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1 Introduction

The famous theorem of Szemerédi asserts that, for any positive integer
k and any real number δ > 0, there exists N such that every subset of
{1, 2, . . . ,N} of cardinality at least δN contains an arithmetic progression
of length k. The theorem trivially implies van der Waerden’s theorem, and
was, by the time it was proved by Szemerédi, a renowned and long-standing
conjecture of Erdős and Turán [ET].

The first progress towards the theorem was due to Roth [R1], who
proved the result in the special case k = 3, using exponential sums. Sze-
merédi later found a different, more combinatorial proof of this case, which
he was able to extend to prove the result first for k = 4 [Sz1] and then even-
tually in the general case [Sz2]. There was then a further breakthrough due
to Furstenberg [Fu], who showed that techniques of ergodic theory could be
used to prove many Ramsey theoretic results, including Szemerédi’s the-
orem and certain extensions of Szemerédi’s theorem that were previously
unknown.

These results left an obvious avenue unexplored: can Roth’s proof for
k = 3 be generalized to prove the whole theorem? The purpose of this
paper is to show that it can, at least for the first “difficult” case k = 4.
A subsequent paper will give rather more detail and an extension to the
general case, which, although based on similar ideas, is significantly more
complicated.

The motivation for generalizing Roth’s argument is twofold. First, his
argument is very natural and beautiful, and it is curious that it should not
have an obvious generalization (though there are good reasons for this, as
will become clear). Second, the bounds arising from the known proofs of
Szemerédi’s theorem are very weak, and in general for this sort of problem
all the best bounds tend come from the use of exponential sums. For ex-
ample, Roth shows that when k = 3 one can take N to be exp exp(C/δ) for
some absolute constant C, which is far better than the bound given by any
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known combinatorial argument. This estimate has been reduced by Sze-
merédi [Sz3] and Heath-Brown [H] to exp((1/δ)C), also using exponential
sums.

With our new approach, it is possible to show that there is an abso-
lute constant c > 0 such that every subset of {1, 2, . . . ,N} of size at least
N(log logN)−c contains an arithmetic progression of length four. Equiva-
lently, there is an absolute constant C such that any subset of {1, 2, . . . ,N}
of size at least δN contains an arithmetic progression of length four, as
long as N > exp exp((1/δ)C). In this paper we obtain instead a bound of
exp exp exp((1/δ)C), as the argument is simpler. The improved bound will
be presented in the later paper dealing with the general case.

Although a bound of this type may seem weak (and is almost certainly
far from best possible) it is nevertheless a significant improvement on what
went before. Even to state the earlier bounds needs some effort. Let us
define the tower function T inductively by T (1) = 2 and T (n+ 1) = 2T (n).
Next, define a function W inductively by W (1) = 2 and W (n + 1) =
T (W (n)). The previous best known bound for N has not been carefully
calculated, but is at least as bad as W (1/δ). Even the bounds for van der
Waerden’s theorem are weak: to show that any r-colouring of {1, 2, . . . ,N}
gives a monochromatic arithmetic progression of length four, the proofs
need N to be at least as large as T (T (r)).

These earlier estimates rely on van der Waerden’s theorem in its full
generality, for which the best known bounds, due to Shelah [S], involve
functions of the same type as the function W above. An important feature
of our proof is that we avoid using van der Waerden’s theorem, and also
have no need for Szemerédi’s uniformity lemma, which is known to require
a bound similar to the function T [G]. Instead, our main tools are a well
known consequence of Weyl’s inequality and a deep theorem of Freiman.

It should be mentioned that Roth himself did find a proof for k = 4
[R2] which used analytic methods, but these were combined with certain
combinatorial arguments of Szemerédi and the proof still used van der
Waerden’s theorem. The argument of this paper is quite different and
more purely analytic, which is why it gives a better bound.

2 Quadratically Uniform Sets

In this section, we shall reduce Szemerédi’s theorem for progressions of
length four to a question that looks somewhat different. The rough idea is
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to define a notion of pseudorandomness, which we shall call quadratic uni-
formity, and show that every pseudorandom set, in the appropriate sense,
contains about the same number of arithmetic progressions of length four
as a random set of the same size. In later sections, we shall then prove that
a set which fails to be pseudorandom can be restricted to a large arith-
metic progression where its density increases noticeably. These two facts
then easily imply the result.

In order to define quadratic uniformity, we shall need to introduce some
notation. Given a positive integer N , we shall write ZN for the group of in-
tegers mod N . When N is clear from the context (which will be always) we
shall write ω for the number exp(2πi/N). Given any function f : ZN → C,
we shall define its rth Fourier coefficient f̃(r) to be

∑
s∈ZN f(s)ω−rs. It

would be more standard to write
∑

s∈ZN f(s)e(−rs/N), where e(x) is the
function exp(2πix). However, we have found the less standard notation
convenient.

In our context, we shall often wish to consider convolutions of the form
h(s) =

∑
t−u=s f(t)g(u). Again departing from standard notation, we shall

write f ∗g for this function. The two main properties of the discrete Fourier
transform that we shall use are then∑

r∈ZN

∣∣f̃(r)
∣∣2 = N

∑
s∈ZN

∣∣f(s)
∣∣2 (1)

and
(f ∗ g)∼(r) = f̃(r)g̃(r) (r ∈ ZN ) . (2)

There are two classes of functions to which we shall apply Fourier tech-
niques. The first is what we shall call balanced functions associated with
subsets A ⊂ ZN . Given such a set A, of size δN , we define its balanced
function f = fA by

f(s) =

{
1− δ s ∈ A
−δ s /∈ A .

This is the characteristic function of A minus the constant function δ1.
Note that

∑
s∈ZN fA(s) = f̃A(0) = 0 and that f̃A(r) = Ã(r) for r 6= 0.

(Here, we have identified A with its characteristic function. We shall con-
tinue to do this.) The second class of functions that will interest us is
functions of the form

g(s) =

{
ωφ(s) s ∈ B
0 s /∈ B ,

where B is a subset of ZN and φ : B → ZN .
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Another convention we shall adopt from now on is that any sum is
over ZN if it is not specified as being over another set. The next lemma
contains some well known facts about functions on ZN with small Fourier
coefficients. When we say below that one statement with constant ci implies
another with constant cj , we mean that the second statement follows from
the first provided that cj > γ(ci), for some function γ which tends to zero
at zero. In fact, γ(ci) will always be some power of ci.

Lemma 1. Let f be a function from ZN to the unit disc in C. The following
are equivalent.

