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Consider a system of equations
(1) G 21+ Tyt A, T =0, (1<p<m),

where the a,,, b, are complex numbers. Let 4 be a set of numbers, for
instance all numbers of a number field, all complex numbers different
from zero, etc. We call (1) regular in A if the following condition holds:
however we split 4 into a finite number of subsets 4,, 4,, ..., 4;, always
at least one of these subsets 4, contains a solution of (1). TRoughly
speaking, regularity of (1) in A means that, in a certain sense, 4 contains
very many solutions of (1), and these solutions interlock very intimately.

In the special case where 4 is the set of all positive integers, I. Schurf
proved the regularity of

Zy+Zy—x3 =0,
and van der Waerden} proved the regularity, for every I > 0. of
xo—x] = xl"xg = L. == 9:,_1—2,“ ¢ O§.

In a previous notel| 1 determined all systems (1) which are regular in
the set of all positive integers. In this case necessary and sufficient
conditions for regularity turned out to be certain linear relations between
the a,,, b,. In the present note, which is an elaboration of a lecture
delivered at the International Congress of Mathematicians at Oslo, 19367

t Jahresbericht der Deutschen Mathematiker-Vereinigung, 25 (1916), 114

t Nieuw Archief voor Wiskunde, 15 (1927), 212-216.

§ Regularity of a system of equations and inequalities, in fact, of any set of conditions
imposed upon certain variables, is defined in exactly the same way as above,

i} Math. Zeitschrift, 36 (1933), 424-480, quoted as S.

q| Comptes Rendus, Oslo, 2 (1936), 20-21,



1939.] NOTE ON COMBINATORIAL ANALYSIS. 123

I propose to consider the same problem in the case of more general
sets A. I establish necessary and sufficient conditions for regularity
expressed in terms of linear relations between the a,,, b, in the following

cases:

(i) The a,, are arbitrary, b, = 0, A is the set of all numbers different

from zero contained in a given ring of complex numbers.

(i) The a,, and b, are arbitrary numbers, 4 is the field of all algebraic
numbers,

(iii) The a@,, are algebraic numbers, the b, are arbitrary, 4 is the field
of all complex numbers.

Other cases can be dealt with which are not included in this note.

The criteria are analogous to those obtained in the special case of S.
In the cases (ii), (iii) the condition for regularity postulates that, for some
number ¢ of 4,

This result may be expressed as follows. If, in every distribution of the
numbers of A over a finite number of classes, al least one class contains a
solution of (1), then, n cases (ii) and (iii), the same is true for the extreme
case of a distribution in which every number of A forms a class by itself.

Some of the proofs are extensions of proofs in S, others require the
use of different methods. In proving the result concerning (i), we employ
an extension (Theorem I1) of van der Waerden's theorem quoted above.
This extension was first proved by Dr. G. Griinwald, who kindly com-
municated it to me. It may be stated as follows. Giver any **con-
Siguration’ S consisting of u finite number of luttice pointst of a Euclidean
space, and giwen a distribution of all lattice points of this space into u finite
number of classes, there is at least one class which conlains u configuration
8’ of lattice points which is similur and parallel (homothetic) to S. Dr.
Griinwald’s proof runs parallel to van der Waerden’s proof of his theorem.
The proof given in this note is a simplification analogous to the simpli-
fication of van der Waerden’s proof given in S (p. 432, Satz I). In an
earlier note} I proved a weaker form of Griinwald’s Theorem in which
similarity of § and §’ was replaced by affinity.

The last paragraph deals with regularity of systems (1) with respect
to distributions which have denumerably many classes.

t I.e. points with rational integral coordinates.
} Berliner Sitzungsberichte (1933), 589-596, Satz T,
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1. Preliminaries. Generalisation of van der Waerden’s Theorem.

1. Let A be a finite or infinite aggregate. In this section letters a, b,
¢, * denote general elements of 4. Throughout this paper the letter A
(and A', A”, ..., A, A,, ete.) denotes distributions of all elements of 4
into a finite number of classes. Occasionally we consider distributions
into an infinite number of classes, in which case this is mentioned
explicitly. A is defined by means of a relation “~ " which is defined
for some pairs of elements of 4 and which has the properties:

(i) a~a for every a;
(ii) @ ~b implies b~a;
(iii) a~b and b~c imply a~c;

(iv) every infinite subset of 4 contains two distinet elements @, b such
that a ~b.

By |A| we denote the number of non-empty classes of A. A congruence
a=0 (mod A)

expresses, by definition, the fact that @ and b belong to the objects
distributed by means of A, and, moreover, belong to the same class. In
analogy with the notation for functions, we speak of a distribution A(z)
defined for every z of 4, or, briefly, defined in 4.

Throughout this paper A®(x), for every positive integer k, denotes
the distribution of all rational integers into classes of equal residues mod &.
Thus

z=y (mod A®W)

is equivalent to saying that 2 and y are rational integers and
z=y (mod k).

A® denotes that distribution of 4 in which every element of 4 forms
a class for itself. A©® may have infinitely many classes. We use the
same symbol A® for different sets A.

Two methods are employed for generating new distributions from
given onesf. The first is a process of multiplication. Given a finite

1 Both were used in 8. The notation adopted in {his paper seems to be more cun-
venient than the one used in §,
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number of distributions A, A,,
by their product

..., AA,, each defined in 4, we understand

that distribution A of 4 which is defined by the rule:
r=y (modA)
if, zmci\ only if,
z=y (mod4,) (I<vn).
For instance, if £ and [ are natural numbers, then
AR AD = Am),

where m is the least common multiple of £ and {.
We have

|A R, AL <A Ag] .| Ayl

The second process is one of inducing « distribution in a set B by means
of a distribution in 4 and a correspondence between every element of B
and some elements of 4. Suppose that A(x) is defined in 4, and that f(y)
is a function defined for every element y of a set B. The functional values

of f are elements of A. Then we define a distribution A, (y) in B by postu-
lating that
Yh1=Y, (modA,)

is to be equivalent to

Sy =f(y.) (mod A).
We use the notation

Ay(y) = A f@)).
Clearly |4 ] <|A
We have, for instance,
AW (1) = AR (2z) = A® ().
For =z, (mod k)
is equivalent to

z,+1=a,+1 (mod k)
and also to

2%, =2x, (mod 2k).
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For real numbers x 340,

29(13) =22

is a distribution in which all positive numbers are in one class and all

negative numbers are in a second class.
Suppose that A(z) is defined in 4 and that the classes of A are the sets

Ao, Al’ teay Ak_l-
Define, for every z of 4, a function f(z) by means of{
Then Alw) =AW f(@)).

Now choose a natural number I. Then corresponding to every = of 4
there are integers g(x), #(z) such that

f(z) = g(z)+1h(x),
0<g(@) <l; 0<hiz) < (k=1L
Therefore
A@) = A% ( f(z)) = AO(g(z) ) AD(h(z) ) = A’ (z) A" (@),
say. We have
A<, |Nq<[ ]+11

Hence every A can be represented in the form
A=A A”,

where INl<i, A g[ﬂﬂl:‘}u.

In particular, putting I = 2, we see that every A is a product of a finite
number of distributions with not more than two classes.

If 2, y are general elements of two sets 4, B respectively, then A(z, y)
denotes a distribution of all pairs (2, y). Thus, for rational integers z, y,

Az, y) = AW (2z+3y)

T We use the symbol “ < to denote the relation of an element to the class ta which
it belongs.
1 [t] denotes the largest integer not exceeding ¢.
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denotes that distribution of all pairs (z, y) for which (z,, 7,) and (x,, ¥)
are in the same class if; and only if,

2%, 43y, = 22,+3y, (mod k).

