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Consider a system of equations

( 1 ) « M i / M M

where the a^, 6M are complex numbers. Let A be a set of numbers, for
instance all numbers of a number field, all complex numbers different
from zero, etc. We call (1) regular in A if the following condition holds:
however we split A into a finite number of subsets Av A2, ..., Ak, always
at least one of these subsets AK contains a solution of (1). Roughly
speaking, regularity of (1) in A means that, in a certain sense, A contains
very many solutions of (1), and these solutions interlock very intimately.

In the special case where A is the set of all positive integers, I. Schurf
proved the regularity of

and van der Waerden 1 proved the regularity, for every / > 0. of

In a previous note|| ] determined all systems (I) which are regular in
the yet of all positive integers. In this case necessary and sufficient
conditions for regularity turned out to be certain linear relations between
the aM(O 6M. In the present note, which is an elaboration of a lecture
delivered at the International Congress of Mathematicians at Oslo,

t Jahresbericht der Deutschen Mathematiker-Vereimyuny, 2o (1910), 114
J Nieuiv Archie} voor Wiskunde, 15 (1927), 212-216.
§ Regularity of a system of equations and inequalities, in fact, of any set of conditions

imposed upon certain variables, is defined in exactly the same way as above,
|| Math. Zeitschrifl, 36 (1933), 424-480, quoted as S.
T| Comptes Bendus, Oslo, 2 (1936), 20-21,
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I propose to consider the same problem in the case of more general
sets A. I establish necessary and sufficient conditions for regularity-
expressed in terms of linear relations between the a^v, 6M in the following
cases:

(i) The a^v are arbitrary, b^ = 0, A is the set of all numbers different
from zero contained in a given ring of complex numbers.

(ii) The a^ and b^ are arbitrary numbers, A is the field of all algebraic
numbers.

(iii) The a^ are algebraic numbers, the 6M are arbitrary, A is the field
of all complex numbers.

Other cases can be dealt with which are not included in this note.
The criteria are analogous to those obtained in the special case of S.

In the cases (ii), (iii) the condition for regularity postulates that, for some
number £ of A,

This result may be expressed as follows. // , in every distribution of the
numbers of A over a finite number of classes, at least one class contains a
solution of (1), then, in cases (ii) and (iii), the same is true for the extreme
case of a distribution in which every number of A forms a class by itself.

Some of the proofs are extensions of proofs in S, others require the
use of different methods. In proving the result concerning (i), we employ
an extension (Theorem II) of van der Waerden's theorem quoted above.
This extension was first proved by Dr. G. Griinwald, who kindly com-
municated it to me. It may be stated as follows. Given any '• con-
figuration " 8 consisting of a finite number of lattice j>oints~\ of a Euclidean
space, and given a distribution of all lattice points of this space into a finite
number of classesf there is at least one class which contains a configuration
8' of lattice points which is similar and parallel (homothetic) to 8. Dr.
Griinwald's proof runs parallel to van der Waerdon's proof of his theorem.
The proof given in this note is a simplification analogous to the simpli-
fication of van der Waerden's proof given in S (p. 432, Satz I). In an
earlier notej I proved a weaker form of Griinwald's Theorem in which
similarity of 8 and 8' was replaced by affinity.

The last paragraph deals with regularity of systems (1) with respect
to distributions which have denumerably many classes.

f I.e. points with rational integral coordinates.
X Berliner Sitzungsberichte (1933), 589-590, Satz T,
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1. Preliminaries. Generalisation of van der Waerden's Theorem.

1. Let A be a finite or infinite aggregate. In this section letters a, b,
c, x denote general elements of A. Throughout this paper the letter A
(and A', A", ..., Al5 A2, etc.) denotes distributions of all elements of A
into a finite number of classes. Occasionally we consider distributions
into an infinite number of classes, in which case this is mentioned
explicitly. A is defined by means of a relation " ~ " which is defined
for some pairs of elements of A and which has the properties:

(i) a~a for every a;

(ii) a ~b implies b~a;

(iii) a ~b and b^>c imply ar^c;

(iv) every infinite subset of A contains two distinct elements a, b such
that a~b.

By | A | we denote the number of non-empty classes of A. A congruence

a = b (mod A)

expresses, by definition, the fact that a and b belong to the objects
distributed by means of A, and, moreover, belong to the same class. In
analogy with the notation for functions, we speak of a distribution A (a;)
defined for every x of A, or, briefly, defined in A.

Throughout this paper &(k)(x), for every positive integer k, denotes
the distribution of all rational integers into classes of equal residues mod k.
Thus

x = y (mod

is equivalent to saying that x and y are rational integers and

x = y (mod k).

A(0) denotes that distribution of A in which every element of A forms
a class for itself. A(o) may have infinitely many classes. We use the
same symbol A(o) for different sets A.

Two methods are employed for generating new distributions from
given ones|. The first is a process of multiplication. Given a finite

•)• Both were used in S. The notation adopted in this paper seems to be more con-
venient than the one used in S.
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number of distributions Al5 A2, ..., An, each defined in A. we understand
by their product

A = AlA8. . .At t= n A,

that distribution A of A which is defined by the rule:

x = y (mod A)

if, and only if,
x = y (mod AJ ( l <

For instance, if k and I are natural numbers, then

where m is the least common multiple of k and I.
We have

| A 1 X 2 . . . A n | < | A 1 | | A 2 | . . . | A J .

The second process is one of inducing a distribution in a set B by means
of a distribution in A and a correspondence between every element of B
and some elements of A. Suppose that A (a;) is defined in A, and that/(?/)
is a function defined for every element y of a set B. The functional values
of/ are elements of A. Then we define a distribution ^(y) in B by postu-
lating that

is to be equivalent to

/(2/i)=/(2/2) (mod A).

We use the notation

Clearly | Ax| ^ | A|.

We have, for instance,

A<*> (re-I-1) = A<2fc> (2a;) = A<fc> (x).

For xx == #2 (mod k)

is equivalent to

xx-{-l = x2-{-l (mod A;)

and also to

2xx = 2x2 (mod 2k).
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For real numbers x ^ 0,

is a distribution in which all positive numbers are in one class and all
negative numbers are in a second class.

Suppose that A(#) is defined in A and that the classes of A are the sets

- " 0 ' -"1J "•> •"&-!. '

Define, for every x of A, a function /(re) by means off

Then A(z)Now choose a natural number I. Then corresponding to every x of A
there are integers g(z), h(x) such that

f(x) = g(x)+lh(x),

0 <#(*) < Z; 0

Therefore

say. We have

Hence every A can be represented in the form

A = A'A",

where | A' | ^ I, \t

In particular, putting 1 = 2, we see that every A is a product of a finite
number of distributions with not more than two classes.