(i)
∑

r |f̃(r)|4 6 c1N4.
(ii) maxr |f̃(r)| 6 c2N .
(iii)

∑
k

∣∣∑
s f(s)f(s− k)

∣∣2 6 c3N3.
(iv)

∑
k

∣∣∑
s f(s)g(s− k)

∣∣2 6 c4N2 ‖g‖22 for every function g : ZN → C.

Proof. Using identities (2) and (1) above, we have∑
k

∣∣∣∑
s

f(s)g(s− k)
∣∣∣2 =

∑
k

∣∣f ∗ g(k)
∣∣2

= N−1
∑
r

∣∣(f ∗ g)∼(r)
∣∣2

= N−1
∑
r

∣∣f̃(r)
∣∣2∣∣g̃(r)

∣∣2
6
(∑

r

∣∣f̃(r)
∣∣4)1/2(∑

r

∣∣g̃(r)∣∣4)1/2

by the Cauchy–Schwarz inequality. If f = g, then equality holds above,
which gives the equivalence between (i) and (iii) with c1 = c3. It is obvious
that (iv) implies (iii) if c3 > c4. Using the additional inequality(∑

r

∣∣g̃(r)
∣∣4)1/2

6
∑
r

∣∣g̃(r)
∣∣2 ,

we can deduce (iv) from (i) if c4 > c1/21 .
Since maxr |f̃(r)| 6

(∑
r |f̃(r)|4

)1/4, one can see that (ii) follows from
(i) if c2 > c1/41 . For the reverse implication, we use the fact that∑

r

∣∣f̃(r)
∣∣4 6 max

r

∣∣f̃(r)
∣∣2∑

r

∣∣f̃(r)
∣∣2 .

By identity (1) and the restriction on the image of f , we have the estimate∑
r |f̃(r)|2 6 N2, so that (i) follows from (ii) if c1 > c22. �
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If f satisfies condition (i) with c1 = α, then we shall say that f is α-
uniform. If f is the balanced function of a set A, we shall say also that A
is α-uniform. (This definition coincides with the definition made by Chung
and Graham of a quasirandom subset of ZN [CGr].)

Roth’s proof can be presented as follows. Let A be a subset of ZN of
size δN . If A is α-uniform for a suitable α (a power of δ, where |A| = δN)
then A contains roughly the expected number of arithmetic progressions
of length three. (This follows easily from Lemma 6 below.) If not, then
some non-zero Fourier coefficient of the characteristic function of A is a
large fraction of N . It follows easily that there is a subset I = {a + d,
a + 2d, . . . , a + md} ⊂ ZN such that m is a substantial fraction of N
and |A ∩ I| > (δ + ε)m for some ε > 0 which is also a power of δ. It
can be shown quite easily (see for example Lemma 17 of this paper) that
I can be partitioned into genuine arithmetic progressions (that is, when
considered as subsets of Z) of size about m1/2. Hence, there is an arithmetic
progression P of about this size such that |A∩P | > (δ+ ε)|P |. Now repeat
the argument for P . The number of times it can be repeated depends
only on δ, so, provided N is large enough, there must be an arithmetic
progression of size three in A.

It turns out that, even if α is extremely small, an α-uniform set need not
contain roughly the expected number of arithmetic progressions of length
four. (An example will be presented in a future paper.) For this reason,
if we wish to have an approach similar to the above one, but for progres-
sions of length four, then we need a stronger notion of pseudorandomness.
Given a function f : ZN → ZN and k ∈ ZN , define a function ∆(f ; k) by
∆(f ; k)(s) = f(s)f(s− k). Notice that if f(s) = ωφ(s) for some function
φ : ZN → ZN , then ∆(f ; k)(s) = ωφ(s)−φ(s−k).

Lemma 2. Let f be a function from ZN to the closed unit disc in C. The
following are equivalent.

(i)
∑

u

∑
v

∣∣∑
s f(s)f(s− u)f(s− v)f(s− u− v)

∣∣2 6 c1N4.
(ii)

∑
k

∑
r |∆(f ; k)∼(r)|4 6 c2N5.

(iii) |∆(f ; k)∼(r)| > c3N for at most c23N pairs (k, r).
(iv) For all but c4N values of k the function ∆(f ; k) is c4-uniform.

Proof. The equivalence of (i) and (ii) with c1 = c2 follows, as in the proof of
the equivalence of (i) and (iii) in Lemma 1, by expanding. Alternatively, it
can be deduced by applying that result to each function ∆(f ; k) and adding.
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If |∆(f ; k)∼(r)| > c3N for more than c23N pairs (k, r) then obviously∑
k

∑
r

∣∣∆(f ; k)∼(r)
∣∣4 > c63N

5 ,

so (ii) implies (iii) provided that c2 6 c63. If (ii) does not hold, then there
are more than c2N/2 values of k such that

∑
r |∆(f ; k)∼(r)|4 6 c2N

4/2.
By the implication of (i) from (ii) in Lemma 1 this implies that there are
more than c2N/2 values of k such that maxr |∆(f ; k)∼(r)| > (c2/2)1/2N ,
and hence (iii) implies (ii) as long as c2 > 2c23. Finally, it is easy to see that
(iv) implies (ii) if c2 > 2c4 and (ii) implies (iv) if c2 6 c24. �

A function satisfying property (i) above with c1 = α will be called
quadratically α-uniform. A set will be called quadratically α-uniform if
its balanced function is. Let us define a square and a cube in ZN to be
sequences of the form (s, s+ a, s+ b, s+ a+ b) and (s, s+ a, s+ b, s+ c, s+
a+ b, s+ a+ c, s+ b+ c, s+ a+ b+ c) respectively. The number of squares
in a set A is easily seen to be N−1∑

r |Ã(r)|4. It follows that if A has
cardinality δN , then it contains at least δ4N3 squares and is α-uniform if
and only if it contains at most (δ4 + α)N3 squares. It is not hard to show
that A contains at least δ8N4 cubes, and that A is quadratically uniform if
and only if it contains at most δ8(1+ε)N4 cubes for some small ε. However,
we shall not need this result. The aim of the rest of this section is to show
that a quadratically uniform set contains roughly the expected number of
arithmetic progressions of length four.

Lemma 3. For 1 6 i 6 k let fi : ZN → D be an αi-uniform function. Then
f1 + · · ·+ fk is (α1/4

1 + · · ·+ α
1/4
k )4-uniform.

Proof. This follows immediately from the definition and the fact that f 7→(∑
r |f̃(r)|4

)1/4 is a norm. �

Lemma 4. Let A ⊂ ZN be a quadratically α-uniform set of size δN . Then,
for all but at most α1/2N values of k, A ∩ (A+ k) is 81α1/2-uniform, and,
for all but at most α1/4N values of k, | |A ∩ (A+ k)| − δ2N | 6 α1/8N .

