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On Refinements of Van der Waerden’s
Theorem

Sohail Farhangi

ABSTRACT

The purpose of this thesis is to examine the classical Theorem of Van der Waerden about
the partition regularity of Arithmetic Progressions, and the different directions in which it
can be generalized. We will provide a series of conjectures that indicate how to generalize
the theory of the Large sets of Brown, Graham, and Landman in [1], to other variants of
Van der Waerden’s Theorem. In chapter 2, we will define Large sets rigorously, and provide
a summary of the known results and conjectures about them. We will also show how to
generalize the notion of a Large set in order to strengthen the Multidimensional Van der
Waerden Theorem and the Canonical Van der Waerden Theorem in chapters 3 and 7 respec-
tively. In chapter 4, we introduce yet another direction in which to yield a multidimensional
generalization of the Van der Waerden Theorem, and the corresponding notion of a Large
set. In chapter 5, we will demonstrate how to study Large sets (in all settings) from the
perspective of finitistic combinatorics, and how this new perspective allows us to construct
a broad class of Large sets. In chapter 6, we will discuss a closure operation motivated by
the desire to impose algebraic structure on an arbitrary Large set that may apriori only have
combinatorial structure. Lastly, we will introduce some of the known connections between
Ramsey Theory and Large sets to Topological Dynamics and Recurrence in chapter 8, and
propose a few more conjectures to further our understanding of this connection.
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GENERAL AUDIENCE ABSTRACT

Ramsey Theory is a subfield of mathematics in which randomness is studied from the per-
spective of partition regularity. We say that a structure A is partition regular within some
space, if for any partition of the space into to some finite number of pieces, one of the pieces
contains a copy of A. The simplest example of this, is letting A be the collection of 2 points
sets, then no matter how you partition the integers into a finite number of pieces, at least
one of the pieces must contain some 2 point set. If we replace 2 in the previous example
with some fixed number n, then we obtain what is commonly referred to as the pigeon hole
principle, which is one of the earliest results of combinatorics. To be more precise, the pigeon
hole principle tells us that given any number n, and any finite partition of the positive inte-
gers, at least one of the pieces contains some n point set. However, the pigeon hole principle
does not tell us anything about the n point set other than its size. Ramsey Theory seeks
to generalize the pigeon hole principle by imposing further restrictions, by asking questions
such as if we can always find an n point set consisting of consecutive integers, even integers,
perfect squares, and so on. One of the resulting generalizations is known as Van der Waer-
den’s Theorem, which deals with structures known as arithmetic progressions. An arithmetic
progression is a set of integers in which the difference between consecutive elements is the
same, such as {3, 7, 11, 15, 19, 23, 27, 31}, or {a + jd}kj=0 is its most general form. Van der
Waerden’s Theorem states that we can generalize the pigeon hole principle by assuming that
the n point sets we are finding are also arithmetic progressions. To be more precise, Van der
Waerden’s Theorem states that for any partition of the positive integers into a finite number
of pieces, and any positive integer n, at least one of the pieces of the partition contains an
arithmetic progression of n numbers. In this thesis, we will be examining how to further
refine Van der Waerden’s Theorem and its generalizations.
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Chapter 1

Introduction

Ramsey Theory concerns itself with questions about what substructures can be found in a
finite partition of a large initial structure. To see what this means, let us consider some of
the initial theorems that spurred the creation of the field.

Ramsey’s Theorem: For any k, r ∈ Z+, there exists an integer R(k, r), such that for any
partition of a complete graph on R(k, r) vertices into r sets, at least 1 of the partition classes
contains a complete graph on k vertices.

Van der Waerden’s Theorem: For any k, r ∈ Z+, there exists an integer w(k, r), such
that for any partition of [1, w(k, r)] into r sets, at least 1 of the partition classes contains a
k-term arithmetic progression.

Schur’s Theorem: For any r ∈ Z+, there exists an integer S(r), such that for any partition
of [1, S(r)] into r sets, at least 1 of the partition classes contains a solution to the equation
x+ y = z.