2. Let S(y, z,, ..., z,) be a system of conditions imposed upon the
values of variables z,, ..., #,. These variables are allowed to vary
throughout a set 4. A relation

2 S, o, ..., 29) = 0
expresses the fact that thc elements 2z, ..., z(® of A satisfy the

conditions (2); and
S@®, 20, ..., ) #0

denotes the logical opposite to (2). 'S is called k-regular in A if, however
A is split into k subsets

A=A +A,+.. +4,

there is always at least one subset 4, which contains a solution of (2).
Regularity of S, as mentioned in the introduction, means that § is k-regular
for every k=1, 2, .... w-regularity of S means solubility in at least one
class whenever A4 is split into denumerably many classes. Finally, we
call S absolutely regular in A if, for some z©® of A4,

S, 20, .., 20) = 0.
If 4 is the set of all real numbers except zero the condition
(0y—23—1)(2y—2,—2) ... (v, —2,— k) =0
is k-regular, but not (k4 1)-regular, the condition
Ty +%y—23=0
is regular but not w-regulart, and the condition
T, # T,

is w-regular but not absolutely regular in 4. The degree of reqularity of
S in A4 is the largest natural number & (if there is one) such that S is
k-regular in 4.

Let §'(zy, 25, ..., 7,/) be a system of conditions with »’ <<% which has
the property that (2) implies

S (@®, 29, ..., 29) = 0.

1 See below, Theorems VII and XI.
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Let &, k' be natural numbers, &’ <k, and let 4 be a subset of 4’. Then
k-regularity of S in 4 implies k’-regularity of 8’ in 4’. Theorem I states
that in certain circumstances a kind of inverse of this implication
holds. In fact, many of our results are of this type.

Taeorem I. If S(z,, 2,, ..., x,) is k-regular in a denumerable set A
then S is also k-regular in a suitable finite subset A’ of A.

Theorem I has been proved elsewheref, but, for convenience, I
reproduce the proof.

Proof. We may suppose that

A={1,23, ..}
Put Ay={1,2, ..., N} N=1,23,..).
Let us assume that, for no value of N, S(z,, ..., z,) is k-regular in Ay.

We have to show that S is not k-regular in A. There is a distribution
A N Of Y| N
Ay=Am+Ays+...+4m,

such that no set Ay, contains a solution of S =0. Here N=1, 2, ...;
1 <k <k For any positive integer x we denote by fy(z) that number
k (1 <« < k) for which

x '<AN,.

Then by a well-known argument (Cantor’s ¢ Diagonalverfahren’’) we can
define a function f*(x) such that, given any z,> 0, there are infinitely
many N’s for which

(3) In@)=f*@) (1<z<)
Let, for 1 <wx <k, 4% be the set of all « for which
f*(x) =K,

and let A* be the distribution
A=A ¥+ A% A%
Now consider » numbers z,’ satisfying

’

(4) z=x=..=2, (modA¥)

t 8., Satz 1II. See also Dénes Koénig, Theorie der endlichen und unendlichen Graphen
(Leipzig, 1936), 84 () and (8).
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Pus z,=max (z,’, z,’, ..., 2,).
Then, by the definition of f#(z), there is a number N > z, for which (3)
holds. 1In particular, using (4), we have
fr@)=fra)=rx (1<y<n),
z,' <Ay, 1<<v<n).
Hence, by the definition of Ay,
S(z,, =, ..., z,') #0.

This completes the proof of Theorem I.
As a corollary of Theorem I we provef

Lemma 1. Let B be a denumerable set of numbers. Let R be the ring
and K be the field generated by B. Let R—{0} and K— {0} denote the sets
of all non-zero numbers of R and K respectively. Then k-regularity of the
system

n
(5) Za,r,=0 (Ilpm)

in K— {0} tmplies k-regularity of the same system in R— {0}.

This lemma is another kind of inverse of the simple proposition on
p. 128, immediately preceding Theorem I.

Proof of Lemma 1. Suppose that (5) is k-regular in K—{0}. Then,
by Theorem I, since K is denumerable, (5) is k-regular in a finite subset
T of K—{0}. Let N be the product of the ‘“ denominators’ of all numbers
of T, or, more accurately, let N be a number of R—{0} for which

(6) Nt < R—{0}

whenever ¢ < 7'. Take any A(z) defined in R— {0} and satisfying [A| <&.
Put
A ()=ANNz) =<T).

In view of (6) this definition is significant. From |A’| <|A| <k, and
from the definition of 7', we deduce the existence of numbers ¢, of 7' for
which

n
) auvtv"_—'o (l<ﬂ'<m)’
vl
ty=ty=..=t, (mod A’).
1 8, 441.

SER. 2. vVOL. 48. No. 2327, K
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Then Ya,(Nt)=0 (L <p<m),

Nig= Nlg=...=Nt, (mod A).

Hence the result. Instead of (5) we might have taken any system of
homogeneous conditions.

3. In this section small Latin letters denote non-negative integers.

Capitals 4, B, ..., X denote * vectors”’ (2, Z,, ..., Z,,) of a fixed dimension
m. If
4= (x, ..., 2,), A'=(z/, ), .., ,),
we put
| 4| =max (z, 2, ..., 2,,), @4 = (ax,, ..., 6¥,),
A+4+4" = (24, 242y, ..., Tp+2,).
0 denotes the number zero as well as the vector (0, ..., 0).

THEOREM II. There is a function f(k, R, R,, ..., R)) which has the
Sfollowing property. Suppose that Ry, R,, ..., R, are vectors and that A is
a distribution of all vectors into k classes. Then we can find 4%, d*, (d* > 0)
such that

(7) A*Ld*R, =A% (mod A) (1<A<)),
8) | A% +d#R | <f (1 <A<).

Proof. The theorem is true for I = 1. For there are two of the k41

vectors
0, Ry, 2R, 3R,, ..., kR,

which belong to the same class of A, say aR, and BR,, where

0<a<B<kE.
Put 4% =aR,, d*=p—a.
Then d¥#4d¥*R = BR,=aR,= A% (mod A).
Since | A%+ Ry | = B| By| < k| Ry,
we may put f(k, R))=Fk|R,|.

Therefore we may suppose that, for some given vectors

R, R, ..., R,
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(I>1), the existence of f(X', R,, R,, ..., K,_,) has been established for
every k' > 0, and we deduce the existence of
f(k: R],a eeey Rl—l, Rl)-

In the proof which follows, k, R,, ..., E, are constant, and these numbers
are not shown in the arguments of functions. A is a distribution
of all vectors, |A| <k. We may assume, without loss of generality, that
R, #0.

Lemma 2. Under the assumptions stated there is a function g(n) such
that, given any A, n, we can find A', d' (d' > 0) such that

(9) A+(A'+d RYy+B=A+A'+B (modA) (1<A<]!, |B|<n),
(10) |4'+d B <g(n) (1<A<D).
Proof. Put
A(X)= T A(A+X+B).
|BI<n

Then | A < gy(n).
Using the definition of
f(9:(n), By, Ry, ..., Biy)=gy(m),
we find that there are an A’ and d’ (d’' > 0) such that
(11) A'+d By=4'" (modA’) (1A,
(12) |4'+d By <golm) (1 <A<,
(11) and (12) are equivalent to (9) and (10) respectively if we put
g(n) = gy(n).
Thus the lemma is proved. We note that
|A’'+d' Ry §|A'+d'R1|+lA’+d’R1| |Ry)| <g(n)y+g(n)| By| = h(n).