Proof. Let f be the balanced function of A. Then

A ∩ (A+ k)(s) = δ2 + δf(s) + δf(s− k) + f(s)f(s− k) .

The implication of (iv) from (i) in Lemma 2 implies that for all but α1/2N
values of k, the function f(s)f(s−k) is α1/2-uniform. Expanding condition
(iii) of Lemma 1 and then applying the Cauchy–Schwarz inequality shows
that if f is quadratically α-uniform, then it is also α1/2-uniform. Therefore,
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by Lemma 3, A∩ (A+ k) is 81α1/2-uniform for at least (1−α1/2)N values
of k. As for the size of A∩(A+k), it is δ2+

∑
s f(s)f(s−k). Since f is α1/2-

uniform, condition (iii) of Lemma 1 tells us that
∑

k

∣∣∑
s f(s)f(s− k)

∣∣2 6
α1/2N3, which implies the assertion. �

Let f : ZN → R. Then the Cauchy–Schwarz inequality implies that
‖f‖2 > N−1/2 ‖f‖1. At one point in the argument to come, we shall exploit
the fact that a function f : ZN → R+ for which equality almost occurs is
close to being constant. A precise statement of what we shall use follows
(which is basically Tchebyshev’s inequality).

Lemma 5. Let f : ZN → R+ be a function with ‖f‖1 = wN and suppose
that ‖f‖22 6 (1 + ε)w2N . Let A be a subset of ZN . Then |

∑
s∈A f(s) −

w|A|| 6 ε1/2wN1/2|A|1/2.

Proof. The mean of f is w and the variance is εw2. Therefore∣∣∣∑
s∈A

f(s)− w|A|
∣∣∣ 6∑

s∈A
|f(s)− w| 6 |A|1/2

(∑
s∈A

(f(s)− w)2
)1/2

6 ε1/2wN1/2|A|1/2 . �

The proof of the next lemma gives a better bound than the one we shall
actually state. However, the improvement is less tidy to use and does not
make a significant difference to our eventual bound.

Lemma 6. Let A,B and C be subsets of ZN of cardinalities αN, βN and
γN respectively. Suppose that C is η-uniform. Then∣∣∣∑

r

∣∣A ∩ (B + r) ∩ (C + 2r)
∣∣− αβγN2

∣∣∣ 6 ηN2 .

Proof. Let us identify A, B and C with their characteristic functions. Then∑
r

∣∣A ∩ (B + r) ∩ (C + 2r)
∣∣ =

∑
r

∑
s

A(s)B(s− r)C(s− 2r)

= N−1
∑
p

∑
x,y,z

A(x)B(y)C(z)ω−p(x−2y+z)

= N−1
∑
p6=0

Ã(p)B̃(−2p)C̃(p)+N−1|A| |B| |C| .

However, by the η-uniformity of C and the Cauchy–Schwarz inequality,∣∣∣∑
p6=0

Ã(p)B̃(−2p)C̃(p)
∣∣∣ 6 ηN‖Ã‖2‖B̃‖2 6 ηN2 ,

which proves the lemma. �
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Lemma 7. Let A,B,C and D be subsets of ZN of cardinality αN, βN, γN
and δN respectively. Suppose that C is η-uniform and D is quadratically
η-uniform for some η 6 2−20. Then∣∣∣∑

r

∣∣A ∩ (B + r) ∩ (C + 2r) ∩ (D + 3r)
∣∣− αβγδN2

∣∣∣ 6 3η1/16N2/βγδ .

Proof. Once again, identify sets with their characteristic functions and let
f(s) =

∑
r B(s− r)C(s− 2r)D(s− 3r). We shall estimate the norms ‖f‖1

and ‖f‖2. The proof of Lemma 4 tells us that D is η1/2-uniform. Hence,
by Lemma 6,

‖f‖1 =
∑
s

∑
r

B(s− r)C(s− 2r)D(s− 3r)

=
∑
r

∣∣B ∩ (C + r) ∩ (D + 2r)
∣∣

> N2(βγδ − η1/2) .

Lemma 6 also tells us that ‖f‖1 6 N2(βγδ + η1/2), which we shall need to
know later. As for ‖f‖2, we have that

‖f‖22 =
∑
s

∑
r,q

B(s− r)B(s− q)C(s− 2r)C(s− 2q)D(s− 3r)D(s− 3q) .

If we substitute p = q − r, then this becomes∑
s

∑
r,p

B(s−r)B(s−r−p)C(s−2r)C(s−2r−2p)D(s−3r)D(s−3r−3p)

=
∑
r,p

∣∣(B+r)∩(B+r+p)∩(C+2r)∩(C+2r+2p)∩(D+3r)∩(D+3r+3p)
∣∣

=
∑
r,p

∣∣(B ∩ (B + p)) ∩ (C ∩ (C + 2p) + r) ∩ (D ∩ (D + 3p) + 2r)
∣∣ .

By Lemma 4, D ∩ (D + 3p) is η1/2-uniform for all but at most 81η1/2N
values of p. When D ∩ (D + 3p) is η1/2-uniform, Lemma 6 implies that∑

r

∣∣(B ∩ (B + p)) ∩ (C ∩ (C + 2p) + r) ∩ (D ∩ (D + 3p) + 2r)
∣∣

is at most

N−1∣∣B ∩ (B + p)
∣∣∣∣C ∩ (C + 2p)

∣∣∣∣D ∩ (D + 3p)
∣∣+ η1/2N2 .

Summing over p, this tells us that

‖f‖22 6 N−1
∑
p

∣∣B ∩ (B + p)
∣∣∣∣C ∩ (C + 2p)

∣∣∣∣D ∩ (D + 3p)
∣∣+ 82η1/2N3 .
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Because C and D are quadratically η-uniform, Lemma 4 implies that∣∣C ∩ (C + 2p)
∣∣ 6 γ2N + η1/8N

and ∣∣D ∩ (D + 3p)
∣∣ 6 δ2N + η1/8N

except for at most 2η1/4N values of p. Therefore,

‖f‖22 6 N−1
∑
p

∣∣B ∩ (B + p)
∣∣(γ2δ2N + 2η1/8N) + 2η1/4N3 + 82η1/2N3

6 N3(β2γ2δ2 + 3η1/8)

because of our restriction on the size of η. We have now shown that

‖f‖22 6 N−1 ‖f‖21

(
1+

3η1/8

β2γ2δ2

)(
1−η

1/2

βγδ

)−2

6 N−1 ‖f‖21

(
1+4

η1/8

β2γ2δ2

)
.