We see that in Ramsey’s Theorem, the large initial structure is a complete graph, and
the substructure that can always be found is also a complete graph. For Van der Waerden’s
Theorem, the large initial structure is an interval, and the substructure that can always be
found is an arithmetic progression. For Schur’s Theorem, the large initial structure is again
an interval, and the substructure that can always be found is a solution to the equation
x + y = z. These theorems are interesting, because they show that randomness is difficult
to achieve, since structure can always be found regardless of how you partition the initial
set. However, it is known that w(3, 2) = 9, and that w(3, 3) = 27, so when it is claimed that
structure can be found in any partition of [1, 9] into 2 sets, we see that we can avoid this
structure if we instead partition [1, 9] into 3 sets, and this seems to contradict the previous
statement. To circumvent this problem, and more clearly realize the abundance of structure
that can always be found, consider the following restatements of the above theorems as
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theorems on infinite sets.

Ramsey’s Theorem: For any k, r ∈ Z+, and any partition of a complete graph whose
vertices are indexed by Z+ into r sets, at least 1 of the partition classes contains a complete
graph on k vertices.

Van der Waerden’s Theorem: For any k, r ∈ Z+, and any partition of Z+ into r sets,
at least 1 of the partition classes contains a k-term arithmetic progression. In particular, at
least 1 of the partition classes contains arbitrarily long arithmetic progressions.

Schur’s Theorem: For any r ∈ Z+, and any partition of Z+ into r sets, at least 1 of the
partition classes contains a solution to the equation x+ y = z.

We can see that these infinite versions of the theorems are true as a result of the finite
versions, simply because we can always restrict our attention to a large enough initial finite
portion of the infinite space. We will later examine the far less obvious task of how to obtain
the finite versions of Ramsey type theorems from the infinite versions. The main benefit
of restating these theorems on infinite spaces, is that if we increase the values of k and r,
we do not need to increase the size of the ambient space in order to still gaurantee that
our structures can be found. This allows us to introduce the following definitions that truly
capture the essence of the structures examined in Ramsey Theory.

Definition 1.1: For a given set S, and some family F ⊆ P(S), we say that F is weakly
partition regular, if for any finite partition of S as S = tnj=1Sj, there exist some f ∈ F and
some 1 ≤ j0 ≤ n, such that f ⊆ Sj0 .

Definition 1.2: For a given set S, and some family F ⊆ P(S), we say that F is strongly
partition regular, if for any f ∈ F , and any finite partition of f as f = tnj=1fj, there exist
f ′ ∈ F , and 1 ≤ j0 ≤ n, such that f ′ ⊆ fj0

Now let us see how these definitions apply to the previous theorems. For Ramsey’s
Theorem, let S be a complete graph on a set of vertices that are indexed by Z+, and let
F be the family consisting of all subgraphs of S that contain arbitrarily large complete
subgraphs. The finite version of Ramsey’s Theory tells us that F is strongly partition
regular. For Van der Waerden’s Theorem, we may take S = Z+, and let F be the family
consisting of all subsets of S that contain arbitrarily long arithmetic progressions. The
infinite version of Van der Waerden’s Theorem tells us that F is weakly partition regular,
but we can actually say more. We note that for a given n- term arithmetic progression
given by {a + jd}nj=1, we may biject this arithmetic progression to the interval [1, n] using
the map f(x) = x−a

d
. Given some fixed number of partition classes r, and some designated

length k for an arithmetic progression, we see that any partition of an arithmetic progression
{a+ jd}w(k,r)j=1 into r sets, will induce a corresponding partition of [1, w(k, r)] into r sets given
by {wj}rj=1, through the bijection f . By Van der Waerden’s Theorem, some partition class
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wj0 contains a k-term arithmetic progression, so f−1(wj0) also contains a k-term arithmetic
progression, which shows us that the family F is actually strongly partition regular. Lastly,
for Schur’s Theorem, we may again take S = Z+, and let F be the family consisting of all
subsets of S that contain a solution to the equation x+y = z. Schur’s Theorem tells us that
F is weakly partition regular, but we see that F is not strongly partition regular, as we may
simply consider {1, 2} ∈ F .

The main question that we will be using to motivate our investigations is “What re-
strictions can be placed on F so that it is still weakly (strongly) partition regular?”, or
equivalently, ”What subsets of F are still weakly (strongly) partition regular?”. We will
focus our attention on trying to generalize Van der Waerden’s Theorems.