If x, y are general elements of two sets A, B respectively, then A (a, y)
denotes a distribution of all pairs (x, y). Thus, for rational integers z, y,

A If oi\ —

f We use the symbol " -^ " to denote the relation of an element to the class to which
it belongs.

X [t] denotes the largest integer not exceeding t.
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denotes that distribution of all pairs (z, y) for which (xv yt) and (;t2, y2)
are in the same class if, and only if,

2x1+3^ = 2z2-f-3y2 (mod k),

2. Let S(xx, x2, ..., xn) be a system of conditions imposed upon the
values of variables xx, ..., xn. These variables are allowed to vary
throughout a set A. A relation

(2) S(xf,x$\ ...,*»>) - 0

expresses the fact that the elements x®\ ..., x^ of A satisfy the
conditions (2); and

S(x^,x^,...,x^)^0

denotes the logical opposite to (2). S is called k-regular in A if, however
A is split into k subsets

A = Al+A2+...+Ak,

there is always at least one subset AK which contains a solution of (2).
Regularity of S, as mentioned in the introduction, means that S is ifc-regular
for every k= 1, 2, .... co-regularity of 8 means solubility in at least one
class whenever A is split into denumeiably many classes. Finally, we
call S absolutely regular in A if, for some â 0) of A,

If A is the set of all real numbers except zero the condition

(x1—x2—l){x1—x2—2)... (x1—x2—k) = 0

is Ai-regular, but not (&+1)-regular, the condition

X^~\-X2 3/g = 0

is regular but not co-regularf, and the condition

is co-regular but not absolutely regular in A. The degree of regularity of
S in A is the largest natural number k (if there is one) such that S is
^-regular in A.

Let S'(x1} x2, ..., xn>) be a system of conditions with n' < n which has
the property that (2) implies

t See below, Theorems VII and XI.
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Let k, k' be natural numbers, k' < k. and let A be a subset of A'. Then
^-regularity of 8 in A implies ^'-regularity of 8' in A'. Theorem I states
that in certain circumstances a kind of inverse of this implication
holds. In fact, many of our results are of this type.

THEOREM I. If 8(xv x2, ..., xn) is k-regular in a denumerable set A
then 8 is also k-regular in a suitable finite subset A' of A.

Theorem I has been proved elsewhere f, but, for convenience, I
reproduce the proof.

Proof. We may suppose that

4 = {1, 2, 3, ...}.

Put AN={L2,...)N} ( # = 1 , 2 , 3 , . . . ) .

Let us assume that, for no value of N, 8(xv ..., xn) is ^-regular in A^.
We have to show that 8 is not ^-regular in A. There is a distribution
A* of AN,

such that no set ANK contains a solution of S = 0. Here N— 1, 2. ...;
1 </c <&. For any positive integer x we denote by fy{x) that number
K (1 < K ̂  k) for which

x •< ANK.

Then by a well-known argument (Cantor's "Diagonalverfahren") we can
define a function / * {x) such that, given any xQ>0, there are infinitely
many N'e for which

(3) /*(*)=/*(*) (

Let, for 1 < K ̂  k, AK* be the set of all x for which

and let A* be the distribution

Now consider n numbers xj satisfying

(4) s/sssjg'=...==»„' (mod A*)

f S., Satz III. See also Denes Konig, Theorie der endlichen und unendlichen Graphen
(Leipzig, 1936), 84 (o) and (£).
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Put x0 = max («/, x2', ..., xn').

Then, by the definition of/* (x), there is a number N > x0 for which (3)
holds. In particular, using (4), we have

Hence, by the definition of A#,

This completes the proof of Theorem I.
As a corollary of Theorem I we prove f

LEMMA 1. Let B be a denumerable set of numbers. Let R be the ring
and K be the field generated by B. Let R— {0} and K— {0} denote the sets
of all non-zero numbers of R and K respectively. Then k-regularity of the
system

(5) S <vz,, = 0 ( l < / * ^ m )

in K— {0} implies k-regularity of the same system in R— {0}.

This lemma is another kind of inverse of the simple proposition on
p. 128, immediately preceding Theorem I.

Proof of Lemma 1. Suppose that (5) is ^-regular in K— {0}. Then,
by Theorem I, since K is denumerable, (5) is ifc-regular in a finite subset
T of K — {0}. Let N be the product of the " denominators " of all numbers
of T, or, more accurately, let N be a number of R— {0} for which

(6) Nt<R-{0}

whenever t-<T. Take any A (a;) defined in R— {0} and satisfying | A | < k.
Put

In view of (6) this definition is significant. From | A' | < | A | < k, and
from the definition of T, we deduce the existence of numbers tv of T for
which

«1 = *a==...=*n (mod A').

t S, 441.

SEB. 2. VOL. 48. NO. 2327.
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Then L a^Nt,) - 0 (1 < p < w),

JV^ :=_ JV/a =: . . .= M n (mod A).

Hence the result. Instead of (5) we might have taken any system of
homogeneous conditions.

3. In this section small Latin letters denote non-negative integers.
Capitals A, B, ..., X denote "vectors" (xv x2, ..., xm) of a fixed dimension
m. If

A (~ ~ ~ \ A' — (r ' r ' r '\

we put

\A\ = max (xl3 a;2J ...3 xm), aA = (axv ..., axj,

A+A' = (»!+«/, a:2+a;2'3 ..., »m+V)-

0 denotes the number zero as well as the vector (0, ..., 0).

THEOREM II. There is a function f(k, Rv R2, ..., R{) which has the
following property. Suppose that Rlt R2, ..., Ri are vectors and that A is
a distiibution of all vectors into k classes. Then we can find A*, d*, (d* > 0)
such that

(7) A*+d*Rk = A* (mod A)

8)

Proof. The theorem is true for I = 1. For there are two of the k-\-l
vectors

0, Rv 2RV 3RV ...,kR1

which belong to the same class of A, say aRx and j8i?ls where

Put A'* = aBlt d:i: = j8-a.

Then A*+d*R1 = fiR^aR^ A* (mod A).

Since | A *+^:!:ijl11 = j81 Rx | < k \ Rx |,

we may put f(k, RJ = k\R1\.

Therefore we may suppose that, for some given vectors
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(l> 1), the existence of f(kf, Rv R2, ..., JR^) has been established for
every W > 0, and we deduce the existence of

f(k, Rv ..., Rl_1, Rt).