We now apply Lemma 5 with ε = 4η1/8/β2γ2δ2 and |w − βγδN | 6 η1/2N ,
to deduce that∣∣∣∑

s∈A
f(s)− αβγδN2

∣∣∣ 6 η1/2N2 + 2α1/2η1/16N2/βγδ 6 3η1/16N2/βγδ

which is equivalent to the assertion of the lemma. �

Corollary 8. Let A0 ⊂ ZN be a quadratically η-uniform set of size δN ,
where η 6 2−208δ112 and N > 200δ−3. Then A0 contains an arithmetic
progression of length four.

Proof. In Lemma 7, take A and B to be A0 ∩ [2N/5, 3N/5) and take C
and D to be A0. Since A0 is η1/2-uniform, the upper bound on η implies
that A and B have cardinality at least δN/10. (Otherwise, it can easily
be shown, there would be at least one non-trivial large Fourier coefficient.)
The lemma and the bound on η then imply that there are at least δ4N2/200
sequences of the form (a, a+ d, a+ 2d, a+ 3d) in A×B×C ×D. Of these,
at most δN can have d = 0. Therefore, there is at least one with d 6= 0.
Since a and a + d belong to the interval [2N/5, 3N/5), we have a + 2d in
the interval [N/5, 4N/5) and a+3d in [0,N), even when these numbers are
considered as elements of Z. That is, the sequence (a, a+ d, a+ 2d, a+ 3d)
is a genuine arithmetic progression and not just an arithmetic progression
mod N . �
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3 Finding Many Additive Quadruples

We have just seen that a quadratically uniform set must contain an arith-
metic progression of length four. We now begin an argument of several
steps, which will eventually show that if A is a subset of ZN of cardinality
δN which fails to be quadratically α-uniform, then there is an arithmetic
progression P ⊂ ZN (which is still an arithmetic progression when regarded
as a subset of {1, 2, . . . ,N}) of size Nβ such that |A∩P | > (δ+ε)|P |, where
β and ε depend on α and δ only.

If A fails to be quadratically α-uniform, then so does its balanced func-
tion f (by definition). This tells us that there are many values of k for which
the function ∆(f ; k) has a large (meaning proportional to N) Fourier co-
efficient r. In the next result, we shall show that the set of pairs (k, r) for
which ∆(f ; k)∼(r) is large is far from arbitrary.

Proposition 9. Let α > 0, let f : ZN → D, let B ⊂ ZN and let φ : B →
ZN be a function such that∑

k∈B

∣∣∆(f ; k)∼
(
φ(k)

)∣∣2 > αN3 .

Then there are at least α4N3 quadruples (a, b, c, d) ∈ B4 such that a+ b =
c+ d and φ(a) + φ(b) = φ(c) + φ(d).

Proof. Expanding the left hand side of the inequality in the statement tells
us that ∑

k∈B

∑
s,t

f(s)f(s− k)f(t)f(t− k)ω−φ(k)(s−t) > αN3 .

If we now introduce the variable u = s− t we can rewrite this as∑
k

∑
s,u

f(s)f(s− k)f(s− u)f(s− k − u)ω−φ(k)u > αN3 .

Since |f(s)| 6 1 for every s, it follows that∑
u

∑
s

∣∣∣∑
k∈B

f(s− k)f(s− k − u)ω−φ(k)u
∣∣∣ > αN3

which implies that∑
u

∑
s

∣∣∣∑
k∈B

f(s− k)f(s− k − u)ω−φ(k)u
∣∣∣2 > α2N4 . (∗)

For fixed u, let γ(u) be defined by the equation∑
s

∣∣∣∑
k∈B

f(s− k)f(s− k − u)ω−φ(k)u
∣∣∣2 = γ(u)N3 .
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This shows that the function B(k)ωφ(k)u has a large inner product with
many translates of the function ∆(f ;u) (both considered as functions of k).
Lemma 1 implies that both functions have at least one large Fourier coeffi-
cient. To be precise, if we apply the implication of (iv) from (i) in Lemma 1
to these functions, then we can deduce that∑

r

∣∣∣∑
k∈B

ωφ(k)u−rk
∣∣∣4 > γ(u)2N4 . (∗∗)

Inequality (∗) implies that
∑

u γ(u) > α2N , which implies that
∑

u γ(u)2 >
α4N . Hence, taking inequality (∗∗) and summing over u, we obtain∑

u

∑
r

∣∣∣∑
k∈B

ωφ(k)u−rk
∣∣∣4 > α4N5 .

Expanding the left hand side we find that∑
u,r

∑
a,b,c,d∈B

ωu(φ(a)+φ(b)−φ(c)−φ(d))ω−r(a+b−c−d) > α4N5 .

But now the left hand side is exactly N2 times the number of quadruples
(a, b, c, d) ∈ B4 for which a+ b = c+ d and φ(a) +φ(b) = φ(c) +φ(d). This
proves the proposition. �

We shall call a quadruple with the above property additive. In the next
section, we shall show that functions with many additive quadruples have
a very interesting structure.

4 An Application of Freiman’s Theorem

There is a wonderful theorem due to Freiman about the structure of finite
sets A ⊂ Z with the property that A + A = {x + y : x, y ∈ A} is not
much larger than A. Let us define a d-dimensional arithmetic progression
to be a set of the form P1 + · · ·+ Pd, where the Pi are ordinary arithmetic
progressions. It is not hard to see that if |A| = m and A is a subset of a
d-dimensional arithmetic progression of size Cm, then |A + A| 6 2dCm.
Freiman’s theorem [F1,2] tells us that these are the only examples of sets
with small double set.

Theorem 10. Let C be a constant. There exist constants d and K,
depending only on C, such that, whenever A is a subset of Z with |A| = m
and |A + A| 6 Cm, there exists an arithmetic progression Q of dimension
at most d such that |Q| 6 Km and A ⊂ Q.
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In fact, we wish to apply Freiman’s theorem to subsets of Z2, but it is an
easy exercise to embed such a subset “isomorphically” into Z and deduce
the appropriate result from Theorem 10. Freiman’s proof of his theorem
did not give a bound for d and K, but recently an extremely elegant proof
was discovered by Ruzsa which gives quite a good bound [Ru]. A better
bound for Szemerédi’s theorem can be obtained by modifying the statement
of Freiman’s theorem, and modifying Ruzsa’s proof accordingly. However,
this modification will be presented in a future paper - the priority here is
to keep the argument as simple as possible, given known results.