Now, to prove Theorem II, put

&
=1 n= X hm) 0<c<k).
r=x+1
Apply Lemma 2, with 4 =0, n=n, We find

A'=4, d=dy>0
K2
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such that
04+ (4y+dy R)+B=0+4,+B (modA) (1<<A<; |B| <)
[Ao+dy By| <hlng) (1 <AKI).
A second application, with 4 =4y, n=mn,, yields 4'=4,, d'=d; >0,
such that
Ayt (4,44, R)+B=A4,+4,+B (modd) (1<A<l; |B|<ny),
|A1+d1Rxl<h(n1) (1<Agl).
Proceeding in this way (the next case is 4 = 4,+4,, n =n,) we find
A'=A,, d =d,> 0 such that
(13) T 4+A 44 B)+B=S 4,+4+B (mod )f

(0 <k<k; 1<A<I; |B|<ny),

There are two among the k4-1 vectors

x k
Ve=2 4,4+ 2 (4,+d,R) (0<«k<k)
v=0

vertl
which belong to the same class of A. Therefore, say,
Vo=V, (modA),
where 0 <a <B<k. Put |
A* =V, d*= 3 4,

v=a+1

Then

[:] k‘ B
(16) A*4d* R=3A,+ % (4,+d,R)+ = d,R,
0 B+1 atl

a k
=3A4,+ 3 (A4,+d, B)=V.=V,=A4*% (modA).
0

at1
On the other hand, if 1 <A <, then
(16) A¥+d* R, = %Av+ (Aa+1+da+1 k)

a+2

8 k
+(2 (At R+ S (4,44,R)).

1 Empty sums have the value zero.
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Now we have, by (14),

k k
S (A,+d,R)+ = (A,+d,R,)|< % h(n,) =1y,
8+1 at+2

at2
Therefore, from (13),

a /B k
(1) A%4d* Re=3A4,+ Aot (2 (A4d B+ 3 (4,+d, B))
)] a+2 p+1
(mod A).

The vector on the right-hand side of (17) is the same as the vector on the
right-hand side of (16), except that a is to be replaced by a+1. When
a+1 < B a second application of (13) leads to

a2 k
A*4d*Ry="3 A+ 5 (A+d,B)+ I (4,4+4,R) (mod A),
0 a+3 g+1
and so on. After f—a steps we find that
A4 dSR=3 A+ % (A+d, R)=Vs=A* (modd) (1<A<l).
0 B+1

This result, together with (15), shows that (7) is true.
Furthermore, by (14), we have, for 1 <A </,

a k k
|A*+d* By = |2 4,4 % (4,44, B)+ E (4,44, R)| <Zh(n,).
0 atl A+1 0

Therefore (8) holds, with
k
f(k, Rl’ Rz, vy R,) = %h(’l’b,),

and the theorem is proved.

4. THEOREM III. There is a function f(k, 1), defined for all pairs (k, 1)
of positive integers, which has the following property. Suppose that M is a
set of objects among which a commutative and associative addition is defined.
Let R,, R,, ..., R, be elements of M, and.let A be a distribution of M into
k classes. Then there is a positive integer d* and an element A¥ of M such
that

(18) A*4d% Ry=A* (modA) (1<A<DYT
]
A=1

(20) a4t <flk D) (1<A<D.

t d*R, = RatRy+t...+ Ry (i* terms).
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Proof. Put, for all integers z, >0,

(21)  A'@y, 2y oy 2) = A((8+1) By+(24+1) Bot .+ (@ +1) B)).
Apply Theorem II to A’ and the “unit vectors’

R =(,0,..,0),

R,= (0,1, ..., 0),

R =(0,0,..,1).

We obtain a vector (a,, as, ..., @), with integral components a, >0, and
a positive integer d such that

(22) @y, oy @) +dB = (a, ..., @) (mod A') (I<AK]),
(23) |(ay, ..., &)+dR,| <f(k, BR,, ..., R) =g (k, 1) (1<A<L]I),

say. (22), in view of (21), is the same as

! !
z (@,+1)R,+dR,= X (a,+1)R, (mod A) (1<AKI).
1 v=1

(23) is the same as
a+d <k, i) (1<A<D).

Hence we may put
!
A*= X (a,+1)R,, d*=d; a¥=0a+1 (1 <v<I),
v=1
Jlk, ) =gk, ) +1,

and the theorem is proved. In the special case where M is the system of

vectors
A= (2, 2y, ..., 2,,)

whose components «, are non-negative integers, we deduce from (19) and
(20) that, in the notation of Theorem TI,

]
|A*+d*R,| =| = a,*R,+d*R,| < Z(a,*+d*)| R,
v=1 1
<flk, h)Z|R,| (<A<,

Therefore the function f(k, Ry, ..., R;) of Theorem II may be assumed to
be of the form

!
f(k: Rl) ooy RI) =j(k’ l) v§l ]H:'
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For a later application we note that in Theorem III we may stipulate
that the elements

A% A*+d* R, (1<A<)

are either different from any one out of a finite number of given elements
Cy, Oy, ..., C,, or are all equal to one of the elements C,. In this case
(20) must be replaced by

(24) ay*d* < flk+-s, 1).
For suppose that A is a distribution of M, |A| <k. Define A’ by means of
A=B (mod A’)
if, and only if, either
A#C,; B#C,(1<0<s); 4=B (mod A),

or A= B=C,, for some gy, 1 <o,<s. In other words, we remove the
C.’s from their classes in A and put them in separate classes. Now apply
Theorem III to A’. We find 4%, d%, with d* > 0, such that

(25) A*+d* Ry =A% (mod A’) (1<A<U).

Furthermore, (19) and (24) hold; (25) implies (18), and, in view of the
definition of A’, the additional condition is satisfied.

2. Regularity of homogeneous linear equations.

1. TurorEM IV. Let a,, a,, ..., a, be real numbers. Suppose that no
non-emply subset of these numbers has the sum zero. Then the equation

(26) 21+, %5+...+a,x, =0

is not regular in the set of all positive numbers. In particular, if

(27) la, +a,,+...4-a,] = (la,|+|az|+...+|a,[)fa >0

~ whenever 1<k<n, 1<y, <y <... <y, <0,

then the degree of reqularity D of (26) in the set of all posilive numbers satisfies

logd
(T+a1—b7)

(28) D<14 fog

where b is any arbilvary number exceeding a. In particular,
(29) D <1+4%alog(2a) (for every a),
(30) D <aloga+o(aloga) (as a—>oo).
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If D' vs the degree of regularity of (26) in the set of all real numbers z # 0,
then

(31) D’ <2D+1.

Proof. (27) implies @ > 1. If no non-empty subset of a,, a,, ..., a,
has the sum zero, then (27) holds for some @ >1. Therefore the first
assertion of the theorem follows from (28). (29) follows easily from (28)
by putting b = 2a and making use of the inequality

(32) log (14) = t(1—3t)+ 33(1— 1) +... > 8(1—3),

valid for 0 <t <%.
In order to deduce (30) from (28) we put

b=ualoga,

for a >e. Then (28) becomes

! ]
+Z§1(ﬁ (Zglg’; a1 = loga+to(a loga)

asa—>00. If D < oo, then there is a distribution A of all positive numbers
such that |A|=D+1 and

a2, +...+o,x, 0

whenever T =2,=..=z, (modA).

D<1+10g{1

Put A (z) = A(|x|)A©(%) (z real, 0).