When talking about a partition of a set S as S = tnj=1Sj, it is often times useful to use its
corresponding partition function f : S → [1, n] given by f(s) = {j | s ∈ Sj} ∀s ∈ S. Instead
of saying “Consider the partition of S given by S = {Sj}nj=1”, we may also say “Consider
the partition of S given by f”, or “Let f be a partition of S”, where f is understood to be
the partition function of the partition we are discussing. Instead of saying that a structure
is contained in a single partition class of f when viewing f as a partition, we may view f
as a function and say that a structure is constant under f . In the literature, many sources
talk about colorings instead of partitions, where each partition class is assigned a color, and
instead of seeking structure contained in a single partition class, we seek monochromatic
structure. In this language we may restate Van der Waerden’s Theorem as follows.

Van der Waerden’s Theorem: For any finite coloring of Z+, there must exist arbitrarily
long monochromatic arithmetic progressions.

We will use the notation of partition functions instead of colorings.
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Chapter 2

Van der Waerden’s Theorem

Van der Waerden’s Theorem on arithmetic progressions states that for any finite partition
of Z+, at least one of the partition classes contains arbitrarily long arithmetic progressions.
The significance of arithmetic progressions other than their aesthetic appeal, is that an
arithmetic progression is simply a scaling and a shift of the most basic structure in Z+, the
interval [1, n]. In particular, we see that any finite set of points in Z+ is contained in some
interval [1, n], so we may give an equivalent restatement of Van der Waerden’s Theorem as
follows. Let F be a finite set of points in Z+, then for any partition of Z+, at least one of
the partition classes contains a scaled and shifted copy of F . This restatement of Van der
Waerden’s Theorem more clearly reveals its significance, because it shows that no matter
how randomly you may think that you have partitioned the integers, you can still find scaled
and shifted copies of any finite structure you choose in one of the partition classes, which
is certainly not a random phenomenon. One way to generalize Van der Waerden’s Theorem
that we will be investigating, is what restrictions can be placed on the scale factors so that
the Theorem still holds.

Definition 2.1: For any S ⊆ Z+, a k-term S-A.P. is a k-term arithmetic progression
{a+ id}k−1i=0 , such that d ∈ S.

Definition 2.2: For S ⊆ Z+, we say that S is Large if for any r, k ∈ Z+, and any partition
of Z+ into r sets, at least 1 partition class contains a k-term S-A.P..

With this new definition, we can again restate Van der Waerden’s Theorem as follows.
Z+ is a Large set. We can see that for any n ∈ Z+, the set of positive integers that are
divisible by n, nZ+, is a Large set. To see this, we note that for any k, r ∈ Z+, and any
partition of Z+ into r-sets, we can find a (nk−n+1)-term arithmetic progressions {a+jd}nk−nj=0

in some partition class as a result of Van der Waerden’s Theorem, so the k-term arithmetic
progression given by {a+jnd}k−1j=0 is a k-term nZ+-A.P. that is contained in a single partition
class. To obtain some more interesting examples of Large sets, we first require a few more
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definitions.

Definition 2.3: For any S ⊆ Z+, and any sequence X = {xs}s∈S, let FS(X) denote
the set of all finite sums of distinctly indexed elements of X. To be more precise, define

FS(X) = {
∑
a∈A

xa}A∈Pf (S). If S = Z+, and X is given by X = {xj}∞j=1, we call FS(X) the

IP set generated by X, or just an IP set to be more concise. FS is an abbreviation for
“Finite Sums”.

Theorem 2.4: Let {An}∞n=1 be a sequence of finite subsets of Z+, such that sup
n∈Z+

|An| =∞.

Then the set A := ∪∞n=1FS(An) is a Large set.

Proof: See [1].

Corollary 2.5: If S contains an IP set, then S is Large.

Proof: Let the IP set contained in S be generated by {xj}∞j=1. Apply Theorem 2.4 to the
family {An}∞n=1 given by An = {xj}nj=1. Alternative proofs are provided in [2] and [3].