We shall be applying Freiman’s theorem to graphs of functions with
many additive quadruples. If Γ is such a graph, then we can regard Γ as
a subset of Z2. To every additive quadruple we can associate a quadruple
of points (x, y, z, w) ∈ Γ such that x + y = z + w, where the addition is
in Z2. It turns out to be convenient to consider instead quadruples with
x − y = z − w but they are clearly in one-to-one correspondence with the
other kind.

The assumption that A is a subset of Z2 containing many quadruples
(x, y, z, w) with x − y = z − w tells us virtually nothing about the size
of A + A, since half of A might be very nice and the remainder arbitrary.
Even the stronger property that all large subsets of A contain many such
quadruples (which comes out of Proposition 9) is not enough. For example,
A could be the union of a horizontal line and a vertical line. What we
shall show is that A has a reasonably large subset B such that |B + B| is
reasonably small. We will then be able to apply Freiman’s theorem to the
set B. This result, in its qualitative form, is due to Balog and Szemerédi
[BSz]. However, they use Szemerédi’s uniformity lemma, which, as we
mentioned in the introduction, produces a very weak bound. We therefore
need a different argument, which will be the main task of this section. We
begin with a combinatorial lemma.

Lemma 11. Let X be a set of size m, let δ > 0 and let A1, . . . , An be
subsets of X such that

∑n
x=1

∑n
y=1 |Ax ∩ Ay| > δ2mn2. There is a subset

K ⊂ [n] of cardinality at least 2−1/2δ5n such that for at least 90% of the
pairs (x, y) ∈ K2 the intersection Ax ∩ Ay has cardinality at least δ2m/2.
In particular, the result holds if |Ax| > δm for every x.

Proof. For every j 6 m let Bj = {i : j ∈ Ai} and let Ej = B2
j . Choose five

numbers j1, . . . , j5 6 m at random (uniformly and independently), and let
X = Ej1 ∩ · · · ∩ Ej5 . The probability pxy that a given pair (x, y) ∈ [n]2

belongs to Ejr is m−1|Ax ∩ Ay|, so the probability that it belongs to X
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is p5
xy. By our assumption we have that

∑n
x,y=1 pxy > δ2n2, which implies

(by Hölder’s inequality) that
∑n

x,y=1 p
5
xy > δ10n2. In other words, the

expected size of X is at least δ10n2.
Let Y be the set of pairs (x, y) ∈ X such that |Ax ∩ Ay| < δ2m/2, or

equivalently pxy < δ2/2. Because of the bound on pxy, the probability that
(x, y) ∈ Y is at most (δ2/2)5, so the expected size of Y is at most δ10n2/32.

It follows that the expectation of |X|−16|Y | is at least δ10n2/2. Hence,
there exist j1, . . . , j5 such that |X| > 16|Y | and |X| > δ10n2/2. This proves
the lemma, with X = K2 (so K = Bj1 ∩ · · · ∩Bj5). �

Let A be a subset of ZD and identify A with its characteristic function.
Then A ∗ A(x) is the number of pairs (y, z) ∈ A2 such that y − z = x.
(Recall that we have a non-standard use for the symbol “∗”.) Hence, the
number of quadruples (x, y, z, w) ∈ A4 with x−y = z−w is ‖A ∗A‖22. The
next result is a precise statement of the Balog–Szemerédi theorem, but, as
we have mentioned, the bounds obtained in the proof are new.

Proposition 12. Let A be a subset of ZD of cardinality m such that
‖A ∗A‖22 > c0m

3. There are constants c and C depending only on c0 and
a subset A′′ ⊂ A of cardinality at least cm such that |A′′ −A′′| 6 Cm.

Proof. The function f(x) = A ∗ A(x) (from ZD to Z) is non-negative and
satisfies ‖f‖∞ 6 m, ‖f‖22 > c0m

3 and ‖f‖1 = m2. This implies that
f(x) > c0m/2 for at least c0m/2 values of x, since otherwise we would have

‖f‖22 < (c0/2)m.m2 + (c0m/2).m2 = c0m
3 .

Let us call a value of x for which f(x) > c0m/2 a popular difference and let
us define a graph G with vertex set A by joining a to b if b− a (and hence
a − b) is a popular difference. The average degree in G is at least c20m/4,
so there must be at least c20m/8 vertices of degree at least c20m/8. Let
δ = c20/8, let a1, . . . , an be vertices of degree at least c20m/8, with n > δm,
and let A1, . . . , An be the neighbourhoods of the vertices a1, . . . , an. By
Lemma 11 we can find a subset A′ ⊂ {a1, . . . , an} of cardinality at least
δ5n/

√
2 such that at least 90% of the intersections Ai ∩Aj with ai, aj ∈ A′

are of size at least δ2m/2. Set α = δ6/
√

2 so that |A′| > αm.
Now define a graph H with vertex set A′, joining ai to aj if and only

if |Ai ∩ Aj | > δ2m/2. The average degree of the vertices in H is at least
(9/10)|A′|, so at least (4/5)|A′| vertices have degree at least (4/5)|A′|. De-
fine A′′ to be the set of all such vertices.

We claim now that A′′ has a small difference set. To see this, consider
any two elements ai, aj ∈ A′′. Since the degrees of ai and aj are at least
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(4/5)|A′| in H, there are at least (3/5)|A′| points ak ∈ A′ joined to both
ai and aj . For every such k we have |Ai ∩ Ak| and |Aj ∩ Ak| both of size
at least δ2m/2. If b ∈ Ai ∩ Ak, then both ai − b and ak − b are popular
differences. It follows that there are at least c20m

2/4 ways of writing ai−ak
as (p− q)− (r − s), where p, q, r, s ∈ A, p− q = ai − b and r − s = ak − b.
Summing over all b ∈ Ai∩Ak, we find that there are at least δ2c20m

3/8 ways
of writing ai−ak as (p− q)− (r− s) with p, q, r, s ∈ A. The same is true of
aj − ak. Finally, summing over all k such that ak is joined in H to both ai
and aj , we find that there are at least (3/5)|A′|δ4c40m

6/64 > αδ4c40m
7/120

ways of writing ai − aj in the form (p− q)− (r − s)− ((t− u)− (v − w))
with p, q, . . . , w ∈ A.

Since there are at most m8 elements in A8, the number of differences
of elements of A′′ is at most 120m/αδ4c40 6 238m/c24

0 . Note also that
the cardinality of A′′ is at least (4/5)αm > c12

0 m/2
19. The proposition is

proved. �

Combining Theorem 10 and Proposition 12 gives us the following con-
sequence of Freiman’s theorem.