In other words, corresponding to every class of A we form a new class
containing the same numbers but multiplied by —1. Then no class of
A’ contains a solution of (26), and (31) follows.

All that remains to be proved is (28), under the assumption (27).
Suppose that (26) is m-regular in the set of all positive numbers, for some
positive integer m. Choose a number ¢ > 1 and put

Afz) = am( %ﬁg—’q‘]) (z > 0).

Then [A|=m. Hence, in consequence of our assumption about m, there
are numbers z, satisfying

2 =%,=...=2, (modA),

@z +...+a,z, =0,



1939.] NOTE ON COMBINATORIAL ANALYSIS, 137

Put l%g__ga;, =m, (1<v<a)
Then

(33) m=my=,,.=m, (modm),
(34) g <o, <qrt 1<y <),

Arrange the m, in non-increasing order :
m, =m,, =...=2m, .
We have, for some suitable & (1 <k <n)f,
m, =m, = ..=m, >m, .
Then, by (33), m,, =m, +m.
Therefore, from (34),
¢ <z, <gmH (1<k<k),
z, < gt g™t (k<A< n).

Now, making use of (27), we deduce that

0=

k k n
Xa.z,+ 2 a,lr,—2,)+ Z a2,
1 k=1 A=k+1

n
Zanzx,
=1 k=

"

k k n
>z, | Za,|— 2 |a.llz.—2|— X |a,lz,
-1 k=1 A=fk+1

7 n n
> g a7t £, |- gt —gm) Bl a,| —gm Sl

= g™ Z|a,| (@ —{g— Y= ")

Therefore al—q+1—g<m-1 <0,
i.e., q—(m-—l) > a—l_q+ 1,
- log (a*—g+1)
e T
provided that al—q+1>0.

t In the case k = n everything relating to k41, k42, ... has to be omitted, and
similarly later,
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Put qg=1+4a1-b71,
where b is any number exceeding a. Then it follows that

logb
m—1< log 1+a1—0b1)

Hence (26) is not regular in the set of all positive numbers, and (28) holds.
This completes the proof of Theorem IV.

THEOREM V. Let a,, a,, ..., a, be complex numbers. Suppose that no
non-empty subset of these numbers hus the sum zero. Then the equation
(35) a2, +...+a,x,=0

18 not reqular in the sel of all complex numbers different from zero. In
particular, if

(36) la,,+a,,+...+a,| > (la| +|as|+...+]a,])/a > 0
whenevey 1IS<kLn; 1<y <n<...<y,<n,

then the degree of reqularity D of (35) in the set of all complex numbers different
from zero satisfies

1 log (14at—gqt?—2x3)
(37) D<1+§— Slogq )

where 8, ¢ are any real numbers such that

(38) 0< 2md <a,

(39) 1 < gt < 14a-1—2n8%,

In particular

(40) D << 1+6ma+-28ma’ log (3a) (for every a),
(41) D < 8na* loga+o (a?loga) (as a—>).

Proof. (36) implies @ > 1. The first part of the theorem follows as
in the case of Theorem I'V. (40) follows from (37) by putting

SR S S I 3
2778 "‘3a$ q ""l }_3(1)

and using (32). (41) follows from (37) if we put, for every sufficiently
large a,
1

1 1
=g 4= l_I‘ﬁmalogaz'

t In other words, 3, ¢ satisfy 0«3, 1< g, and have such values as to give a real
value to the right-hand side of {37).
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Then, as a->0,

L —grgms =14 L= (1 L= L)
tg e = +%”(+%‘m)

= 1_*..2_—taycp[(l-i-4mL {22_2%@—{-0(&!2—)}]

=1+2 e’(p‘l;l alc:ga_l_o(a—li’:)}
1 (1 it +o) v o)
Hence, by (37),

log {(a loga)~?+40(a—2)}

D < 14+-4na—dna Tog {1+3a-1+0(a loga)3}

= 1+4na+dna %ﬁ-‘%‘}%ﬂ%’ — 8ra? loga-o(a? loga).

In order to prove the theorem we have to show that (37) holds, pro-
vided that (36) is true for all %, v,, ..., v,. We assume that (35) is
m-regular in the set of all complex numbers different from zero. Choose
real numbers g, § such that ¢ > 1, § > 0. Then every complex x 7 0 has
a unique representation

(42) x = q e
where r = 7(x), t = t(z) are real numbers satisfying
(43) 0<r—t<1.

For (42) determines r uniquely and ¢ uniquely mod 1, and (43) fixes ¢.
Put

A(z) = Am ([-;-]) (z £0).

Then, according to the choice of m, there are numbers z, 7 0 for which

yn=x=..=2, (mod A), a,z,+...+a,z,=0.
Let r(x,)=r,; tz,)=t,; [ ] m,.
Then z, = g™ e,
(44) L, <r,<t,+1, my=m,=...=m, (modm),

(45) m,8 <t, <m,o+8 (1<Kv<n)
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Also m,=m, =..=m,>m, =..=m,,
where

(46) Vi, Vay oev) Vg

is a permnutation of 1, 2, ..., » and k an integer, 1 <k <n.

[Dec. 15,

Moreover,

using (45) and (44), we can choose the permutation (46) in such a way

that

m, 8 <t, <r, <r,, <... <, <t,+1<m,848+1=m, §48+1.

Then we have, for every « (1 <« < k),

(1) |2, | = (g e — g i) (g g o)

S (g—g™) g X 2n|t, —t, |
< q'"'(ql'*8—1)+2'n’8q"- (1 <K < k)
If k<A< n, then

m, Km,,  <m, —m=m

) X —m,

41
and therefore
(48) | T, l =¢a< q‘"ﬂ'l < qm,8+5+1 K ¢mmms+i+L

L gL L g mDE (B < A K ).

Just as in the proof of Theorem IV, we deduce from (36), (47), (48),

(38) and (39) that

n

& k 7
0=} Z a,z,|=| ¥ a,2,+ X a,(2,—2,)+ Z a2,
n=1 k=1 =1 A=k+1
3 : "
22| 2 a, =2 a,|[2,~2,|- ¥ |a,]|z,]
k=1 k=1 A=k+1

n n n
>gmat T a,|—q¢ (gt —14278) Z |a,| —g-m-DHL T g |
=1 pe=1 w=1

= g™ s |a.| (@ —q1+i 41— 278 — g (m-D8+1),
1

q—(m—l)8+1 > a—l_q1+5+ 1 ___2.”8,
__log (a1 —g'**{-1—2n3)
logg

1 log (14a1—g'**—2m3)

(m—1)8—1<

2
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If this holds for every m, then the admissible values of m are bounded,
and the largest of them, i.e., D, satisfies (37). Thus Theorem V is proved.
It is obvious from the foregoing proofs that the numerical constants in

(29) and (40) can be improved.

