n|<M and |nb;|| <eforj=1,....d} (0.12)
where 8 = (4,...,0,) € T¢ This procedure turns out to be more econom-

ical than dealing with progressions. Given A, we introduce a probability
measure A on Z defined by

A= arla- (0.13)
Our starting point is then to compare
N(A)N(A) / ' (228" (—22)dx (0.14)
T
and
/ Sy ()28 (—2x)dx (0.15)
T
where
S'(w) =Y N, ¥ (0.16)
S'(x) = An e’ (0.17)
Sh(x) =Y N, (0.18)
neA
Sh(x) =Y Ay e*mne (0.19)
neA
N(A) =) X, N(A)=> A (0.20)
neA necA

Here N, \" are associated by (0.13) to respective Bohr sets A’, A” and as-
sumed constructed such that

Nox N = N (0.21)
when )" is defined by
{X/j =N, if ne2Z
2

=0 otherwise .
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Thus (0.21) ensures that
(0.14) ~ N (APPN(A)| SN2 = N (AN (A) X3 (0.22)

On the other hand, assuming A does not contain a nontrivial triple in
progression,

(015) = S (N2X! < VB (023)

neA
One then proceeds again in analyzing the difference [(0.14) — (0.15)| and
the differences S’y — N (A4)S" and S’y — \’(A)S” in order to increase the
density A(A), A = |71‘]1 5 for some smaller Bohr set A.
Recall, in the other direction, Behrend’s result [B], according to which
there are sets A = Ay C {1,..., N} for arbitrary N, without triples in
progression and satisfying

% > exp (— Cy/logN) . (0.24)

1 Definitions
Let § € RY d>1,e >0, N a positive integer. Denote
Nen={neZ||n| <N, |nbj|| <eforj=1,...,d} (1.1)

and A\g. v = A where

A -1 f A
A(n) = Sl HnE Roen (1.2)
0 otherwise .
Thus A is probability measure on Z.
2 Estimates on Bohr Sets
LEmMA 2.0.
(i) |Agen| > 3N (2.1)
(i) Mg vl < 8 YAy < x]. (2.2)

Proof. Consider functions
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1
T— T+
— €
Thus
d
Z< |n|>HT_n9 <|A95N’<22 (1—|£)H
|n|<N [n|<2N =1
(2.3)
and
3 ( '”’) HT_ 08 = 3™ T]7 () Ew (k)
In|<N kezd j=1
ek;
= Hsm i JFN (k.0)  (24)
kezd j=1
n sin? 2mek;
2 3 ( | ’)HT+ o) =25 11 o k).
In|<2N kezd j=1 (2.5)
Clearly, from k£ = 0 contribution and positivity
(2.4) > e?Fy(0) = LN (2.6)

implying (2.1).
Since
Fon(z) < 4Fp)o(x)
sin? 2z = 4sin® z cos® z < 4sin® z < 16sin

it follows that

2z

2

sin? r&k;
(2.5) <8y H fk;m (k.0) (2.7)
kezdj=1 2
S 8d+1’A67%’%| , (28)

proving (2.2).
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3 Regular Values of (e, N)

LEMMA 3.0. For given (g, N), there are

% <er<e
% < N1 <N
such that for 0 < Kk < 1
A
1—/{<M<1+/{ (3.3)
| 0,e1,N1|
if
‘61 — 52‘ < 1(1]—0581 (3.4)
and
INy — Na| < 7555N1 . (3.5)

Proof. Assume for each ¢ € [1/2,1] there is k = k(t) < 1 such that

|A9,( 1—1i55)te, (1—1a5. %) tN‘

<(1+k)" ’Ae (4155 5)te, (14 135 d)tN’ : (3.6)
From standard covering argument of [1/2,1] by collection of intervals
we deduce that

‘A 1__Na)t g (1 _L_a)t N|
100 d /7™ 100 d D‘
< I | A

o o, (14 58 5 tae, (14 b5 5 )ta

<[ +8a)" (3.7)
(6%
where the intervals [(1 — %%)ta, (1 + 1(1)0 fax )ta] are disjoint of total mea-
sure
ﬁ Z Kata > i . (38)
Hence
Z Ko > 12d
and ,
H<1+Iﬂ?a) > e3 2 fa > 8 (3.9)
On the other hand, (2.2) implies that
‘AG 451 4 | —3(d
—nd s g3(dHl) (3.10)
’AQ,QE,QN‘