Corollary 13. Let A be a subset of ZD of cardinality m such that
‖A ∗A‖22 > c0m

3. There is an arithmetic progression Q of cardinality at
most Cm and dimension at most d such that |A∩Q| > cm, where C, d and
c are constants depending only on c0. �

It turns out that a small step from Ruzsa’s proof of Freiman’s theo-
rem allows one to make the reverse deduction: in other words, Freiman’s
theorem and Corollary 13 can be seen to be equivalent.

Ruzsa’s proof also allows us to make a small but convenient modification
to Corollary 13, and it provides us with some bounds. A d-dimensional
arithmetic progression Q = P1 + · · · + Pd is said to be proper if every
x ∈ Q has a unique representation of the form x1 + · · · + xd with xi ∈ Pi.
Ruzsa showed that if A is any set such that |A − A| 6 C|A|, then there
is a proper arithmetic progression Q of dimension d 6 218C32 and size at
least (220C32)−218C32 |A|, such that |A ∩Q| > C−52−d|Q| (which of course
implies that |Q| 6 C52d|A|). Applying this result to the set A′′ arising
from Proposition 12, we find that we can ask for the progression Q in
Corollary 13 to be proper.

Corollary 14. Let B ⊂ ZN be a set of cardinality βN , and let φ :
B → ZN be a function with at least c0N3 additive quadruples. Then there
are constants γ and η depending on β and c0 only, a mod-N arithmetic
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progression P ⊂ ZN of cardinality at least Nγ and a linear function ψ :
P → ZN such that φ(s) is defined and equal to ψ(s) for at least η|P | values
of s ∈ P .

Proof. Let Γ be the graph of φ, embedded in the obvious way into Z2.
By Corollary 13 with the modification mentioned above, we may find a
proper d-dimensional arithmetic progression Q of cardinality at most CN ,
with |Γ ∩Q| > cN , where d,C and c depend on β and c0 only. Let Q =
P1 + · · · + Pd. Then at least one Pi has cardinality at least (CN)1/d >
(cN)1/d, so Q can be partitioned into (one-dimensional) arithmetic progres-
sions of at least this cardinality. Hence, by averaging, there is an arithmetic
progression R ⊂ Z2 of cardinality at least (CN)1/d > (cN)1/d such that
|R ∩ Γ| > cC−1|R|. Because Γ is the graph of a function, we know that R
is not vertical (unless |R∩Γ| = 1 in which case the result we wish to prove
is true anyway). Hence, there is an arithmetic progression P ⊂ Z with
|P | = |R| and a linear function ψ : P → Z such that Γ contains at least
cC−1|P | pairs (s, ψ(s)). Reducing mod N now proves the result stated. �

It can be checked that Ruzsa’s bounds imply that there is an absolute
constant K such that, in the above corollary, we may take γ to be cK0 and η
to be exp(−(1/c0)K). As mentioned earlier, the use of Freiman’s theorem
and these bounds is somewhat uneconomical when it comes to proving the
main result. That is because all we need is Corollary 14, which forgets most
of the structure guaranteed by the theorem. It turns out that there is a
weakening of Freiman’s theorem with a better bound and a strong enough
statement for Corollary 14 still to follow.

5 Obtaining Quadratic Bias

Let A ⊂ ZN be a set which fails to be quadratically α-uniform and let f be
the balanced function of A. Then there is a subset B ⊂ ZN of cardinality
at least αN , and a function φ : B → ZN such that |∆(f ; k)∼(φ(k))| > αN
for every k ∈ B. From section 3 we know that B contains at least α12N3

additive quadruples for the function φ. The last section then implies that φ
can be restricted to a large arithmetic progression P where it often agrees
with a linear function s 7→ as+ b. We shall now use this fact to show that
ZN can be uniformly covered by large arithmetic progressions P1, . . . , PN
such that, for every s we can choose a quadratic function ψs : Ps → ZN
such that

∑
z∈Ps f(z)ω−ψs(z) is on average large in modulus (meaning an

appreciable fraction of |Ps|). In the next section we shall use this result to
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find an arithmetic progression where the density of A increases.

Proposition 15. Let A ⊂ ZN have balanced function f . Let P be an
arithmetic progression (in ZN ) of cardinality T . Suppose that there exist
λ and µ such that

∑
k∈P |∆(f ; k)∼(λk + µ)|2 > βN2T . Then there exist

quadratic polynomials ψ0, ψ1, . . . , ψN−1 such that∑
s

∣∣∣ ∑
z∈P+s

f(z)ω−ψs(z)
∣∣∣ > βNT/√2 .

Proof. Expanding the assumption we are given, we obtain the inequality∑
k∈P

∑
s,t

f(s)f(s− k)f(t)f(t− k)ω−(λk+µ)(s−t) > βN2T .

Substituting u = s− t, we deduce that∑
k∈P

∑
s,u

f(s)f(s− k)f(s− u)f(s− k − u)ω−(λk+µ)u > βN2T .

Let P = {x+d, x+2d, . . . , x+td}. Then we can rewrite the above inequality
as
T∑
i=1

∑
s,u

f(s)f(s− x− id)f(s− u)f(s− k − id− u)ω−(λx+λid+µ)u > βN2T.

(∗)
Since there are exactly T ways of writing u = y + jd with y ∈ ZN and
1 6 j 6 T , we can rewrite the left-hand side above as

1
T

∑
s

T∑
i=1

∑
y

T∑
j=1

f(s)f(s− x− id)f(s− y − jd)

· f(s− x− id−y−jd)ω−(λx+id+mu)(y+jd) .

Let us define γ(s, y) by the equation∣∣∣∣ T∑
i=1

T∑
j=1

f(s−x−id)f(s−y−jd)f(s−x−id−y−jd)ω−(φ(x)+iµ)(y+jd)
∣∣∣∣

= γ(s, y)T 2 .