2. Consider a system of homogeneous linear equations

. n
(49) % 6,8,=0 (1<p<m)
. v=1
with arbitrary complex coefficients a,,. Let B be a set of numbers. We
say that (49) satisfies the condition I'(B) if it is possible to divide the set

{1,2, ..., n}

into non-empty, non-overlapping subsets S;, S,, ..., §; such that, corre-
sponding to every A (1 <A <{l), there exists a solution z, = éM of (49)
for which

EV<LB (v<8;, 8, ...y 8)),

ff'x) = O (V < S}‘+1, S)\+2) ooy Sl)'

and, moreover, all numbers ¢} for v in S, have the same value ¢V # 0.
In other words, if we number the variables suitably we can find a matrix
of the type (in the case I = 4)

g LD e 0 . . o o o, 0
ED, &R, ..., £& g 0, . ... ... .., 0
ED, 80, . o e £D, €0, 8,0, .., 0
EO, 0, it e e e e e E® O @

in which every row constitutes a solution of (49), every &» and ¢™ belongs
to B, and {»'#0. We have

I<a<B<y<n.
For instance, the system of bequa.tions
Ty—&) = Xg—Ty = s0. = Tp_1—Tp_g =%,
satisfies I'(B), where B is the set of all integers. For we may put

I=2; §;,={L2,..,n-1}; 8;={n}
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The &V are

(LLLqu %

1,23 ..,n—-11" _
If (49) satisfies the condition I'(B) for some set B, then (49) satisfies
[(Ry), where R, is the ring gencrated by all coefficients a,,f. This
follows at once from well-known properties of systems of linear equations.
Subsequently (pp. 149 et seq.), the structure of systems satisfying I'(B)
will be further elucidated.

Let K be a number field, and denote by K— {0} the set of all numbers
of K excépt zero.

TrEOREM VI. If (49) is regular in K— {0} then (49) satisfies I'(K).

Before we prove this theorem we establish a simple lemma which is
geometrically obvious.

Lemma 3. Let
Ll(t)’ Lz(t), LA Lr(t): Ml(t): ceey M:(t)

be r+s8 linear forms in (t) = (fy, by, ..., ty). Let r=0; s >0. Suppose
that

(50) Lt)=0 (1<p<r)
wmplies that, for at least one oy = oy(t’),
M, (t')=0.
Then at least one of the forms M ,(t) 1s a linear combination of the forms L(t).

Proof of Lemma 3. We may assume that no proper subset of the
system M,(¢), ..., M,(t) has the same property as the whole system of
forms M,(¢). Then s=1. For if s> 1, then, corresponding to every
o (1 <o <), there is a vector (¢°) for which

L)=0 1<p<n), M (=1 M (=0 (¢’ #0).
Then the vector ()= El(t‘”)

satisfies (50). But, on the other hand,
M,(t) =M, () =1 (d<o<s),

T We exclude the trivial case where all a,, vanish,
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which contradicts our hypothesis. Therefore s =1. In this case the
lemma is an immediate consequence of well-known facts concerning linear
forms.

For a later application we add the remark that (50) is required only

for those (¢')==(},", &', ..., ty") whose components £’ belong to the field
generated by the coefficients of all forms L,, M,.

Proof of Theorem VI. We suppose that (49) is regular in A.” Then
every linear combination of the equations (49) is regular in the set of all
complex numbers different from zero. Therefore in every such com-
bination certain coefficients have the sum zero (Theorem V, p. 138). If
we exploit this fact for suitable linear combinations of (49), we obtain
the condition I'(K). But before starting along these lines we replace (49)
by a system of equations whose coefficients belong to K.

Let g, =20 (1<v<n; 1<a<y)

be a system of a maximal number of linearly independent solutions of (49)
which belong to K. Such solutions exist because (49) is regular in
K—{0}. Now let

n
(51) T b,z,=0 (1<p<m)
v=0

be a system of linear equations whose general solution is an arbitrary
linear combination of the vectors (z*) (1 <a <g). Then, as far as
solutions in K are concerned, (49) and (51) have exactly the same solutions.
In particular, (51) is regular in K — {0} and therefore, a fortiort, regular in
the set of all complex numbers different from zero. Since the z{* belong
to K, it is possible to choose (51) so that the b,, belong to K.

Choose m' parameters ¢, and consider the equation

g t, % bz, =0,

n=1 v=1
i.e.,
(52) S R,(t)z, =0,
where "
(53) R,()= "2":16“,,&,‘ (1<v<n)

st

Let M (t), My(t), ..., M,(t) (s=2"—1)

be all the linear forms which are sums of forms R, (¢) corresponding to any
choice of distinet v. For any values of the #,, (52) is regular in the set
of all complex numbers different from zero. Hence, by Theorem V, at
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least one of the numbers M, (t) vanishes. Therefore, by Lemma 3 above
(p. 142), with r =0; s =2"—1, at least one of the forms M, (t) vanishes
identically in (¢). If the z, are suitably numbered, we may assume that,
identically in (2),
(54) 3 R,()=0.
v=1

Here a is an integer and 1 <a <n.

If a =mn, we stop at this stage. If a <u, we let the parameters ¢, be
subject to the conditions
(55) R(t)y=0 (1<<v<a)

Then (52) becomes

2 R/()z,=0.

r=a+l
Suppose that
M), M0, o Mot) (8 =2——1)
are all the sums of any number of forms R, (¢) corresponding to distinct values
of v with a <v<n. Again Theorem V shows that, for every choice of
(t) satisfying (55), at least one of the numbers M,’(¢) vanishes, and this

implies, by lLemma 3 (r=a; s=3s'), that at least one of the forms
M)/ (t) (1 <o <¢') is a linear combination of the R, () (1 <v<a). We

can number the variables ¥,,;, .9, ..., ¥, so that this linear relation
becomes
(56) z o R()+ = RB()=

v=a+1l

identically in (¢). Here B8 is some number satisfying a < < n, and the
f, are constants.

If we proceed in this way, treating 8 as we treated a, we find (in the
case B<<m) a relation

(57) SaRW+ £ R@=0
v=1 v=5+1

where o < f <y, etc. The process stops, say, with

(58) ZJVR(tH— 5 R()=
v=8+1
We have I<a<B<y<... <8<

Since the coefficients of the R, belong to K, it is possible to choose the
relations (56), (57), ..., (568) so that their coefficients f,, g,, ..., j, belong
to K.
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In view of (53), the relations (64), (56), (57), ..., (58) are equivalent to

a B
S b.fit Z bux1=0,
v==]1

v=a+l

B
T bugt B bux1=0,

ve=1l v=8+1

3 n
2b,,+ 2 b,X1=0,
v=1

v=8+1
where pn takes all values 1, 2, ..., m’. This means that the rows of the
matrix
I, 1, ..., L, 0, ... .c. oo i il e e O
Jo fo o f L, o, 1,0, o0 L 0
G1s Gas ~oe wev een ey Ge L, o 1, 0, L L 0
Jis Jas ven vee e e e e e e e 1, 1

are solutions of (51). The elements of this matrix belong to K. Therefore,
in view of the connection between (51) and (49), its rows are, at the
same time, solutions of (49), and this amounts to saying that (49) satisfies
I'(K). The subsets 8,, S,, ..., S; of p. 141 are

{1,2,...,a}, {a+1,a+2,...,8}, {B+1 ..,9} ..., {841, ..., n}
Thus Theorem VI is proved.

3. Let R be a ring of numbers, and let R— {0} denote the set of all
numbers of R except zero. The main result of this paragraph is the
following theorem.

TasoreM VII. A system of equations
n
(59) Za,z,=0 (I<p<m)
v=1

s regular in R—{0} +f, and only if, (69) satisfies I'(R)t. In particular,

t The condition T(R) was defined on p. 141.
SER. 2. voL. 48. No. 2328, L
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the equation

a0+ o+ +a, x, =0,
where a, < R— {0}, is regular in R— {0} if, and only if, some of the numbers
a,, @y, ..., a, have the sum zero.