In the proof which follows, k, Rv ..., R[ are constant, and these numbers
are not shown in the arguments of functions. A is a distribution
of all vectors, | A | < 1c. We may assume, without loss of generality, that

LEMMA 2. Under the assumptions stated there is a function g(n) such
that, given any A, n, we can find A', d' (d" > 0) such that

(9) A

(10)

Proof.

+ (A'+d'l

Put

RJ+B = A+A'-

\A'+d'RK

fJ5 (modA) (1<A<Z,

^g{n) (1 ^A <Z).

A'(X)=

Then l

Using the definition of

f(g1(n), Rv R2, ..., Ri^) = g2{n),

we find that there are an A' and d' (df > 0) such that

(11) A'+d'Rx = A' (modA')

(12) \A'+d'Rx\^g%{n) {\^\<l).

(11) and (12) are equivalent to (9) and (10) respectively if we put

Thus the lemma is proved. We note that

Now, to prove Theorem II, put

nh = 1, nK = S h(n¥) (0 ^ K < k).

Apply Lemma 2, with A = 0, n = n0. We find

K 2
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such that

0+{A0+d0Rx)+B = O+Ao+B (modA) (

A second application, with A = Ao, n = nv yields A' = Alt d' = d^> 0,

such that

(modA) (1 < A < / ; \B\ < ^ ) ,

Proceeding in this way (the next case is A = A0-\-Av n = n2) we find
A' = AK> d' = dK > 0 such that

(13) 'XAr+iA.+d.RJ+B^'xA.+A.+B (mod A)f
r=0 »=O

(14) I

There are two among the k-{-l vectors

VK= i Ay+ I {Av+dvRt) (
,,=o i.=«+i

which_ belong to the same class of A. Therefore, say,

V^Vt (modA),

where 0 < a < £ < & . Put

Then

(15)

On

(16)

the other hand,

A*+d*Rk = ZA
0

A

i
0

2-i

0

if

-+1

1<A<(

K^a+l + '

L then

1 1

n

3

a+1

a = 3 (modA).

a+2 8+1

Empty sums have the value zero.
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Now we have, by (14),

Therefore,

(17) A*-

0

£ (
a+2

:rom

\-d*l

(13),

0

h

3+1

-Ma+1+ ( j 2 (A A

< S h{n9)
a+2

—

{A, + dy Rii)

(mod A).

The vector on the right-hand side of (17) is the same as the vector on the
right-hand side of (16), except that a is to be replaced by a-fl. When
a + 1 <j8 a second application of (13) leads to

A*+d*Rx = a;Z Ar+ I (A,+drRx)+ S (Ay+d,R,) (mod A),
0 o+3 (S+l

and so on. After /?—a steps we find that

A*+d*Rk = 2A¥+ L {A-\-dyR,)^Vp = A* (modA) ( A
0 0+1

This result, together with (15), shows that (7) is true.
Furthermore, by (14), we have, for 1 < A <Z,

\A*'+d*RK\ = hS (il,+drJ8x)+S
0 «+l 0 + 1

k

0

Therefore (8) holds, with

and the theorem is proved.

4. THEOREM III. There is a function f(k, I), defined for all pairs (k, I)
of positive integers, which has the following property. Suppose that M is a
set of objects among which a commutative and associative addition is defined.
Let Rx, R2, ..., R[ be elements of M, and let A be a distribution of M into
k classes. Then there is a positive integer d* and an element A* of M such
that

(18) A*+d*Rk = A* (modA) (l

(19) 4 * = L aA*22x,
A = l

(20) «x*+d* </(*,«) ( 1 < A < I ) .

1 d*Bi = Rk+Rk+...1-Iii (d* terms).
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Proof. Put, for all integers xx ^ 0,

(21) A'(a:1>a:ll...l*/) = A((*14.l)iZ1+(a!1+l)«8+.

Apply Theorem II to A' and the " unit vectors "

^ = ( 1 , 0, ...,0),

B, = (0, 0, ..., J).

We obtain a vector (av a2, ..., at), with integral components a^O, and
a positive integer d such that

(22) (a1} ...,a,)+dtfx = (av...,ai) (mod A')

(23) 1(0^ ..., a,)+dJ*A| </(*, Rv .... ^ ) ^ ( A , I) (

say. (22), in view of (21), is the same as

£ (ar+l)2J,+d22x= S (M-l)JR,, (mod A) (

(23) is the same as

Hence we may put

and the theorem is proved. In the special case where M is the system of
vectors

A= (x1}x2, ...,xm)

whose components xn are non-negative integers, we deduce from (19) and
(20) that, in the notation of Theorem II,

\A*+d*Bx\= la*B,+d*BA

Therefore the function f(k, Blf ..., Rt) of Theorem II may be assumed to
be of the form

f(k,Rv...:Rl)=f(kJ) i |R,|.
• = 1
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For a later application we note that in Theorem III we may stipulate
that the elements

A*, A*+d*Bh (1<A<Z)

are either different from any one out of a finite number of given elements
Cv C2, ..., Cs, or are all equal to one of the elements Ca. In this case
(20) must be replaced by

(24) ax*+d* <J(k+s, I).

For suppose that A is a distribution of M, | A | < k. Define A' by means of

A HH B (mod A')

if, and only if, either

A^Ca; B ^ Ca (1 <<r ^ s ) ; 4̂ = J3(modA),

or A — B — Cvo for some a0, 1 < a0 < s. In other words, we remove the
C,'s from their classes in A and put them in separate classes. Now apply
Theorem III to A'. We find A*, d*, with d* > 0, such that

(25) A*+d*BK = A* (mod A') (1<A<Z).

Furthermore, (19) and (24) hold; (25) implies (18), and, in view of the
definition of A', the additional condition is satisfied.

2. Regularity of homogeneous linear equations.

1. THEOREM IV. Let ax, a2, ..., an be real numbers. Suppose that no
non-empty subset of these numbers has the sum zero. Then the equation

(26) alxl+a2x2+...+anx1l = 0

is not regular in the set of all positive numbers. In particular, if

wJienever 1 ^ k < n , 1 ̂  J/J <v2< ... <vh<n,

then the degree of regularity D of (20) in Hie set of all positive numbers satisfies

(28) D<\

where b is any arbitrary number exceeding a. In particular,

(29) D < l + § a log (2a) (for every a),

(30) D < a log a-J-o (a log a) (as a-»oo).
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/ / D' is the degree of regularity of (26) in the set of all real numbers x^O,
then

(31) D*^2D+1.

Proof. (27) implies a > 1. If no non-empty subset of alt a2, ..., an

has the sum zero, then (27) holds for some a > 1. Therefore the first
assertion of the theorem follows from (28). (29) follows easily from (28)
by putting b = 2a and making use of the inequality

(32) lOg(l-t-0 = « ( l - ^ )+^ ( l - ^ ) + ...>«(l-i)5

valid for 0 < t < \.