Since |f(s)| 6 1, (∗) tells us that the average value of γ(s, y) is at least β.
In general, suppose we have real functions f1, f2 and f3 such that∣∣∣∣ T∑

i=1

T∑
j=1

f1(i)f2(j)f3(i+ j)ω−(ai+bj−2cij)
∣∣∣∣ > cT 2 .
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Since 2cij = c((i+ j)2 − i2 − j2), we can rewrite this as∣∣∣∣ T∑
i=1

T∑
j=1

f1(i)ω−(ai+ci2)f2(i)ω−(bj+cj2)f3(i+ j)ωc(i+j)
2
∣∣∣∣ > cT 2

and then replace the left hand side by

1
N

∣∣∣∣∑
r

T∑
i=1

T∑
j=1

2T∑
k=1

f1(i)ω−(ai+ci2)f2(j)ω−(bj+cj2)f3(k)ωck
2
ω−r(i+j−k)

∣∣∣∣ .
If we now set g1(r)=

T∑
i=1

f1(i)ω−(ai+ci2)ω−ri, g2(r)=
T∑
j=1

f2(j)ω−(bj+cj2)ω−rj

and g3(r) =
∑2T

k=1 f3(k)ω−ck
2
ω−rk, then we have∣∣∣∑

r

g1(r)g2(r)g3(r)
∣∣∣ > cT 2N ,

which implies, by the Cauchy–Schwarz inequality, that ‖g1‖∞ ‖g2‖2 ‖g3‖2 >
cT 2N . Since ‖g2‖22 6 NT and ‖g3‖22 6 2NT (by identity (1) of section 2),
this tells us that |g1(r)| > cT/

√
2 for some r. In particular, there exists a

quadratic polynomial ψ such that
∣∣∑T

i=1 f1(i)ω−ψ(i)
∣∣ > cT/√2.

Let us apply this general fact to the functions f1(i) = f(x − s − id),
f2(j) = f(s− y− jd) and f3(k) = f(s−x− y−kd). It gives us a quadratic
polynomial ψs,y such that∣∣∣∣ T∑

i=1

f(s− x− id)ω−ψs,y(i)
∣∣∣∣ > γ(s, y)T/

√
2 .

Let γ(s) be the average of γ(s, y), and choose ψs to be one of the ψs,y in
such a way that ∣∣∣∣ T∑

i=1

f(s− x− id)ω−ψs(i)
∣∣∣∣ > γ(s)T/

√
2 .

If we now sum over s, we have the required statement (after a small change
to the definition of the ψs). �

Combining the above result with the results of the previous section, we
obtain a statement of the following kind. If A fails to be quadratically uni-
form, then ZN can be uniformly covered by large arithmetic progressions,
on each of which the balanced function of A exhibits “quadratic bias”. It
is not immediately obvious that this should enable us to find a progression
where the restriction of A has an increased density. That is a task for the
next section.
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6 An Application of Weyl’s Inequality.

A famous result of Weyl asserts that, if α is an irrational number and k is
an integer, then the sequence α, 2kα, 3kα, . . . is equidistributed mod 1. As
an immediate consequence, if α is any real number and ε > 0, then there
exists n such that the distance from n2α to the nearest integer is at most ε.
This is the result we need to finish the proof. For the purposes of a bound,
we need an estimate for n in terms of ε. It is not particularly easy to find
an appropriate statement in the literature. In the longer paper to come,
we shall give full details of the deduction of the statement we need, with
estimates, from Weyl’s inequality. Here we shall merely state the result in
a convenient form, almost certainly not with the best known bound.

Theorem 16. Let N be sufficiently large and let a ∈ ZN . For any t 6 N
there exists p 6 t such that |p2a| 6 Ct−1/8N , where C is an absolute
constant.

Before we apply Theorem 16, we need a standard lemma (essentially
due to Dirichlet).

Lemma 17. Let φ : ZN → ZN be linear (i.e., of the form φ(x) = ax+b) and
let r, s 6 N . For some m 6 (2rN/s)1/2 the set {0, 1, 2, . . . , r − 1} can be
partitioned into arithmetic progressions P1, . . . , Pm such that the diameter
of φ(Pj) is at most s for every j. Moreover, the sizes of the Pj differ by at
most 1.

Proof. Let t be an integer greater than or equal to (2rN/s)1/2 and note that
this is at least r1/2. Of the numbers φ(0), φ(1), . . . , φ(t), at least two must
be within N/t and hence there exists u 6 t such that |φ(u)− φ(0)| 6 N/t.
Split {0, 1, . . . , r − 1} into u congruence classes mod u, each of size at
most dr/ue. Each congruence class is an arithmetic progression. If P is a
set of at most st/N consecutive elements of a congruence class, then P is
an arithmetic progression with φ(P ) of diameter at most s. Hence, each
congruence class can be divided into at most 2rN/ust sub-progressions P
with φ(P ) of diameter at most s and with different P s differing in size
by at most 1. Since the congruence classes themselves differ in size by
at most 1, it is not too hard to see that the whole of {0, 1, . . . , r} can be
thus partitioned. Hence, the total number of subprogressions is at most
2rN/st 6 (2rN/s)1/2. (Note that we cannot make t larger because we
needed the estimate r/u > st/N above.) �

Proposition 18. There is an absolute constant C with the following
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property. Let ψ : ZN → ZN be any quadratic polynomial and let r ∈ N.
For some m 6 Cr1−1/128 the set {0, 1, 2, . . . , r − 1} can be partitioned into
arithmetic progressions P1, . . . , Pm such that the diameter of ψ(Pj) is at
most Cr−1/128N for every j. The lengths of any two Pj differ by at most 1.

Proof. Let us write ψ(x) = ax2 + bx + c. By Theorem 18 we can find
p 6 r1/2 such that |ap2| 6 C1r

−1/8N for some absolute constant C1. Then
for any s we have

ψ(x+ sp) = a(x+ sp)2 + b(x+ sp) + c

= s2(ap2) + θ(x, p)

where θ is a bilinear function of x and p. (Throughout this paper, we use
the word “linear” where “affine” is, strictly speaking, more accurate.)

For any u, the diameter of the set {s2(ap2) : 0 6 s < u} is at most
u2|ap2| 6 C1u

2r−1/8N . Therefore, for any u 6 r1/4, we can partition the
set {0, 1, . . . , r − 1} into arithmetic progressions of the form

Qj =
{
xj , xj + p, . . . , xj + (uj − 1)p

}
,

such that, for every j, u− 1 6 uj 6 u and there exists a linear function φj
such that, for any subset P ⊂ Qj ,

diam(ψ(P )) 6 C1u
2r−1/8N + diam(φj(P )) .

Let us choose u = r1/64, with the result that u2r−1/16 = r−1/32. By
Lemma 17, if v 6 u1/2/2, then every Qj can be partitioned into arithmetic
progressions Pjt of length v − 1 or v in such a way that diam(φj(Pjt)) 6
2u−1/2N for every t. This, with our choice of u above, gives us the result. �

Corollary 19. Let ψ : ZN → ZN be a quadratic polynomial and let
r 6 N . There exists m 6 Cr1−1/128 (where C is an absolute constant) and
a partition of the set {0, 1, . . . , r−1} into arithmetic progressions P1, . . . , Pm
such that the sizes of the Pj differ by at most one, and if f : ZN → D is
any function such that ∣∣∣∣ r−1∑

x=0

f(x)ω−ψ(x)
∣∣∣∣ > αr ,

then
m∑
j=1

∣∣∣ ∑
x∈Pj

f(x)
∣∣∣ > αr/2 .