Thus from (3.7), (3.9), (3.10)

g3(d+1) < g=8d (3.11)
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a contradiction.
Let t; € [1/2,1] be such that for all 0 <k <1
(1+ H)\Ae,( 1— a5 &) tre,(1— lood)th’ > [Ag 14 1+ 155 2 )tre,(1+ 155 %) th’ (3.12)
and take
g1 = t1€, N1 = th. (3.13)
If (3.4), (3.5) hold, then
A0>(1 100d)61’(1 W)Nl - Ae ,£2,N2 C A@ (1+m)€1,(1+ﬁ)]\71 (314)
and by (3.12)
1 ‘AG €2 N2|
== < 14+kK. 3.15
1+k ‘Ag}al’le ( )
This proves the lemma.
DEFINITION. We call (¢1, Ny) satisfying Lemma 3.0 regular.
LEMMA 3.16. Let A = Mg,y with (¢, N) regular and N = Xg _x_. _=_n.
Then
XX = Al = A+ X = Mpz) < 25 (3.17)
Proof. Write
(AxX) Z N(m m).
If (A X)(n) # 0, then there is m
Im| < 5eaN, Im—m| <N (3.18)
such that
lmo;]| < 1o6a€ 3.19)
[(n—m)o;|| <e. 3.20)
Hence, from (3.18)-(3.20)
Inl < (1+ 1g53) N 3.21)
63 < (1 + i) € 3.22)
and
nE Mg (14—t )e (145N - (3.23)
Similarly, one sees that if
n e Ag (=18 )e,(1- 155N (324)
then
A X)(n) = ‘L' =An). (3.25)

From the preceding
[A* N = X1

—_— / J—
- H (>‘ * A ) )\Hél(A97(1+ NGRS 10%d)N\A0’(1_

K K
IOOd)E’(1_100d>N)

(3.26)
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1
< [0, e N | — 10,1 e - v ]

<2k, (3.28)
using Lemma (3.0).
This proves (3.17).
LEMMA 3.29. Under the assumptions of Lemma 3.16, we also have
(A% X)) = Al < 2VE[[All2- (3.30)
Proof. Write by (3.17) and definition of A, i.e. (1.2)
[N = Ally <l ) = A0 X) = A
< V2r(2]|A\]|oo)
= 2/k|A[71/?
= 2vE[All2-

1/2
oo

4 Estimation of Exponential Sum
Let 6 € T4, A = Ao n with (g, N) regular.

LEMMA 4.0. Assume x € T and

‘ Z )\neinz
Then, there is k € Z% s.t.
Ikj| < Cd*k2 (log 1) 1 (4.2)

|z — k0] < Cd*s~2 (log 1)? L. (4.3)

Proof. Consider the following functions

> K. (4.1)

T 1

[ 0 é \ (7 1-periodic)

J 0 L\

(1-%)N N

(with ¢ appropriately chosen constant) such that the Fourier transform 7, o
satisfy decay estimate

[7(k)] < 2z exp (- (£51K1)"?) (4.4)
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~ 1/2
5(\)| < 2N exp ( (52 1A)) ) (4.5)
Thus ' 12
Zane%mx’ < CN exp (— (=) ) . (4.6)
Clearly, from definition of 7,0, we get
d
‘ 1 ‘
2minx 2minx
‘Z)\ne — WZURJE[IT(W%)@
— (4.7)

1
<m(|A9,e,N\—\A9,(1 erye (1-ex)N]) < 10

for appropriate choice of ¢ (cf. §3).