Proof. Let K be the field generated by the numbers of R. To begin
with the easier half of the theorem, let us assume that (59) is regular in
R—{0}. Then, a fortiori, (59) is regular in K—{0}. Therefore, by
Theorem VI, (59) satisfies I'(K). Let £M be the I solutions of (59) men-
tioned in the definition of I'(K). Then

£ = 7D,

where MW<R; INKRE—{0} (I<v<n; 1AL,
Let N= O (™ f=Ngw,
1<v<n, 1Al Y Y

Then the numbers &M belong to R, and it is obvious that (59) satisfies
I'(R).

Now let us assume that (59) satisfies I'(R). We have to show that
(59) is regular in R— {0}. We exclude the trivial case where all a,,, vanish.
In accordance with the definition of I'(R) there are numbers ¢»
(I1<v<n; 1<A<KI) of R which have the properties stated on p. 141.
l.et B be the system of these numbers ¢, and denote by R’, K’ the ring
and the field respectively generated by the numbers of B. We shall show
that (59) is regular in K'—{0}. If this fact is established, then, by
Lemma 1 on p. 129, regularity in R’— {0} will follow, and since R’ is
contained in R, regularity in R— {0}.

Suppose, first of all, that the number ! occurring in the definition of
I'(R) has the value 1. Then

% @, X1=0 (1<p<m),
v=1

and therefore (59) is regular, in fact, absolutely regular, in K'—{0}. Now
suppose that I=10'> 1. Woc may assume that it has already been proved
that all systems (59) satisfying I'(R) with a value I =1'—1 are regular in
the corresponding K’'—{0}. We may suppose without loss of generality
that

Sp={n'41,n'+2, ..., n},

where 1 <7’ <n. Then, clearly, the system

.
(60) % 4,%,=0 (1<p<m)

v=1
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satisfies I'(R) with !=10'—1. For we can use the same numbers & as
for (59) but restrict v, A to the ranges 1 <v <n/, 1 <A<V'—1. Therefore
(60) is regular in K'—{0}t. Now let £ be the least positive integer, if
there is one, such that (59) is not k-regular in K'—{0}. We have to
deduce a contradiction.

According to I'(R) we have

(61) E‘. a,, &+ i @, =0 (1<um),

v=1 y=n'+1
where § < R'—{0}. By Theorem I (p. 128) there are finite subsets M,
M’ of K'—{0} such that (59) is (k—1)-regular in M and (60) is k-regular
in M’'t. Since (59) is not k-regular in K’'—{0}, there is a distribution A
of K'—{0} into k classes which has the property that (59) has no solution
z, with

I

3, =%,=...=x, (modA).

n

Let M be the set consisting of all numbers
Myt Av<n'; t<M; y<M')
and of the number 1. Define A’(z) in K’ as follows:

(62) A@)= I Alzy) (z<K'—{0}),
y<M

(63) 0z (modd’) (z<K'—{0}).

By Theorem III there exists a number a of K’ and a positive integer d

for which
at+dz=a (modA’) (z<M").

In view of a remark made above (p. 135) we may postulate that the
numbers ¢ and a-+dz (z < M) differ from zero or else are all equal to
zero. The second possibility is ruled out, since we included the number 1
in M''. Therefore, by (62),

(64) (a+dz)y=ay (modA) (<M"; y<M).
Put
(65) A'(y)=Aay) (y< M)

t Strictly speaking, K’ should be replaced by the field K’ belonging to (60). But
K" is contained in K’, and therefore regularity in K’—{0} holds a fortiors.
{ In the case k=1 statements about k—1 have to be omitted.

L2
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By definition of M’ there are numbers y, of M’ such that
(66) N=Y=...=Y, (mod A"),

(67) % .9,=0 (1<p<m);
v=1
(64), (66) and (65) imply that

(68) (a+de)y,=ay,=ay, (modd) (1<v&n'; z<M").
Also, from (67) and (61),

(69) £ ooy 400+ E 0, 80d=0 (1<p<m; 1<)
Now oy, +d¢0t = (a+d&V 1y )y,
where Ny <M” (1<v<n'; t<M).
Thercfore, by (68), '
(70) ay,+dét=ay, (mod A) (I<vn'; t<M).
We now show that this implies that
(71) df¥tz£ay, (modA) (t<M).

If (71) is not true, then, for some number ¢, of M,
(72) A% =ay, (mod A).

But then (69), (70) (with ¢=1,) and (72) show that, contrary to our
initial assumption about A, the system (59) has a solution whose
numbers belong to the same class of A. Therefore (71) is established.

If k=1, then (71) is plainly impossible; for then all numbers belong
to the same class of A, When £ > 1 put

A" (z) = AdEWx) (x < M).
Then, by (71), : A" <k—1.

Hence, from the definition of M, there are numbers z, of M satisfying
(59) and

r=x,=..=z, (modA').
"Then 2 a,d2,=0 (1pm),
v=l

AWz, =di0z, (mod A) (1<v<n)

and this, again, contradicts the definition of A. This completes the proof
of Theorem VII.
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4. We note a corollary of Theorem VII.

f
A system Za,r,=0 (1p<m)
ve==]
18 regular in the set of all complex r.umbers other than 0 if, and only if, it is
regularin Ry— {0}, where R, is the ring generated by all coefficients a,,.
(We have to exclude the trivial case where all a,, = 0.)

It is, however, not true that, corresponding to every system of equations
which is regular in some set, there exists a smallest ring R* such that it
is regular in R*—{0}. For consider the equation (m=1; n=4)

(73) oz, +Pxys—(a+B) x3—afr, = 0,
where a=14/2; B=4/3. The only possible sets §;, S,, ..., consistent
with the definition of I' (p. 141) are
8;=1{1,2,3}; 8,= {4}
The existence of the solutions
(1,1,1,0); (0,a,0,1); (B,0,0,1)

of (73) shows that (73) is regular in R,— {0} as well as in R,— {0}, where
R,, Rg are the rings generated by a, 1 and B, 1 respectively. The common
numbers of R, and R, form the ring R, of all rational integers. But (73)
is not regular in R;—{0}. For this would imply that I'(Ry) holds, <.e.
that there are rational integers z,, x,, =3, x,, with 2, #% 0, such that

a2, + P, — (a+B) 23 —afz, = 0,
(%, —%3) V' 2+ (2, —23) /3 =2, /6,
2(%,—23) (T —%3)V/ 6 = 62,2 —2(2, —2,)2— 3 (v, —2y)?,

which is easily seen to be impossible,

5. Let R be a ring of numbers (not consisting of zero only), and K
be the field generated by R. We want to bring out more clearly the
significance of the condition I'(R). From ccnsiderations at the beginning
of the proof of Theorem VII, it is obvious that I'(R) and I'(K) are
equivalent. We can easily write down a general class of systems of linear
equations which satisfy I'(X), viz.

n—m

(74) Zl Co = Zp =0 (1 < <m).
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Here 1 <m < n, and the c,, are arbitrary numbers of K subject to the
two conditions:

(i) no row

(75) Cury © (A<p<m)

wly Cugs <oy Cu,pem

contains zeros only;
(i) the first non-zero number of every row (75) has the value 1.

Let us call systems (74) of this kind T-systems.
In order to prove that (74) satisfies I'(K), we may assume (74) to be
of the form

[ n—m

x01+ p> Corvy— &g = 0 (1 < ® g a‘l):
rvagy+1
nim
— =0 <
(76) [t ST T =0 (S pS )
n—m
Tyt I BTy =0 (o, <p<Sao,),
L ve=gy+1
where 122; 1<8<8<... <8 1 KN—m;

1€y << ... <o =m.
Then we put
S, = {8, n—m+1, n—m+2, ..., n—m+a}.