In order to deduce (30) from (28) we put

b = a log a,

for a > e. Then (28) becomes

D < i + bgfrlogq) _ a, + 0 ( o i ,
log (1-f-a-1— (a log a)-1} 8 v s ;

as a -> oo. If i) < oo, then there is a distribution A of all positive numbers
such that |A| = D + 1 and

whenever xx = x% = ... = xn (mod A).

Put A'(a:) = A(|a;|)A(3)(i^f) (a; real,

Tn other words, corresponding to every class of A we form a new class
containing the same numbers but multiplied by —1. Then no class of
A' contains a solution of (26), and (31) follows.

All that remains to be proved is (28), under the assumption (27).
Suppose that (26) is w-regular in the. set of all positive numbers, for some
positive integer m. Choose a number q > 1 and put

Then | A| = m. Hence, in consequence of our assumption about m, there
are numbers xv satisfying

xx = xz= ...=xn (mod A),

alx1+...+anxn = Q,
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Put

Then

(33) m1=w2 = . . .=m

(3*) q"1' < a, < g"1'*1

Arrange the m,, in non-increasing order:

(mod m),

(1 < v < »).

We have, for some suitable k (I

Then, by (33),

Therefore, from (34),

Now, making use of (27), we deduce that

0 =
n
2 &„

< k),

^n).

fc * n

- S I o, 11*„-*„. I - I la.

Therefore

i.e.,

provided that

a"1 - ^ +1 0,

m—1 < —
logg

| In the case A; = n everything relating to &+1, k + 2, ... lias to be omitted, and
similarly later.



138 R. KADO [Dec. 15,

Put q=l+ar1-b-1,

where b is any number exceeding a. Then it follows that

log 6
m ~ 1 <

Hence (26) is not regular in the set of all positive numbers, and (28) holds.
This completes the proof of Theorem IV.

THEOREM V. Let av a2, ..., an be complex numbers. Suppose that no
non-empty subset of these numbers lias the sum zero. Then the equation

(35) a1x1+...+anxn = 0

is not regular in the set of all complex numbers different from zero. In
particular, if

(36) \aVi+aV2+...+aVk\ ^ (\a,\ + |aB| + ... + |an|)/a > 0

whenever 1 ̂ .k ^.n; I ^.v1<v2< ... <v

then the degree of regularity D of (35) in the set of all complex numbers different
from zero satisfies

Slog?

where S, q are any real numbers such tltal

(38) 0 < 2TT8 < a-1,

(39) 1 <q1+&< l-j-a-1

In particular

(40) D < l-}-G77a+287ra2 log (3a) (/or every a),

(41) D< 877a2 log a-f-o (a2 log a) (as a->oo).

Proof. (30) implies a > 1. The first part of the theorem follows as
in the case of Theorem IV. (40) follows from (37) by putting

and using (32). (41) follows from (37) if we put, for every sufficiently
large a,

2a' *' ' 2a aloga*

f In other words, 8, q satisfy 0 < S, 1 < q, and have such values as to give a real
value to the right-hand side of (37).
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Then, as a->oo,

1 / 1 1 \l+(4»a)-i
1 + ^ ( 1 + ^ ^ )

Hence, by (37),

D

!+ 0 ( ; ° g
1 ^ = 8*a* loga+o(a* log a).

In order to prove the theorem we have to show that (37) holds, pro-
vided that (36) is true for all k, vlt ..., vk. We assume that (35) is
w-regular in the set of all complex numbers different from zero. Choose
real numbers q, S such that q > 1, S > 0. Then every complex x J= 0 has
a unique representation

(42) x^qre^

where r — r{x), t — t(x) are real numbers satisfying

(43)

For (42) determines r uniquely and t uniquely modi, and (43) fixes t.
Put

Then, according to the choice of m, there are numbers x¥ ^ 0 for which

Xl = x2=...==xn (mod A), a1x1-\-...+anxn-0.

Let r(x,) = r¥; t(xy) = tr; f - ^ J = in,.

Then xv = <£> e2irlY",

(44) ty^.r,<tr-{-l, m1 = m2~ ...==wn (mod m),

(45) my8^.



HO R. RADO [Dec.

Also

where

(46) V2> • • • > vn

is a permutation of 1, 2, ..., n and k an integer, 1 ^& ^.n. Moreover,
using (45) and (44), we can choose the permutation (46) in such a way
that

Then we have, for every K (1

(47) |z,,-a

If , then

< Jfc).

and therefore

(48) x v x | = g1

^ gt. -ms+t+i ^ n).

Just as in the proof of Theorem IV, we deduce from (36), (47), (48),
(38) and (39) that

0 = 2 au

k k

Z, a¥mx¥l + 2 a¥x(x¥t—x¥l) +

k n
r i I II | Y<

( C - l " "" l \ = *-f

L

- 1 — - 2 T T 8 ,

_
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If this holds for every m, then the admissible values of m are bounded,
and the largest of them, i.e., D, satisfies (37). Thus Theorem V is proved.
It is obvious from the foregoing proofs that the numerical constants in
(29) and (40) can be improved.

2. Consider a system of homogeneous linear equations

(49)

with arbitrary complex coefficients a^. Let B be a set of numbers. We
say that (49) satisfies the condition Y(B) if it is possible to divide the set

{1, 2, ..., n}

into non-empty, non-overlapping subsets Sv 82, ..., S{ such that, corre-
sponding to every A (1 <A^Z), there exists a solution xv — £ix) of (49)
for which

£*> = <> (v<8k+v8K+t,...t8l)l

and, moreover, all numbers g[x) for v in SK have the same value £x) ^ 0.
In other words, if we number the variables suitably we can find a matrix
of the type (in the case I = 4)

#3)
Si ,

) ()
> = 2 '

>, 0, , 0 \

:; #2) <S(2) o A

d(3) #3) d'3 ft ft
b 0 > b J • • • > b > v > . . . , V

i(4) d(4) iSC1

b y ) b J • • •> b

in which every row constitutes a solution of (49), every ff> and £x) belongs
to B, and ^ ^ 0 . We have

0 < a < j 8 < y < w .