Thus, if (4.1)
'Zan HT nf;)e*™ e |A| > —5 iN, (4.8)
by (2.1). Hence
> TR DS caetmntethn] s sedn, (4.9)
kezd n
and from (4.4), (4.6)
ke 2 & 1/2 KN\ 1/2 d
Z exp[(@) Z|k:3| + (m) |z + k.0| } > k. (4.10)
kezd Jj=1
One has
relkl \ /2
Zexp[ ( 6"“') ] < Cd (4.11)
keZ
1/2 1/2
S o[- () <o -4 (2)
|| >ko (4.12)
Split the sum in (4.10)
o+ > =W+dn. (4.13)
|kjl<ko  max |k;|>ko
Then, by (4.11)
cd\4 KN 1/2
(D) < (8)" max exp (= [ lle + koll) ) (4.14)
and by (4.12)
d e 1/2
(1) < d (%) exp—5 (%) - (4.15)

Take thus )
ko > €442 (log €4) (4.16)
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to insure that

(I1) < 3. (4.17)
Hence, by (4.10), (4.13), (4.14), (4.17) we get for some k € Z¢
kjl <ko  (1<j<d) (4.18)
that
exp— [z + k9||}1/2 >3 (%)dcdm (4.19)
|z + k]| < S4d? [log €4
< Gd (log 1) . (4.20)

From (4.18), (4.16), (4.20), the conclusion (4.2), (4.3) in Lemma 4.0 clearly
follows.

5 Density
Let A C {1,..., N} satisfying
|A| > 6N . (5.1)
For A\ a probability measure on 7Z, define
AA) =), (5.2)
neA

Starting from A\g = ﬁ]l{_N7.._7N} and assuming A does not contain a

nontrivial triple in progression, we will construct a sequence of probability
measures A of the form A\ = Ag. s for varying d,0 € T? e and M, such
that at each step A(A’) will increase by at least ¢A(A’)? for some translate
A’ of A. Thus, by (5.1), this leads to a contradiction after at most ~ 61
steps.

We agree, when introducing measures of the form Mg p7, to always
assume (g, M) regular.

The main issue in the argument is then how d, 0, ¢, M will evolve along
the iteration.

Assume for some translate A’ of A

AA) =6 >6 (5.3)

where A\ = \g - ar.
Fix k > 0, to be specified, and define

N =N ergenpy (5.4)

td T d

)\// - )\9,(%)28,(&)2]\4 . (55)

d
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Let X denote the measure
An =N if m€2Z
=0 otherwise .
Thus

)\/// = Aé,(%)%,?(%)zM
0 [
0=5U{3}.

A§7€/’M/ C AQ,QE’,M’ .

where

Observe that

977

(5.6)

(5.7)
(5.8)

(5.9)

According to Lemma 3.16 and preceding regularity assumption, it fol-

lows that
A= s X)), < n
IV = Vx|, < w
H)\I_(A/*A”/>H1</i

(for appropriate choice of constants ¢ in (5.4), (5.5), (5.7) )
Assume for each m € Z

|N(A" +m) = AA)| > 106 or |[N(A +m)—A(A)| > 10x.

Then, clearly, for either A\l = X or Al = )\
D Am| M (A = m) — A(A)] > 5k
Since, by (5.10), (5.11), also
‘ S A [A(A = m) = A(4)] ‘ = (A AL)(A) = A(4)|

N [CEPOEPYN
< 3K

it follows that for some m

M(A +m) > \NA) + k.
Hence, there is either some translate A” = A’ + m of A satisfying
IN(A") = MA)| < 10s;  [N'(A") = MA)| < 10k,
or, for some translate A” = A’ + m, there is a density increment
NANY>MNA)Y+k  or N(A") > NA) +k.

In the preceding, we let
K =10786%.

(5.10)
(5.11)
(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)
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6 Comparison of the Integrals

Assume (5.17) for some translate A” of A. Following the circle method,
consider the sums

S'= N, e (6.1)

Sh= ) X e (6.2)
neA”

S =" A ermin (6.3)

Sh= ) At (6.4)

" = EA;;;’ e2mine, (6.4")

Since A hence A” does not contain a nontrivial triple in progression
L= / S, (2)28 (—20)dar
T

= > ()P (6.5)
neAl/
On the other hand

L= /T [N(A")S' ()] [\ (A")S" (—22)] da

_ )\I(A”)Q)\”(A”) Z )\/ )\/ )\//

n1‘na’\m
ni+n2=2m

= N(A"2N(A") D N am A, (6.6)
By construction of X', N, A" cf. (5.6), (5.12) we have
> = (X N )| < X = XX, < & (6.7)

n

24 1/2
N = (M) ) < BPINILE = 2o

(>

n (6.8)
Hence, from (5.17), (6.8)
(6.6) > (61 — 10r)°(1 — &'/2)|INI3 (1)
(5.19)
> 3INI3 (6.9)

We will assume that throughout the construction of the measures A =
NoeM,s 0 € T¢, the condition

log M > d (log L + log § + log d) (6.10)
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is fulfilled.