8y = {85, n—m~+a;+1, n—m—+a;+2, ..., n—m-+tay},

Sp = {81, n—mAa_s+1, n—m+a_,+2, ..., n—m~a_,},

while the last set S, consists of all indices out of 1, 2, ..., » which do
not occur in any of the sets §,, S,, ..., 8_;. A moment’s consideration
shows that we can choose numbers ¢ which are consistent with the
definition of I'(X).

In a certain sense (76) is the most general system which satisfies I'(K).
For we have the following result.

Corresponding to every system

n
(77) Za,z,=0 (lgpgm)
vl
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which satisfies T'(K), there is a T-system (74) such that every solution of (74)
18 ot the same time a solution of (77).

In other words, by adding suitable equations to those of (77), which
is supposed to satisfy I'(K), we can obtain a T-system (or a system
equivalent to a 7T-system).

In proving this statement we may assume, without loss of generality,
that the sets S, corresponding to (77) are

S,={1,2, ..., B}
SZ= {ﬁ1+1’ Bl+2’ sy Bz}:
St= {ﬁl—l‘*‘l’ Bl-1+2: crey Bl}’

where 1Z21; 1B <B<...<B=n.

Consequently there is a matrix

L, 1, ., L 0, ... ... e e, O
oy [ B E B L L0 0
B, D, e e e e e D1

every row of which is a solution of (77). The ¢M belong to K. In (78)
the columns with indices B, B, ..., B; are linearly independent, while
every one of the remaining columns is a linear combination of these I
columns. Moreover, these linear relations are expressible in the form

" !
xu‘—‘xﬂr*-fgcmxm (I<p<h)
!
(79) J x“ == xﬂz+ }\Eo (}A)‘ .’Cﬁk (ﬁl < 22 < 32))
L2, = 2, Br < pn<By),

where ¢,, < K. (79) is a complete set of linearly independent relations
between the columns of (78). Hence every vector (z,, x,, ..., ,) which
satisfies (79) is a linear combination of the rows of (78) and is therefore
a solution of (77). But (79) is a T-system, as is seen by ordering the
variables as follows:

g,y Ty oo Lo T1y Tps +oos Tap, Tgypns Tpyaas oo Loyts Tpypts oo Ty
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This proves our statement about the connection between (77) and
T-systems.

Questions about the regularity of a system of homogeneous linear
equations in the set of all positive rational integers or in the set of all
complex numbers re¥, where » >0 and ¢ belongs to a given interval
¢y < ¢ < ¢,. and many more, are settled by the following theorem.

THEOREM VIII. Let R be a ring of complex numbers, and let A be a
subset of R--{0} which has the following property. There is a finite number
of elements d,, d,. .... d; of R— {0} such that every x of R— {0} 1s expressible as

(80) z = ad,,

where a < A; 1 <x <k. Then regularity of
n
(81) La,z,=0 (1u<m)
v=]

in A is equivalent to regularity of (81) in R— {0}.

For instance, in the case of all numbers re'®, where » > 0; ¢, < ¢ < ¢,,
we choose an integer k > 2m/(é;—¢,) and put
d, = ek (1 <n<k).
Of course, the representation (80) need not be unique.
Proof. Suppose that (81) is regular in R—{0}. We have to show
that (81) is regular even in A. Let A(z) be defined in A. Given any «

of R—{0}, we define = A(x) as being the least index « for which zd;?
belongs to A: A exists. Put

A (2) = A®(A(z)) Aadzl) (& < R—{0}).
Then there are numbers z, satisfying (81) and
(82) T =z,=..=z, (modA’).

{82) implies that

A@y)=A(xg) = ... =A(Z,) = Ay,
say, and ndil=ndil=..=z,d7 (mod A);
while (81) yields Za,z,d =0 (1<p<m)

This proves the theorem,
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3. Non-homogeneous linear equations.

1. Let 4, be the field of all algebraic numbers and C, that of all
complex numbers.

TueorEM IX. A4 system

7
(83) a,2,=0b, 1K<pLm)

r=1
18 regular in A, if, and only if, it vs absolutely regular in A,.

TaeorEM X. A system (83) with algebraic coefficients a,, (and with the
b, arbitrary complex numbers) is regular in C, if, and only if, it is absolutely
regular in Cyt).

In proving the last two theorems it is sufficient to show that regularity
implies absolute regularity in the sets in question.

Theorem IX follows from Theorem X. For let us assume that (83)
is regular in 4, Then there are algebraic numbers x® satisfying

Za, @0 =05, (I<um).

This simply means that (83) is l-regular in A,. Therefore (83) is

equivalent to
2 a‘nv(xv_x(yo)) = (1 \S “ < 'Nl').

If we use the argument which leads from (49) to (51) we find a system

n
(84) S aLy, =0 (1<p<w)
1

=
with algebraic coefficients a, such that (84) and
n
X a,y=0 (1<p<nm)
y=]
have exactly the same solutions in A,. 'Theretore

(85) Sa,@—e0) =0 (L<u<m)

and (83) have the same solutions in 4, In particular, (85) is regular
in 4y and a fortiort regular in C,. Now apply Theorem X to (85). It
follows that (85) is absolutely regular in C,. Since a,,, 2{” are numbers of
A, we conclude further that (85) is absolutely regular even in 4, and
finally that (83) is absolutely regular in 4,.

T Absolute regularity was definod on p. 127,
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It remains to prove Theorem X. We note that absolute regularity in
a set M of a single equation
0,2 Fay 4. a2, =0
means that either
&, +ay+...4-a, = 0
or s=a+...4a,#0; bls<M.

Lemma 4. Suppose that (83) has the following property. For every
choice of numbers t, belonging to the field K generated be the a,,,, the equation

m n m
Zt Za,2=2tb,

u=1 =1 u=1
18 absolutely regular in M. Then (83) s absolutely regular in M.

To prove Lemma 4, put s, =Za,,. We may assume that

6,#0 (ISp<m), s,=0 (m' <p<m),
where 0 <m’ <m. By hypothesis, any numbers ¢, of K for which
Z8,t,=0
"
satisfy Y;Qb“ t,=0.
Therefore, by Lemma 3 on p. 142 (r=s=1: see the remark at the end
of the proof of Lemma 3),
x' B8, b, =Xb,1,,
u u
identically in the ¢,. Here z’ is some constant. Hence
?a‘mw’ =b, (Isp<sm).
If m’ > 0 then ' =b,fs; <M.
For the equation 2;20,1,7:, =06,
is absolutely regular in M. If m' =0, i.e. sf
=0 (Ip<m),
then b,=0 (I<pm);

and therefore Za,z’'=b, (1<<p<m),

where 2’ is any arbitrary number of M. Thus the lemma is proved.
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In view of Lemma 4, it is sufficient to consider the case m =1 of
Theorem X. Let us therefore assume that a,, a,, ..., a, belong to 4,
that b is an arbitrary number and that

(86) ay+ay+...+a,=0; bz0.
We have to show that
(87) a2y a2, =0

is not regular in C;. We may assume that no a, vanishes.

By means of transfinite induction we can find a ‘““ basis” £;, &,, ..., &, ...
of all complex numbers with respect to the field K generated by a,, a,, ..., @,.
This means that every complex number z is uniquely representable in
the form

(88) z=2x,§,

where a runs through certain ordinal numbers and z,” belongs to K. For
every z only a finite number of ‘coordinates” x,” differ from zero. Let

b=2b.¢.

be the representation (88) in the case z = 0. Since b 5 0, at least one of
the numbers b,’ differs from zero. There is no loss of generality in assuming
that b, 0. The numbers a,, a,, ..., a,, b," arve algebraic. If we multiply
(87) by a suitable number of K, we can obtain a case where these n+1
numbers are algebraic integers of K. We may therefore assume that
(87) is such that these numbers are algebraic integers. Let w;, w,, ..., w,
be a minimal basis of K, so that every algebraic integer of K has a unique
representation in the form

(89) rrwytrpwet. . Ty Wy,

where the 7, are rational integers. Then every number of K has a uniyue
representation (89) with rational coefficients r,.