For instance, the system of equations

xz—xx = xz—%2 = ... = xn_1—xn_2 = a;n

satisfies F(JB), where JB is the set of all integers. For we may put

J = 2; ^ = { 1 , 2, , . „ « - ! } ; ^ ^ { n } .
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The |tx) are

n, 1, 1, ..., 1, 0\
VI, 2, 3, ..., w - 1 , 1/

If (40) satisfies the condition T(B) for some set B, then (49) satisfies
P(EQ), where Mo is the ring generated by all coefficients aMVf. This
follows at once from well-known properties of systems of linear equations.
Subsequently (pp. 149 et seq.), the structure of systems satisfying T(B)
will be further elucidated.

Let K be a number field, and denote by K — {0} the set of all numbers
of K except zero.

THEOREM VI. / / (49) is regular in K— {0} then (49) satisfies T(K).

Before we prove this theorem we establish a simple lemma which is
geometrically obvious.

LEMMA 3. Let

Lx{t), L2(t), ..-, Lr(t), Mx(t), ...,Ms(t)

be r-\-s linear forms in {t) = (tlt t2, ..., tN). Let r ^ O ; s>0. Suppose
that

(50) Lp(t') = O ( l < p < r )

implies that, for at least one a0 = <ro(t'),

MVo(t') = O.

Then at least one of the forms Mc{t) is a linear combination of the forms Lp(t).

Proof of Lemma 3. We may assume that no proper subset of the
system Mx{t), ..., Ms(t) has the same property as the whole system of
forms M9{t). Then 5 = 1 . For if s> 1, then, corresponding to every
a (1 ^ a <s ) , there is a vector (f) for which

Lfi(t^) = 0 (1 < p < n), M9(W) = 1, M9.{t^) = 0 (aV a).

Then the vector (?) = £ («('>)
<r = l

satisfies (50). But, on the other hand,

We exclude the trivial case where all oMV vanish.
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which contradicts our hypothesis. Therefore 6 — 1. In this case the
lemma is an immediate consequence of well-known facts concerning linear
forms.

For a later application we add the remark that (50) is required only
for those (I1) — (/,/, 12': ..., tN') whose components // belong to the field
generated by the coefficients of all forms Lp, Mv.

Proof of Theorem VI. We suppose that (40) is regular in A'.' Then
every linear combination of the equations (49) is regular in the set of all
complex numbers different from zero. Therefore in every such com-
bination certain coefficients have the sum zero (Theorem V, p. 138). If
we exploit this fact for suitable linear combinations of (49), we obtain
the condition T(K). But before starting along these lines we replace (49)
by a system of equations whose coefficients belong to K.

Let xv = x ^ ( l ^

be a system of a maximal number of linearly independent solutions of (49)
which belong to K. Such solutions exist because (49) is regular in
K—{0}. Now let

(51) S bflvxr=0 (

be a system of linear equations whose general solution is an arbitrary
linear combination of the vectors (x^) ( l < a < ^ ) . Then, as far as
solutions in K are concerned, (49) and (51) have exactly the same solutions.
In particular, (51) is regular in K— {0} and therefore, a fortiori, regular in
the set of all complex numbers different from zero. Since the x[a) belong
to K, it is possible to choose (51) so that the b^ belong to K.

Choose m' parameters t^ and consider the equation

i.e.,

(52) S Rv(t)xv = O,

where

(53) R,(t)= S 6 ^ ( 1 <

Let J f ^ ) , JHf2(£), ..., Jf,(£) (5 = 2"—1)

be all the linear forms which are sums of forms Rv(t) corresponding to any
choice of distinct v. For any values of the t^, (52) is regular in the set
of all complex numbers different from zero. Hence, by Theorem V, at
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least one of the numbers Ma{t) vanishes. Therefore, by Lemma 3 above
(p. 142), with r = 0; s = 2n— 1, at least one of the forms Ma(t) vanishes
identically in (t). If the xv are suitably numbered, we may assume that,
identically in {t),

(54) S £,(«) = 0.

Here a is an integer and 1 ̂  a ^ n.
If a = n, we stop at this stage. If a < n, we let the parameters £M be

subject to the conditions

(55) Rv(t) = O ( l < v < o ) .

Then (52) becomes

S Bv{t)x,= 0.
r = a+l

Suppose that

Jf/W, M2'(t), ..., Jf^O («' = 2 » ~ - l )

are all the sums of any number of forms Rv(t) corresponding to distinct values
of v with a < v ̂ n. Again Theorem V shows that, for every choice of
(t) satisfying (55), at least one of the numbers Ma'{t) vanishes, and this
implies, by Lemma 3 (r = a; s = s'), that at least one of the forms
Ma'(t) (.! O -< ŝ') is a linear combination of the Rv(t) (1 < v < a ) . We
can number the variables xa+v xa+2, ..., xn so that this linear relation
becomes

(56) £/,£,(*)+ i £,(«) = 0,

identically in (t). Here jS is some number satisfying a < j8 ^.n, and the
/„ are constants.

If we proceed in this way, treating /? as we treated a, we find (in the
case /? < n) a relation

(57) S gvRM+ S Rv(t) = 0,

where a < ^ < y ^ w , etc. The process stops, say, with

(58) i

We have

Since the coefficients of the R¥ belong to K, it is possible to choose the
relations (56), (57), ..., (58) so that their coefficients /„, gv, ...,jv belong
to K.
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In view of (53), the relations (54), (56), (57), ..., (58) are equivalent to

S 6^x1 = 0,
i

K = 1 v=>a+ l

S 6 (̂7,+ i 6^X1 = 0,
+i

2 6Mj,+ S 6,vXl = 0,

where /x takes all values 1, 2, ..., w'. This means that the rows of the
matrix

1, 1, .... 1, 0,

JV J2> • • • ) fa> l j • • • > 1 ) 0 J

J6>

are solutions of (51). The elements of this matrix belong to K. Therefore,
in view of the connection between (51) and (49), its rows are, at the
same time, solutions of (49), and this amounts to saying that (49) satisfies
V{K). The subsets Slt S2, ..., St of p. 141 are

{1,2,. . . , a}, {a+1, a+2 , ..., # , flB+1, ..., y}, ..., {8+1, ..., n}.

Thus Theorem VI is proved.

3. Let R be a ring of numbers, and let R— {0} denote the set of all
numbers of R except zero. The main result of this paragraph is the
following theorem.

THEOREM VII. A system of equations

(59) S a^vx¥ = 0 ( l</x<m)
v = l

is regular in R— {0} if, and only if, (59) satisfies r(JB)f. In particular,

f The condition r(R) was defined on p. 141.

8KB. 2. vol.. 48. MO. 2328. L
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the equation
a1x1+a2zz+...-{-anxn = 0,

where av~< R— {0}, is regular in R— {0} if, and only if, some of the numbers

aL, a2, ..., an have the sum zero.