Thus
< 3 0 < (g VB < MV (611
and from (6.6), (6.9), (6.11)
| —Io| > 5 6FIN[I3 - (6.12)
Estimate
n-ni<| [ |s;<x>|2dx] |5 - wans”] (613)
+ [ I84@)? = NS @R 3] (<20
(6.14)
Write by (6.2), (5.12)
(6.13) = gl A N A" S5 — N'(A)S"||
= NIV 8% - NS
< 26| N3] % — N"(A)S"|).. - (6.15)
Thus, if (6.13) > 1&3(|N'|3, it follows from (6.15) that
184 = N"(A)S" |, > 5% (6.16)
Estimate

(6.14) < N"(A")[1S4ll2 + N (A [S"[|2] || [STa () — X'(A")S" ()| 18" (—22)] ||
< 2N(A)N (AN |2]| 1Sy () — N'(A")S"(2)] 1" (=22)] |,

< 88| N |Ja|| 1S4 (x) — N(A")S' ()] |S"(~22)] |, (6.17)
and it follows that if (6.14) > #&7[|\'[|3, then
157 () = X'(A")S ()] 19" (=22)] || > 62N ]2 - (6.18)

We will show in the next 2 sections that both (6.16), (6.18) imply a density
increment

A (A1) > MNA) +0(863) = & +0(8%) (6.19)
for some A1 = Ag, ;. v, and translate A; of A.

7 Density Increment (1)

Assume (6.16)
Thus from some xg € T

| S%4(20) — N'(A")S" (20)| > 567 . (7.1)
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Recalling (5.5) where 6 € T¢, replace d by d+ 1, 6 by § = 0 U {zo} € T4
and let

)\ == )\é’}(%)gs,(%)gM . (72)
Then
SZ‘(.%()) _ Z )\ZeQWin:po
neA//
= ) AN AT L 0N = (A A1) (7.3)
m,ncA”
(3 16) Z )\// 27rim1’05\(A// - m)
v O(Z Ane2minzo 1) 4 n) (7.4)
= S NAA” = m)er 0 4 0( (%) + k) (7.5)

where k = 107862, cf. (5.14).
Thus (7.1), (7.5) imply that

) Z )\// A// )\”(A”)] 2mimaxg

> Lot (7.6)

S ONLIMAT = m) = N'(A")| > 567 (7.7)
Again
MNOIXNA" —m) = XN'(AD]| = |V« (A" =N (AN <k (7.8
pp
and (7.7), (7.8), (5.17) permit us to ensure that
AA) > N'(A") + +67 > MA) — 10k + 67 > 61 + 467 (7.9)
for some translate A = A” —m of A.
Thus (7.9) produces the required density increment (6.19).

8 Density Increment (2)
Assume next (6.18).

Since
[S% = N (A", < 1S4z + X (A [l2 < 2X(A”)2||X]|2
< 48,7 |2 (8.1)
it follows from (6.18) that
118 = X (A8 o > 1267 21X 2 (8.2)

where
F={zeT||9"(-22)] >107%6} = {z € T||5"(—x)| > 107%6 } .
(8.3)
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In order to specify F, apply Lemma 4.0 with X replaced by A" given by
(5.7). Thus if z € F, there is k € Z9 s.t.