Let p be a prime ideal in K which is not a divisor ot 4,". Define A(z),
for all algebraic integers of K, by means of the rule that

z=y (mod A)
if, and only if, z=y (mod p).
Then no class of A contains a solution of

(90) a, % +...+a,z, =b,.
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For (90) and

(91) 2, =2,=..=%, (modA)

n
would lead to the contradiction
b)) =ZXa,2,=2a,(x,—2,)=0 (modyp).

Define, for every 2 of K, a function f(z) by means of

4
f(x) = 2“ I"')\l,
A=1

where
(92) x =A§}1 r\w, (r, rational).
Then, for any 2, satisfying (91),
(93) JEa,,~b) > 1.
Now choose an integer N satisfying
(94) N> I flaw);
1<v<n, 1<A<p

and put, for every x of K satisfying (92),
(93) N'(@) = A(S[n]w) 1T A® (]t
A A=1

We now show that no class of A’ contains a solution of (90). Suppose
that

(96) Ty =Ty=..=2, (modA’),
(97) 2+ Fa,x, = b,

z,=Z7r, w, (r, rational).
A

(96) and (95) imply that
(98) Lrp]aoa=2Zlrplwy (mod 8) (1 <v <),
A A

[Nrp]=[Nrp] (mod N) (1<v<n; 1<AL<D),

7 Wral=lral = 7 Wral—[ 7 V]

1 1 1
=+ [Nru]—| w [Nru] | =« [Nra]—ra=d,
N N N

1 a'™ was defined on p. 124.
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say, for 1<v<n, 1AL,

6,5 fralos=2a,% 5 Vralo—Za,Sd e,
v A v A v A

=Za,5 g Wraloy [oy (6]

= Zavz?‘v;\ CU)‘—Z(I:”ET:* Wy,
v A v A

where 7,, is rational, 0 <r/, <1/N. Hence, from (98) and (93),

e

<f(2 a,3[r,] wk—bl’) =f(2 AT\ w0\ —2Z @, LT w,\—-bl')
v A v A v A

=f(——2a,2'r:xw>.> < S || fla,ws) <% S fla, w).
v A v A v, A

The last inequality contradicts (94). Therefore, as stated above, no
class of A’ contains a solution of (90).
We now proceed to define a distribution of Cj. Put, for every
complex z,
g(x) = xl,s
where z,’ is the first ““coordinate ”’ in the representation (88). g(x) has
the following properties :

9@ <K, g)=b/#0. g3 o) =Zag(r)
for all complex z,.
Put A (z) = A’(g(a:)) (x < Cy).

Suppose that, for some z, of C,

r=r,=..=z, (modA”).
Then T og@)=g(z;) (modA) (1<v<n).
Hence, by the definition of A’,
Za,9(,) #g0),
t.e., 9@ a,%,) #g(b);
and therefore %‘.a,, x, % b,

This completes the proofs of Theorems IX and X.



158 R. Rapo [Dec. 15,

2. The foregoing proof made use of transfinite induction in order to
define a certain distribution of all complex numbers. In the case of
rational coefficients a,, (the b, may be arbitrary complex numbers) it is
possible to eliminate transfinite induction. In this section we give a
proof of the assertion of Theorem X in the special case of rational
coefficients a,, or even in the slightly more general case where

a,, = o,,+a,, (a,, a., rational).
In view of Lemma 4 it is sufficient to prove the following proposition.
Let a,=a,+ia (1<v<n),
where a,', @, are rational integers. Suppose that
a+...+a, =0,
while b is @ complex number different from zero. Then
(99) a2, +...+a,x,=b
18 not regular in C,.
Define. for any
x =24z (2, 2" real),
] = (@] +ilz"].
Choose positive integers m', m'’ such that
m > /23 0 +b]; > V2Bl o)
Put, for every such z,
A*(z) = A ([m"” 2]) AW ™ ([m' "']).

Then onr proof is complete when we can show that no class of A* contains
a solution of (99). Suppose that

Ty =%=...=2, (mod A¥),
Then (using an obvious notation)

[m"z)=[m"2] (modm' m"),
(100) [m"z]—[m' 2 ]=km'm" (1<v<n),

where k, =k, 41k, (k,', k.’ rational integers).
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(100) implies that

1 1
ol [m”x,]—m [m' 2] =k,m,

[ e[ e o] = o,

(2,]—[z] =k, m'.

Also, m' x,—m' %, =k,m m'-|-r,
where |7 | <42

Case (1): Let Za,lz,] #0.
Then

S0, ]| = Za,(lz]—[#:)| = [Sa km'| >,
>|Za,[z,]| —|Za,@@,—[2]))] =m'—Z|a,|4/2>]|b]
Case (2): Let Za,[z,]=0.
Then
|Za,x,|=|Za{(@—z)—([x.]—[z.])}]

[Za,z,

- (k,m'm"+r, S QT 1 o
== L(ly(—L—W—T—v~kv7)l,> =% ’)’;&”v <n—z;‘,‘ L'(b |'\/2<Ib|
Hence in either case
@ %+ 0Ty f @, T, Fb.

4. w-regularity.
A systems of conditions
(101) S(zy, ..., 2,) =0

was called w-regular in a set M if, given any distribution A of M into
denumerably many classes, there is always a solution of (101) satisfying

i

r=r,=..=x, (modA).

Of the three propositions:
(i) (101)is k-regular in Cyforevery k=1, 2, 3, ...;
(i) (101) is w-regular in C,;

(iii) (101) is absolutely regular in Cy;



160 NoTE ON COMBINATORIAL ANALYSIS.

(i) is weaker than (ii), and (ii) is weaker than (iii). For the equation

satisfies (i) but not (ii) (as follows from Theorem XI below), and the
condition :

Xy F Ty
satisfies (i) but not (iii). We prove that in the case of linear equations
or, more generally, of conditions whose solutions form a closed set, (ii)
and (iii) are equivalent.

TaeorEM XI. A system of equations

(I<p<m)

"

n
(102) Za,r,=b
=1

v

18 w-regular in a set M of complex numbers if, and only +f, (102) ¢s absolutely
reqular in M.

Proof. Supposc that (102) is not absolutely regular in M. We have
to show that (102) is not w-regular in M. We call a circle

(103) |z— (¢’ +ic”) | <7

a rational circle if ¢’, ¢/, r are rational numbers. Every point z of M is
contained in a rational circle which does not contain any solution of (102).
For, if this is not true for some z=1z, of M, then every rational circle
(103) which contains 2, also contains a solution z, of (102), and making
r->0 shows that

Za‘yz():b,‘ (1<F‘<m))
1.e. that (102) is absolutely regular in A/. The rational circles are
enumerable. Let R,, R, ... be a sequence containing every rational
circle. Define, for every z of M, f(z) as being the least A such that z lies

in R, but, at the same time, R, contains no solution of (102). Then,
obviously no class of

A% (z) = A(OJ((f(z)) <Mt

contains a solution of (102). "Therefore (102) is not w-regular in M.

The University,
Sheffield.

1 A% was defined on p. 124.