Proof. Let K be the field generated by the numbers of R. To begin
with the easier half of the theorem, let us assume that (59) is regular in
R-{0}. Then, a fortiori, (59) is regular in K— {0}. Therefore, by
Theorem VI, (59) satisfies Y{K). Let &x> be the I solutions of (59) men-
tioned in the definition of Y{K). Then

where ^^R; £<*>-<JR-{0}

Let N= U (W; £*> =

Then the numbers ffl belong to R, and it is obvious that (59) satisfies
T(R).

Now let us assume that (59) satisfies T(R). We have to show that
(59) is regular in R— {0}. We exclude the trivial case where all a^v vanish.
In accordance with the definition of Y(R) there are numbers £iA)

(1 < v ^.n; 1 < A <Z) of i2 which have the properties stated on p. 141.
Let B be the system of these numbers &, and denote by R', K' the ring
and the field respectively generated by the numbers of B. We shall show
that (59) is regular in K'— {0}. If this fact is established, then, by
Lemma 1 on p. 129, regularity in R'— {0} will follow, and since R' is
contained in R, regularity in R— {0}.

Suppose, first of all, that the number I occurring in the definition of
V(E) has the value 1. Then

and therefore (59) is regular, in fact, absolutely regular, in K'— {0}. Now
suppose that I — V > 1. We may assume that it has already been proved
that all systems (50) satisfying T{R) with a value 1 = 1'—1 are regular in
the corresponding K'— {0}. We may suppose without loss of generality
that

£ r = > ' + l , ?»'+2, ..., n],

where 1 ^ n' < n. Then, clearly, the system

(60) SaM1/a;, = 0 (
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satisfies T(R) with 1 = 1'—1. For we can use the same numbers £*X) as
for (59) but restrict v, A to the ranges 1 ̂ .v ̂ .n', 1 ̂  A ^ V— 1. Therefore
(60) is regular in K'— {0}f. Now let k be the least positive integer, if
there is one, such that (59) is not ̂ -regular in K'—{0}. We have to
deduce a contradiction.

According to T(R) we have

(61) h ,
f=l v=n'+l

where £z/)-< 72' —{0}. By Theorem I (p. 128) there are finite subsets M,
Mr of K'—{0} such that (59) is (k— l)-regular in M and (60) is ^-regular
in M'%. Since (59) is not ^-regular in K'—{0}, there is a distribution A
of K'—{0} into k classes which has the property that (59) has no solution
xv with

a;x = a;2= . . . = a;n (mod A).

Let M" be the set consisting of all numbers

WHir1 (1 <*<»'; t<M; y<M')

and of the number 1. Define A'(a:) in K' as follows:

(62) A'(a;)= n Mxy) (x<K'-{0})t

(63) 0=/kx (mod A') (x<K'-{0}).

By Theorem III there exists a number a of K' and a positive integer d
for which

a+dz = a (mod A') (z ̂  M").

In view of a remark made above (p. 135) we may postulate that the
numbers a and a-\-dz (z -KM") differ from zero or else are all equal to
zero. The second possibility is ruled out, since we included the number 1
in M". Therefore, by (62),

(64) {a+dz)y = ay (mod A) (

Put

(65) A"(s,) = A(ay) (y -< M').

t Strictly speaking, K' should be replaced by the field K" belonging to (60). But
K" is contained in K', and therefore regularity in K'—{0} holds a fortiori.

% In the case &= 1 statements about k—1 have to be omitted.
L2
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By definition of M' there are numbers yv of M' such that

(66) y i s y 8 s . . . s y n , (mod A"),

(67)

(64), (66) and (65) imply that

(68) (a+dz)y¥^ayv^ay]i (mod A) (1 < v ̂ n'\ z<M").

Also, from (67) and (61),

(69) S altv(ayv+d£Pt)+ S a M , ^ ^ = 0 (1 </* < m ; <-< if).
• = 1

Now a

where gpty-l<M" (l<v<?i'; t<M).

Therefore, by (68),

(70) ayv+dgpt = ayL (mod A) (1 < v < ri; «-< i i ) .

We now show that this implies that

(71) d^'n^ayx (mod A) {t<M).

If (71) is not true, then, for some number t0 of M,

(72) dtpto = ayx (mod A).

But then (09), (70) (with t = 10) and (72) show that, contrary to our
initial assumption about A, the system (59) has a solution whose
numbers belong to the same class of A. Therefore (71) is established.

If k= 1, then (71) is plainly impossible; for then all numbers belong
to the same class of A. When k > 1 put

Then, by (71), |A'"|<Jfc-l.

Hence, from the definition of M, there are numbers xv of M satisfying
(59) and

xl~x2~ ... = xn (mod A'").

Then £ a^d^xv = 0 (1 < n <m),

xv = d&nxj. (mod A) (1 < v < n)

and this, again, contradicts the definition of A. This completes the proof
of Theorem VII.
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4. We note a corollary of Theorem VII.

n
A system 2 aIAVxv = O (

l

is regular in the set of all complex numbers other than 0 if, and only if, it is
regularin RQ— {0}, where RQ is the ring generated by all coefficients a^.

(We have to exclude the trivial case where all alltl = 0.)

It is, however, not true that, corresponding to every system of equations
which is regular in some set, there exists a smallest ring R* such that it
is regular in 22*—{0}. For consider the equation (m = 1; n = 4)

(73) osx+jtea-fa+flaa-ofo = 0,

where <z= <\/2; j 8 = \ / 3 . The only possible sets Sv #2, ..., consistent
with the definition of F (p. 141) are

^ = { 1 , 2 , 3 } ; £ a ={4}.

The existence of the solutions

(1,1 ,1 ,0) ; (0, a, 0,1); 08,0,0,1)

of (73) shows that (73) is regular in Ra— {0} as well as in Rp— {0}, where
Ra, Rp are the rings generated by a, 1 and jS, 1 respectively. The common
numbers of Ra and Rfi form the ring Ro of all rational integers. But (73)
is not regular in Ro— {0}. For this would imply that F(i?0) holds, i.e.
that there are rational integers xly x2, x3, xit with x4 ^ 0, such that

xz—aj8a4 = 0,

-Za) V 2 + 0*2—*s) V 3 =

which is easily seen to be impossible.

5. Let R be a ring of numbers (not consisting of zero only), and K
be the field generated by R. We want to bring out more clearly the
significance of the condition T(R). From considerations at the beginning
of the proof of Theorem VII, it is obvious that T(R) and T(K) are
equivalent. We can easily write down a general class of systems of linear
equations which satisfy T(K), viz.