In [1], the 2 families of sets below are shown to be Large, by showing that they contain
IP sets.

Example 1: For any α ∈ R+, the set {bnαc | n ∈ Z+} is Large.

Example 2: For any α ∈ R+, and any ε > 0, the set {n ∈ Z+ | {nα} ∈ [0, ε)} is Large.

To get yet another interesting family of Large sets, we must first consider another gen-
eralization of Van der Waerden’s Theorem that was first proven by Bergelson and Leibman
in [4] as a corollary of a stronger result that was obtained through the use of ergodic theory.
An alternative elementary proof is provided by Walters in [5].

Definition 2.6: We say that p(x) ∈ Q[xj]
n
j=1 is an integral polynomial if p(Zn) ⊆ Z.

(Old) Polynomial Van der Waerden Theorem: Let {pj(x)}nj=1 be a family of integral
polynomials in Q[x] satisfying pj(0) = 0 for all 1 ≤ j ≤ n. For any finite partition of Z+,
there exist a, d ∈ Z+ such that the set {a+ pj(d)}nj=1 is contained in a single partition class.

We see that we can recover Van der Waerden’s Theorem from the (Old) Polynomial Van
der Waerden Theorem by picking some length k for our arithmetic progression, and choosing
the family of polynomials {pj(x)}kj=1 to be given by pj(x) = jx for 1 ≤ j ≤ k. With the
aid of Lesigne, Bergelson and Leibman have further refined the (Old) Polynomial Van der
Waerden Theorem in [6] to the (New) Polynomial Van der Waerden Theorem, once again as
a corollary of a stronger theorem proven with advanced techniques, however, no elementary
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proofs are currently known.

Definition 2.7: Let P = {pj(x)}nj=1 be a family of polynomials in Q[xi]
m
i=1. We say that

P is jointly intersective if for any k ∈ Z+, there exists k′ ∈ Zm, such that k | pj(k′) for all
1 ≤ j ≤ n.

(New) Polynomial Van der Waerden Theorem: Let P = {pj(x)}nj=1 be a family of
jointly intersective integral polynomials in Q[xi]

m
i=1. For any finite partition of Z, there exist

d ∈ Zm and a ∈ Z+ such that the set {a+ pj(d)}nj=1 is contained in a single partition class.

Corollary 2.8: If p(x) ∈ Q[x] is an integral polynomial, and for every k ∈ Z+, there exists
k′ ∈ Z such that k | p(k′), then p(Z) is a Large set.

Proof: Given a finite partition of Z+, apply the (New) Polynomial Van der Waerden Theorem
with m = 1 to the family of polynomials {jp(x)}nj=1 to obtain an n-term p(Z)-A.P..

In [7], Bergelson, Furstenburg, and McCutcheon combined the facts that a polynomial
image of the integers is Large, and IP sets are Large, to show that the polynomial image of
an IP set is Large.

IP-Polynomial Van der Waerden Theorem: Let {pj(x)}nj=1 be a family of integral
polynomials in Q[x] satisfying pj(0) = 0 for all 1 ≤ j ≤ n. If S is any IP set, then for any
finite partition of Z+, there exist a ∈ Z+, and d ∈ S, such that the set {a + pj(d)}nj=1 is
contained in a single partition class.

Corollary 2.9: If S is any IP set, and p(x) ∈ Q(x) satisfies p(Z) ⊆ Z and p(0) = 0, then
p(S) is a Large set.

Proof: Given a finite partition of Z+, apply the IP-Polynomial Van der Waerden Theorem
to the set of polynomials {jp(x)}nj=1 in order to find a monochromatic n-term p(S)-A.P..