2
k| < Cdto;> (log %l) a2 1

) &%
<C% (logl)’l  (1<j<a) (8.4)
1
and y ] )
~ e — k0l < O (log2)* ;. (85)
where 6 is given by (5.8).
Thus if we let N
A = A ~ R .
6,z,M (8.6)
with .
~ ) —2
e =c% (log 1) (8.7)
~ 9 —9
M=cl (log )2 M (8.8)
it follows from (8.4), (8.5) that (for an appropriate constant c)
|nz| < 107367 forx € F, n € A. (8.9)
Recalling (5.4)
I _
NS (8.10)
the multiplier )\ associated with A will also satisfy
(X % X) = X||, < 107%] (8.11)
from (8.7), (8.8), (3.16). Hence
[N % A) = X[, < 1073877\ ||2. (8.12)
Write
514(.%) _ Z Afne%rinx
neA”
= 3 (N d)ePine (8.13)
neA”
+ 30 (X = (V=) e (8.14)
neA//
From (8.12)
1(8.14) ]2 < [|N — (N V)|, < 10736] | V]| (8.15)
Write

(813) = > Ay 2™

m,neA"
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= SN2 (A — m) (8.16)
+ Z )\lmxn_m(eQWina: o eQm’mx) ) (8.17)
m,neA"
One has for z € F, by (8.9)
8 17 ‘ _ ‘ Z )\ X e2minz e27ri(nfm):p)
m,neA
— ‘ Z Xm(e%rimm _ 1) |: Z )\;l_m eZm'(n—m)m:|
m neA//
<1087 Xm’ ST N (8.18)
m keA'"—m
hence N
1B17) ] £ll, < 107267 > " AN [|l2 = 107267 || X2 (8.19)

Thus, from (8.15), (8.19)

H[Sf“ _ )‘/(A//)S/H]—‘Hz < H Z)‘/me%imm;‘(A// —m) — )\/(A//)S/ )
m

+ 550 631V [12

= (S -3 —m)) .

m

Consequently, (8.2), (8.20) give

(oS-

m

Z)\/ )\/ A// . (AI/ )]2>

[X(A”)+maxA (A" = m)] [Z)\ N(A") = A(A" )]] >

From (8.23), either for some m

AA" —m) > 45,
or

SN IN(AT) = XA )| > S

(8.20)

20() ”)‘/”2
(8.21)

&

4.10%

(8.22)
&

4.10% -
(8.23)
(8.24)
(8.25)
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Since again
‘Z)\/ )\/ A// . (A// )]‘:})\,(A”)—(X*X)(A”)‘

(8. 11)

107%67 . (8.26)
(8.25), (8.26) imply for some m
N 10oAN 1 (62 87 62
AA" — )—A(A)>§(W7W) > b
N (5.17) / —6¢2 —7¢2
AMA"—m) > AA") — 10k 4+ 107°67 > 61 + 107763
(8.27)
for some m. Thus (8.24), (8.27) give again the increment
AA) > 6, + 107762 (8.28)
for some translate
A=A"—mof A, ie. (6.19). (8.29)

9 Conclusion

Taking into account (5.13), (7.9), (8.28), it follows that starting from \ =
Noe M0 € T? such that

AMA)Y=6>6 (9.1)
for some translate A’ of A, one of the following holds
N(Ap) > 61 + 107863 (9.2)
N(Ap) > 6 +10786%
- 1,
AMA7) > 61+ Eél (9.4)
AAp) > 6 + 107762 (9.5)

for some translate A4; of A.
Here X, )\, S\,X are given by (5.4), (5.5), (7.2), (8.6)-(8.8) respectively.

Hence
A (A7) > 61 +1078 63 (9.6)
where A\ is of the form
A= Aoy o0, (9.7)
with
6, € T¢! (9.8)

g1 > c67d® (log %)72 € (9.9)
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My > e6)d S (log 1) > M. (9.10)
Starting from \g = ﬁ]l{_N7...7N}, Ao(A) > 6, it follows indeed from (9.6)
that one needs at most ~ 1/4 iteration steps to reach a contradiction. Thus
the number d is bounded by

d<Cs? (9.11)
(9.9) implies at each step «
Eatl > 0617(10g %)_2% (9.12)
hence
Eq > 6200 > §CO7 (9.13)
Similarly

2
Myyq > o'’ <log %) M, > c62°M,, (9.14)

My > 6C'N . (9.15)
Coming back to condition (6.10), we get from (9.11), (9.13), (9.15) the
restriction

log N > 6 2log 1 (9.16)
ie. 1/
loglog N
1 e . 1
> C’( log N ) (9.17)

Thus, if (9.17) holds, the set A must contain a nontrivial triple in progres-
sion.
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