(74) nlm
CliVxy-x



150 R. RADO [Deo. 15,

Here I <*n <n, and the cMl, are arbitrary numbers of K subject to the
two conditions:

(i) no row

(75) cMl, CM2, ..., cM>n_m (1 ̂ n <w)

contains zeros only;

(ii) the first non-zero number of every row (75) has the value 1.

Let us call systems (74) of this kind T-systems.
In order to prove that (74) satisfies T(K), we may assume (74) to be

of the form

x + 2 cliyxy-xn_m^ = 0 (1

(76)
n-m

n—m

where

Then we put

S^{sv

—m;

a2

—?n-f-1, n—m+2,

= m.

_2+l, n—

while the last set St consists of all indices out of 1, 2, ..., n which do
not occur in any of the sets Sx, S2, ..., #/_i. A moment's consideration
shows that we can choose numbers £<x) which are consistent with the
definition of T(K).

In a certain sense (76) is the most general system which satisfies
For we have the following result.

Corresponding to every system

(77) £ aM1.z,,=
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which satisfies T(K), there is a T-system (74) such that every solution of (74)
is at the same time a solution of (77).

In other words, by adding suitable equations to those of (77), which
is supposed to satisfy T(K), we can obtain a T-system (or a system
equivalent to a T-system).

In proving this statement we may assume, without loss of generality,
that the sets SK corresponding to (77) are

where l^z 1; 1 ^ £x < p2 < ... < fa = n.

Consequently there is a matrix

I, I, .... 1, 0, , 0

> 1 1 0 0
(78) I ' ' ' " ' ^ ' ' " ' '

every row of which is a solution of (77). The gw belong to K. In (78)
the columns with indices ply j32, ..., fa are linearly independent, while
every one of the remaining columns is a linear combination of these I
columns. Moreover, these linear relations are expressible in the form

(79)

-l < /^ <

where c^-^K. (79) is a complete set of linearly independent relations
between the columns of (78). Hence every vector (xv x2, ..., xn) which
satisfies (79) is a linear combination of the rows of (78) and is therefore
a solution of (77). But (79) is a T-system, as is seen by ordering the
variables as follows:
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This proves our statement about the connection between (77) and
T-systeins.

Questions about the regularity of a system of homogeneous linear
equations in the set of all positive rational integers or in the set of all
complex numbers re'*, where r > 0 and <f> belongs to a given interval
<f)0<(f)< <f>v and many more, are settled by the following theorem.

THEOREM VIII. Let R be a ring of complex numbers, and let A be a
subset of R— {0} which has the following property. There is a finite number
of elements dlt d2. .... dkof R— {0} such that every xof R— (0) is expressible as

(80) x = adK,

where a^A; I ^.K ^k. Then regularity of

n
(81) S 0,^x^ = 0 (

.-=1

in A is equivalent to regularity of (81) in R— {0}.

For instance, in the case of all numbers re1'*, where r > 0; (j>0 < <f> <
we choose an integer k > 27r/(<f)1—(f>0) and put

Of course, the representation (80) need not be unique.

Proof. Suppose that (81) is regular in R— {0}. We have to show
that (81) is regular even in A. Let A(x) be defined in A. Given any x
of j?—{0}, we define A = X(x) as being the least index K for which xd~x

belongs to A : A exists. Put

A'(x) = A<«(A(*)) A(zd-(y (x < R-

Then there are numbers xv satisfying (81) and

(82) itlHj!l = ,,.s!tB (mod A').

(82) implies tha t

A(a;1)= A(*2) = ... =A(*n) = Ao,

say, and xxd^1 = x^1 = ... = xnd~l (mod A);

whiie (81) yields H a ^ x ^ 1 = 0 ( l ^

This proves the theorem,
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3. Non-homogeneous linear equations.

1. Let Ao be the field of all algebraic numbers and Co that of all
complex numbers.

THEOREM IX. A system

n
(83) £ «„„ x¥ = 6M (1. < n ^ m)

is regular in Ao if, and only if, it is absolutely regular in AQ.

THEOREM X. A system (83) with algebraic coefficients a^v (and with tlie
bp arbitrary complex numbers) is regular in Go if, and only if, it is absolutely
regular in <70t).

In proving the last two theorems it is sufficient to show that regularity
implies absolute regularity in the sets in question.

Theorem IX follows from Theorem X. For let us assume that (83)
is regular in Ao. Then there are algebraic numbers #<,0) satisfying

This simply means that (83) is 1-regular in Ao. Therefore (83) is
equivalent to

Za^-xf) = 0 (1 ̂ fji^m).

If we use the argument which leads from (49) to (51) we find a system

(84). Sa;,y,-0 (l^fi^m')
r = l

with algebraic coefficients a'^v such that (84) and

n

X a^y^U (1 ^ / A < W )

have exactly the same solutions in Ao. Therefore

(85) S«ff, ,-40>) - 0 (1 < / i %m')
V

and (83) have the same solutions in Ao. In particular, (85) is regular
in Ao and a fortiori regular in Go. Now apply Theorem X to (85). I t
follows that (85) is absolutely regular in Co. Since a'^v, x^ are numbers of
Ao we conclude further that (85) is absolutely regular even in Ao, and
finally that (83) is absolutely regular in Ao.

"I" Absolute regularity wa.« definod on p. 127.
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It remains to prove Theorem X. We note that absolute regularity in
a set M of a single equation

means that either

or 5 = a x + . . .+a n ^ 0; bjs < M.

LEMMA 4. Suppose that (83) has the following property. For every
clwice of numbers t^ belonging to the field K generated be the a^, the equation

m n m

2 t^ 2 allvxv= 2 t^b^llvxv

is absolutely regular in M. Then (83) is absolutely regular in M.

To prove Lemma 4, put sM = 2 aMV. We may assume that

where 0 < m' ^ w. By hypothesis, any numbers t^ of K for which

satisfy 2 6M <M = 0.

Therefore, by Lemma 3 on p. 142 (r = s — 1: see the remark at the end
of the proof of Lemma 3),

identically in the /M. Here x' is some constant. Hence

If m' > 0 then a:' = b^ < M.