Among all of the aforementioned examples of Large sets, the Polynomial IP Van der
Waerden Theorem arguably yields the most general class, so there seems to be hope to
try and classify precisely which sets are Large, however, in chapter 5, we shall give strong
evidence to suggest that a reasonable classification is not possible. The first step in this
direction has already been taken in [1], where it is shown that the family of Large sets is
strongly partition regular. Intuitively, it may seem that this result alone implies that it is
difficult to classify which sets are Large, as one may think that any Large set with pleasant
structure can be meticulously partitioned in such a way that none of the partition classes
contain pleasant structure other than being Large, but this is not obvious from the above
examples. To see this, we note that in [3], Furstenburg shows that in any finite partition of an
IP set, at least 1 of the partition classes contains an IP set. Now let us consider p(x) ∈ Z[x]
with p(0) = 0, and X = {xj}∞j=1, so S := p(FS(X)) is a Large set by the IP-Polynomial Van
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der Waerden Theorem. We see that any finite partition of S as S = tni=1Si, induces a unique
partition of p(FS(X)) as p(FS(X)) = tni=1Pi such that Si = p(Pi) for 1 ≤ i ≤ n. Since a
finite partition of an IP set results in at least 1 partition class containing an IP set, let Pi0
be a partition class that contains an IP set. It follows that Si0 is not only a Large set, but
a Large set that contains the polynomial image of some IP set, which is highly structured.

Another way in which we can continue our investigations of Large sets, is by generalizing
to the notion of r-Large sets as defined in [1].

Definition 2.10: For any r ∈ Z+ and S ⊆ Z+, we say that S is r-Large, if for any k ∈ Z+,
and any partition of Z+ into r-sets, at least 1 of the partition classes contains a k-term
S-A.P..

We see that if S is an r-Large set, then for any r′ ≤ r, S is also an r′-Large set.
Intuitively, we would not expect the converse to be true, we expect that for any r ∈ Z+,
there exists a set Sr that is r-Large, but not (r + 1)-Large, but an example of Sr has not
been found for any r ≥ 2. This leads to the following conjecture posed in [1].

Two-Large Is Large Conjecture: If S is a 2-Large set, then S is a Large set.

In [8], Host, Kra, and Maass attempted to answer this conjecture, and yielded a new
formulation of the conjecture, as well as some progress. Before discussing this, we require
some more definitions.

Definition 2.11: Let S ⊆ Z+ be an infinite set, and let {sj}∞j=1 be an enumeration of the
elements of S in increasing order. If sj+1 − sj ≤ r for all j ∈ Z+, then we say that S is
r-syndetic. If S is r-syndetic for some r, then we say that S is a syndetic set, and the minimal
value of r for which S is r-syndetic is the syndeticity constant of S.

Definition 2.12: For any r ∈ Z+ and S ⊆ Z+, we say that S is r-syndetic Large if any
r-syndetic set contains arbitrarily long S-A.P.s.

Theorem 2.13: If S is an r-Large set, then S is r-syndetic Large.

Proof: For S ⊆ Z+, and j ∈ Z+, let S−j denote the set {s−j | s ∈ S & s > j}. Let T be an
r-syndetic set, and consider T1 = T , and for 2 ≤ j ≤ r, define Tj = (T1− (j− 1))− (∪j−1i=1Ti).
We see that {Tj}rj=1 is a partition of Z+ into r sets, so for some 1 ≤ j ≤ r, Tj contains
arbitrarily long S-A.P.s. Since {t + j − 1 | t ∈ Tj} ⊆ T , we see that T must also contain
arbitrarily long S-A.P.s.

Theorem 2.14: If S is a (2r − 1)-syndetic Large set, then S is r-Large.

Proof: See [8].
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We now see that a set S is Large if and only if it is r-syndetic Large for all r ∈ Z+.
This leads to the following restatement of the 2-Large is Large conjecture.

Conjecture 2.15: If S is a 2-syndetic Large set, then S is r-syndetic Large for all r ∈ Z+.

The following theorem shows us that multiplicative structure can strongly influence the
Largeness of a set, and lets us see that the family of Large sets is strongly partition regular.

Theorem 2.16: If A,B ⊆ Z+ are such that A is not r-Large, and B is not s-Large, then
A ∪B is not rs-large.

A first step towards proving or disproving the 2-Large is Large conjecture, would be
to determine whether or not the family of 2-Large sets are strongly partition regular. Is
the family of r-Large sets strongly partition regular for any r? What can be said about
the partition regularity of r-syndetic Large sets? The following seemingly simple conjecture,
which is a special case of the partition regularity of r-Large sets, remains unsolved.

Conjecture 2.17: If S ⊆ Z+ is an r-Large set, then Sk = {s ∈ S s.t. k|s} is also r-Large.