Proof. By Proposition 18 we can choose P1, . . . , Pm such that diam(φ(Pj)) 6
CNr−1/128 for every j. For sufficiently large r this is at most αN/4π. By
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the triangle inequality,
m∑
j=1

∣∣∣∑
x∈Pj

f(x)ω−ψ(x)
∣∣∣ > αr .

Let xj ∈ Pj . The estimate on the diameter of ψ(Pj) implies that
|ω−ψ(x) − ω−ψ(xj)| is at most α/2 for every x ∈ Pj . Therefore

m∑
j=1

∣∣∣∑
x∈Pj

f(x)
∣∣∣ =

m∑
j=1

∣∣∣∑
x∈Pj

f(x)ω−ψ(xj)
∣∣∣

>
m∑
j=1

∣∣∣∑
x∈Pj

f(x)ω−ψ(x)
∣∣∣− m∑

j=1

(α/2)|Pj |

> αr/2 .
The statement about the sizes of the Pj follows easily from our construc-
tion. �

7 Putting Everything Together

Theorem 20. There is an absolute constant C with the following property.
Let A be a subset of ZN with cardinality δN . If N > exp exp exp((1/δ)C),
then A contains an arithmetic progression of length four.

Proof. Suppose that the result is false. Then Corollary 8 implies that A
is not quadratically 2−208δ112-uniform. Let α = 2−208δ112 and let f be the
balanced function of A. The implication of (iii) from (ii) in Lemma 2 then
implies that there is a set B ⊂ ZN of cardinality at least αN/2 together
with a function φ : B → ZN , such that |∆(f ; k)∼(φ(k))| > (α/2)1/2N for
every k ∈ B. In particular,∑

k∈B

∣∣∆(f ; k)∼(φ(k))
∣∣2 > (α/2)2N3 .

Hence, by Proposition 9, φ has at least (α/2)8N3 additive quadruples.
Corollary 14 and the discussion of bounds immediately after it imply that
there is an arithmetic progression P satisfying the hypotheses of Proposi-
tion 15, with T > Nγ , where γ = δK and β > exp(−(1/δ)K). (We have
changed the absolute constant K, allowing us to write δ instead of (α2/2)8.)
We therefore have quadratic polynomials ψ0, ψ1, . . . , ψN−1 such that∑

s

∣∣∣ ∑
z∈P+s

f(z)ω−ψs(z)
∣∣∣ > βNT/√2
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with these values of β and T . Corollary 19 implies that we can partition
each P +s into further progressions Ps1, . . . , Psm (mod ZN ) of cardinalities
differing by at most one and all at least cT 1/128, where c is another absolute
constant, such that

∑
s

m∑
j=1

∣∣∣ ∑
x∈Psj

f(x)
∣∣∣ > βNT/2√2 .

It is an easy consequence of Lemma 17 that we can also insist that the Psm
are genuine arithmetic progressions (in {0, 1, . . . ,N − 1} and not just in
ZN ), except that now the condition on the sizes is that the average length
of a Psj is cT 1/256 (for a slightly different c) and no Psj has more than
twice this length. With such a choice of Psj , let psj equal

∑
x∈Psj f(x), and

let qsj be psj if this is positive, and zero otherwise. Then
∑

s

∑m
j=1 psj =

T
∑

x f(x) = 0, which implies that
∑

s

∑m
j=1 qsj > βNT/4

√
2. Hence, there

exists a choice of s and j such that
∑

x∈Psj f(x) > βT/4m
√

2 = c1βT
1/256,

where c1 is another absolute constant. Then |Psj | is at least c1βT 1/256 and
|A ∩ Psj| is at least (δ + c2β)|Psj |.

We now repeat the argument, replacing A and {0, 1, 2, . . . ,N} by A∩Psj
and Psj . The function δ 7→ c2β = c2 exp(−(1/δ)K) is increasing, so that
after each run of the argument, the density of the restriction of A goes
up by a factor of at least 1 + c2β. Hence, it can be repeated at most
exp((1/δ)K) times. The function δ 7→ γ is also increasing, so at each stage
of the argument we replace the current N with a new one which is at least
N δK (where K is changed a little to allow for the 256th root taken above).
Setting r = exp((1/δ)K) and θ = δK , this tells us that the theorem is
proved, provided that Nθr is sufficiently large. The restriction comes in
Corollary 8, which tells us that we must have Nθr > 200δ−3. A small
calculation now gives the result stated. �

An alternative formulation of the condition on N and δ is that δ should
be at least (log log logN)−c for some absolute constant c > 0. We have the
following immediate corollary.

Corollary 21. There is an absolute constant c > 0 with the following
property. If the set {1, 2, . . . ,N} is coloured with at most (log log logN)c

colours, then there is a monochromatic arithmetic progression of length
four. �
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8 Concluding Remarks

Most of the above proof generalizes reasonably easily, with the result that
it is not hard to guess the basic outline of a proof of Szemerédi’s com-
plete theorem. To be more precise, the results of sections 2 and 6 have
straightforward generalizations, and the result of section 5 can also be gen-
eralized appropriately, although not in quite as obvious a manner. The
main difficulty with the general case is in proving a suitable generalization
of Corollary 14. What is needed, which is the main result of our forth-
coming paper, is a statement of the following kind. Call a function ψ from
C ⊂ ZN to ZN strongly additive if every restriction of ψ to a large subset
of C has many additive quadruples. If B ⊂ ZkN is a set of size proportional
to Nk and if φ : B → ZN is a function such that, whenever k−1 of the vari-
ables are fixed, the resulting function is strongly additive in the remaining
variable, then there is a large arithmetic progression P ⊂ ZN and a set of
the form Q = (P +r1)×· · ·× (P +rk) such that φ agrees with a multilinear
function γ for many points in Q. Even the case k = 2 is not at all easy.

The bounds obtained for Theorem 20 and Corollary 21 improve enor-
mously on any that were previously known. However, as was mentioned
earlier, it is possible to avoid using Freiman’s theorem directly and obtain
a further improvement. Doing so removes one exponential from the lower
bound for N in terms of δ, or equivalently one logarithm from the lower
bound for δ in terms of N . That is, a small modification of our approach
shows that it is enough for δ to be at least (log logN)−c. It might be possi-
ble to improve the bound further still to δ > (logN)−c by using ideas from
the papers of Szemerédi [Sz3] and Heath-Brown [H].
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