For the equation ^aXvxv — bx

is absolutely regular in M. If in' = 0, i.e. if

then bll = 0 (

and therefore Za^x" = bli {1 < p < m),

where a" is any arbitrary number of M. Thus the lemma is proved.
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In view of Lemma 4, it is sufficient to consider the case m = 1 of
Theorem X. Let us therefore assume that ax, a2, ..., an belong to Ao,
that b is an arbitrary number and that

(86)

We have to show that

(87)

is not regular in (70. We may assume that no ay vanishes.
By means of transfinite induction we can find a " basis " f v £2> • • •> £a, • • •

of all complex numbers with respect to the field K generated by al7 a2) ..., an.
This means that every complex number x is uniquely representable in
the form

(88) x = Xxa'£a,
a

where a runs through certain ordinal numbers and xa' belongs to K. For
every x only a finite number of "coordinates " xa' differ from zero. Let

be the representation (88) in the case x = b. Since b ^ 0, at least one of
the numbers 6/ differs from zero. There is no loss of generality in assuming
that 6X' ^ 0. The numbers av a2) ..., an> bx' are algebraic. If we multiply
(87) by a suitable number of K, we can obtain a case where these n-\-l
numbers are algebraic integers of K. We may therefore assume that
(87) is suoh that these numbers are algebraic integers. Let culs wz, ..., wp

be a minimal basis of K, so that every algebraic integer of K has a unique
representation in the form

(89) '/•1o>1+r2a>2 + ...H-rptop)

where the rK are rational integers. Then every number of K has a unique
representation (89) with rational coefficients rK.

Let p be a prime ideal in K which is not a divisor of bx'. Define A (a.),
for all algebraic integers of K, by means of the rule that

x = y (mod A)

if, and only if, x = y (mod p).

Then no class of A contains a solution of

(90) a ia:x+.. .+ana!n = V .
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For (90) and

(91) x1 = x2 = ...=xn (mod A)

would lead to the contradiction

V = Ha¥x¥ — S<*„(#„—a:,) — 0 (mod p).

Define, for every a: of K, a function f(x) by means of

A = l

where
p

(92) x = Z rK<oK (rx rational).
A = l

Then, for any xy satisfying (91),

(93) / ( S a r » , - V ) > l -

Now choose an integer N satisfying

(94) N> S f(avu>K);

and put, for every .T of K satisfying (92),

(95) b!{x) = A (S [rA] coA) ft

We now show that no class of A' contains a solution of (90). Suppose
that

(96) xx~x2= ...—xn (mod A'),

(97) alxi + ...-\-auxa=-.bl
t,

xv = S r* toA {rvK rational).

(96) and (95) imply that

A

^lNr^] (mod N)

(98) S t ' J w A - S t r ^ c o x (mod A)
A A

| A(lVj was defined on p. 134.
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say, for 1 ^ v ^n, 1 ^A

2a>v2 |V,,X] wx = 2 a v 2 - ^ [-ZW.A] W X — 2 <$„
* x v x • " ? x

= 2 a, 2 - i [J\Tr,,x] a>x [by (86)]

V — V1 ii» V ^. V »•' , .

K X v X

where r̂ x is rational, 0 <r^x < l/N. Hence, from (98) and (93),

v X

r, X ' • " i', X '

The last inequality contradicts (94). Therefore, as stated above, no
class of A' contains a solution of (90).

We now proceed to define a distribution of Co. Put, for every
complex x,

g(x) = x±',

where x{ is the first "coordinate" in the representation (88). (̂.-r) has
the following properties:

Q{*)<K,

for all complex xv.

Put A"(.r) = A'(p(a:)) (x<C0).

Suppose that, for some xv of Go,

x1z=x2=...=xn (mod A").

Then 9(x
v) = 9(xi) (mod A') |

Hence, by the definition of A',

i.e., g(Lavxv)^g{b)\
V

and therefore 'Lavx,^b,
V

This completes the proofs of Theorems IX and X.
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2. The foregoing proof made use of transfinite induction in order to
define a certain distribution of all complex numbers. In the case of
rational coefficients a^ (the b^ may be arbitrary complex numbers) it is
possible to eliminate transfinite induction. In this section we give a
proof of the assertion of Theorem X in the special case of rational
coefficients aMV or even in the slightly more general case where

V = al"+icC K>" °C rational).

In view of Lemma 4 it is sufficient to prove the following proposition.

Let a,, = av' -\-%a" (1 < v ̂  n),

where aj, a" are rational integers. Suppose that

while b is a complex number different from zero. Then

(99) a1x1+...+anxn = b

is not regular in Co.

Define, for any

x = x'+ix" (x', x" real),

Choose positive integers ?»', m" such that

KI+I&I; m" >
V

Put, for every such x,

r.l.'h«.u our proof is complete when we can show that no class of A* contains
a. solution of (99). Suppose that

xx = x2 •= ... •= xn (mod A*),

'l.'hen (using aji obvious notation)

[m" xv] == [m" ajj (mod m' m"),

(100) [m"xv]-[m"x1\ = krm'm" (l<i/<»),

where hv — kj-\-ik[' {kj, k'J rational integers).
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(100) implies that

-77 [m"xv\--T7 [m"x1] = kvm',
III/ lib

in L JJ [m 1JJ

15P

Also,

where

Cowe (1): Let

Then

Sar[a;J

Case (2): Let

Then

Hence in either case

2a,,[<J =

m

-|- a

4. ui-regularity.

A systems of conditions

(101) S(x1,...,xn) = 0

was called o»-regular in a set Jf if, given any distribution A of M into
denumerably many classes, there is always a solution of (101) satisfying

^ = ^2=. . . = ^ (mod A).

Of the three propositions:

(i) (101) is ^-regular in Co for every k = 1, 2, 3, ...;

(ii) (101) is co-regular in Co;

(iii) (101) is absolutely regular in Co;
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(i) is weaker than (ii), and (ii) is weaker than (iii). For the equation

satisfies (i) but not (ii) (as follows from Theorem XI below), and the
condition

satisfies (ii) but not (iii). We prove that in the case of linear equations
or, more generally, of conditions whose solutions form a closed set, (ii)
and (iii) arc equivalent.

THEOREM XI. A system of equations

(102) Ifl^, = ^ (l</x<m)
V = 1

is oi-reguh,r in a set M of complex numbers if, and only if, (102) is absolutely
regular in M.

Proof. Suppose that (102) is not absolutely regular in M. We have
to show that (102) is not a)-regular in M. We call a circle

(103) \x— (c '+tc") |<r

a rational circle if c', c", r are rational numbers. Every point z of M is
contained in a rational circle which does not contain any solution of (102).
For, if this is not true for some z — zQ of M, then every rational circle
(.103) which contains z0 also contains a solution xv of (102), and making
r->0 shows that

i.e. that (102) is absolutely regular in M. The rational circles are
enumerable. Let Bx, R2, ... be a sequence containing every rational
circle. Define, for every z of M, f(z) as being the least A such that z lies
in Rx but, at the same time, RK contains no solution of (102). Then,
obviously no class of

contains a solution of (102). Therefore (102) is not co-regular in M.

The University,
Sheffield.

t A<0' was defined on p. 124.