The method used in [1] to show that Large sets are strongly partition regular, cannot
be used to show that r-Large sets are strongly partition regular for any r, as the method
explicitly takes advantage of the fact that we are free to increase the number of colors when
working with a Large set, as is often the case in Ramsey Theory. We propose the following
technique to merge 2 partitions of the integers in an attempt to prove the partition regularity
of r-Large sets. For any three 2-partitions χA, χB, and χC of Z+, we may define

χD := χA ×χC
χB := { χA(i) if χC(i) = 0

χB(i) if χC(i) = 1
.

Next, let A,B ⊆ Z+ be such that neither of them are 2-Large. Let χA and χB be
partitions of Z+ that are not constant on arbitrarily long A-A.P.s and B-A.P.s respectively.
Let LA be the length of the longest A-A.P. on which χA is constant, and define LB similarly.
In order to show that D := A∪B is not a 2-Large set, we will try to construct a 2-partition χC
of Z+, such that the 2-partition χD given by χD = χA ×χC

χB does not contain arbitrarily
long D-A.P.s. A property of χC that would be sufficient to achieve this is the following.
There exists some k ∈ Z+, such that any length k A-A.P. in χC , contains at least LA + 1
consecutive elements in partition class 0, and any length k B-A.P. in χC , contains at least
LB + 1 consecutive elements in partition class 1. We see that if χC satisfies this condition,
then in any k-term D-A.P. {a + jd}k−1j=0 in χD, we may assume without loss of generality

that d ∈ A, so that some LA + 1 consecutive terms of this A.P. given by {a+ jd}j0+LA
j=j0

, are
colored 0 under χC , so χD(a + jd) = χA(a + jd) for j0 ≤ j ≤ j0 + LA. It follows that χD
is not constant on {a+ jd}j0+LA

j=j0
, and is consequently not constant on {a+ jd}k−10 , so χD is

not constant on any length k D-A.P., and D is not 2-Large.
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Chapter 3

Multidimensional Van der Waerden
Theorem

It is natural to ask how to generalize Van der Waerden’s Theorem to a multidimensional
theorem on Zn. The natural definition for a k-term arithmetic progression in Zn, is to pick
some a, d ∈ Zn, and consider the set {a + jd}k−1j=0 . We may then ask if for any partition
of Zn into a finite number of sets, does there exist at least 1 partition class containing
arbitrarily long arithmetic progressions? We can see that the answer to this question is yes as
follows. Given some partition of Zn, we may simply consider the induced partition along some
coordinate axis, then apply Van der Waerden’s Theorem on this induced partition in order to
obtain our long arithmetic progressions. We can see that we have not formulated the question
correctly, because the solution did not require the ambient space to be multidimensional. To
obtain the correct formulation, we only have to recall our statement of Van der Waerden’s
Theorem as a theorem on finite sets rather than a theorem on arithmetic progressions.
Our desired statement for the Multidimensional Van der Waerden Theorem, is that for any
n ∈ Z+, and any finite partition of Zn, at least 1 partition class contains a scaled and shifted
copy of any finite set of points in Zn. We see that if F is some finite set of points in Zn,

then there exists some m ∈ Z+, such that F ⊆
n∏
j=1

[−m,m], so we only need to have scaled

an shifted copies of arbitrarily large n-dimensional cubes in order to have scaled and shifted
copies of any finite set of points.

Before we officially state the Multidimensional Van der Waerden Theorem, we will
require some more notation. Let {ej}nj=1 denote the standard basis in Zn. A length k n-cube
is a set of the form C = {a + c1de1 + c2de2 + · · · + cnden | 0 ≤ c1, c2, · · · , cn < k}, where
a ∈ Zn is the base point, and d ∈ Z+ is the common difference. We say that C is generated
by the base point a and the common difference d. To be more concise, we may sometimes
say “Consider the n-cube C generated by (a, d)”. A length k S-gap n-cube is a length k
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n-cube in which the common difference is an element of S.

Multidimensional Van der Waerden Theorem: For any n ∈ Z+, and any finite parti-
tion of Zn, at least 1 of the partition classes contains arbitrarily large n-cubes.

As with the theorems from the introduction, the Multidimensional Van der Waerden
Theorem also has a finitistic version which we will now state.

Multidimensional Van der Waerden Theorem: For any n, k, r ∈ Z+, there exists an

integer w(n, k, r), such that for any partition of
n∏
j=1

[1, w(n, k, r)] into r sets, at least 1 of the

partition classes contains a length k n-cube.

We can investigate the Multidimensional Van der Waerden Theorem using the same
line of questioning that we used to investigate Van der Waerden’s Theorem. In particular,
what restrictions can we place on the common difference of an n-cube so that we still have
a weakly partition regular family?

Definition 3.1: Let us call S ⊆ Z+ Multidimensionally Large, if for any n, r ∈ Z+, and any
partition of Zn into r sets, at least 1 of the partition classes contains arbitrarily large S-gap
n-cubes.

Definition 3.2: Let us call S ⊆ Z+ Multidimensionally r-Large, if for any n ∈ Z+, and any
partition of Zn into r sets, at least 1 of the partition classes contains arbitrarily large S-gap
n-cubes.

Definition 3.3: Let us call S ⊆ Z+ n-dimensionally r-Large, if for any partition of Zn into
r sets, at least 1 of the partition classes contains arbitrarily large S-gap n-cubes.

We can show as we did with Large sets, that for any n ∈ Z+, the set nZ+ is a Multidi-
mensionally Large set. In [3], it is shown that IP sets are Multidimensionally Large. In [4],
Bergelson and Leibman prove the Multidimensional Polynomial Van der Waerden Theorem,
which we state below.

Multidimensional Polynomial Van der Waerden Theorem: Let {pj(x)}nj=1 be a fam-
ily of integral polynomials in Ql[x] satisfying pj(0) = 0 for all 1 ≤ j ≤ n. Then for any finite
partition of Zl, there exist a ∈ Zl and d ∈ Z+ such that the set {a + pj(d)}nj=1 is contained
in a single partition class.

Corollary 3.4: If p(x) ∈ Q[x] is an integral polynomial satisfying p(0) = 0, then p(Z+) is
a Large set.

10



Proof: Let p(x) =
n∑
j=0

ajx
j. For q ∈ Q, let q̂k denote the element in Ql, all of whose

components are 0, except for the kth component, which is q. We see that the polynomial

pk(x) =
n∑
j=0

ˆ(aj)kx
j is an element of Ql, and ˆpk(0) = 0 for all 1 ≤ k ≤ l. Now, we only

need to apply the Multidimensional Polynomial Van der Waerden Theorem to the family of
polynomials given by ∪lk=1{jpk(x)}n−1j=0 in order to get a length n p(Z+)-gap l-cube.

As before, we can combine the fact that IP sets are Multidimensionally Large and
the fact that polynomial images of the integers are Multidimensionally Large into a single
theorem which we give below.

Multidimensional IP-Polynomial Van der Waerden Theorem: Let {pj(x)}nj=1 be a
family of integral polynomials in Ql[x] satisfying pj(0) = 0 for all 1 ≤ j ≤ n. Let S be any
IP set. Then for any finite partition of Zl, there exist a ∈ Zl and d ∈ S such that the set
{a+ pj(d)}nj=1 is contained in a single partition class.

Corollary 3.5: If p(x) ∈ Q[x] is an integral polynomial satisfying p(0) = 0, and S is an IP
set, then p(S) is a Large set.

We can see that almost any example of a set that we know is Large, is also Multidi-
mensionally Large. The only possibility for an exception so far, is to determine whether or
not there exists a Multidimensional Polynomial Van der Waerden Theorem for families of
jointly intersective integral polynomials that do not necessarily map 0 to 0. This leads us to
the following conjecture.

Conjecture 3.6: If S ⊆ Z+ is a Large set, then S is Multidimensionally Large.

We can also formulate the analog of the 2-Large is Large conjecture.

Conjecture 3.7: If S ⊆ Z+ is Multidimensionally 2-Large, then S is Multidimensionally
Large.

Let <n denote the partial ordering on Zn, in which for any a, b ∈ Zn, we have a <n b,
if each component of a is strictly smaller than the corresponding component of b under the
standard ordering of Z. Let ≤n denote the extension of the partial order <n such that for
any a, b ∈ Zn, we have a ≤n b if a <n b, or a = b. In general, we would like to know if a set
S is n-dimensionally r-Large for some n, r ∈ Z+, then can we show that S n′-dimensionally
r′-Large for some n′, r′ ∈ Z+ satisfying (n, r) <2 (n′, r′)? Conversely, for each n, r ∈ Z+, does
there exist a set Sn,r that is n-dimensionally r-Large, but is not n′-dimensionally r′-Large
for any n′, r′ ∈ Z+ satisfying (n, r) <2 (n′, r′)?

11



We take a first step towards answering these questions by providing a reformulation in
terms of syndetic Large sets in a similar manner to that of Host, Kra, and Maass in [8]. As
before, for S ⊂ Zn, and j ∈ Zn, let S − j denote the set {s− j | s ∈ S}.

Definition 3.8: We say that S ⊆ Zn is r-syndetic, if there exists a finite subset {aj}rj=1 of
Zn, such that Zn ⊆ ∪rj=1(S − aj). If S is r-syndetic for some r, then we also say that S is
syndetic. If S is a syndetic set, then the minimal value of r for which S is r-syndetic, is the
syndeticity constant of S.

Definition 3.9: We say that S ⊆ Z+ is Multidimensionally r-syndetic Large, if for any
n ∈ Z+, and any r-syndetic subset T of Zn, T contains arbitrarily large S-gap n-cubes.

Definition 3.10: We say that S ⊆ Z+ is n-dimensionally r-syndetic Large, if for any
r-syndetic subset T of Zn, T contains arbitrarily large S-gap n-cubes.

Theorem 3.11: If S ⊆ Z+ is n-dimensionally r-Large, then S is n-dimensionally r-syndetic
Large.

Proof: Let T ⊆ Zn be some r-syndetic set, and let {aj}rj=1 be such that Zn ⊆ ∪rj=1(T − aj).
We may construct a r-partition {Tj}rj=1 of Zn by setting T1 = T , and inductively defining

Tj = (T − aj) − (∪j−1k=1Tk) for 2 ≤ j ≤ r. Since S is n-dimensionally r-Large, there exists
1 ≤ j0 ≤ r such that Tj0 contains arbitrarily large S-gap n-cubes, but Tj0 + j0 ⊆ T , so T
must also contain arbitrarily large S-gap n-cubes, so S is n-dimensionally r-syndetic Large.

Theorem 3.12: If S ⊆ Z+ is n-dimensionally (2r − 1)n-syndetic Large, then S is n-
dimensionally r-Large.

Proof: Let f be a r-partition of Zn, and consider the set T given by T = {(rx1 + f(x), rx2 +
f(x), · · · , rxn + f(x)) | x ∈ Zn}. We can see that T is (2r − 1)n-syndetic since rZn ⊆
∪2r−1k=1 (T + (k, k, · · · , k︸ ︷︷ ︸

n

)). We see that rS is also a (2r− 1)n-syndetic Large set, so there exist

some base point ak ∈ Zn and some common difference dk ∈ rS that generate a length k
n-cube in T , for any k ∈ Z+. For x, y ∈ Zn, we see that (ry1 + f(y), ry2 + f(y), · · · , ryn +
f(y))+dkej = (rx1 +f(x), rx2 +f(x), · · · , rxn+f(x)) if and only if (y1, y2, · · · , yn)+ dk

r
ej =

(x1, x2, · · · , xn) and f(x) = f(y), since r | dk and f(Zn) = [1, r]. We now see that the base

point (b (ak)1
r
c, b (ak)2

r
c, · · · , b (ak)n

r
c) and the common difference dk

r
generate a length k n-cube

contained in a single partition class of f .

We now see that a set S is n-dimensionally Large if and only if it is n-dimensionally
syndetic Large, which let us restate conjecture 3.7 as follows.

Conjecture 3.13: If S ⊆ Z+ is Multidimensionally 2-syndetic Large, then S is Multidi-
mensionally r-syndetic Large for all r ∈ Z+.
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Furthermore, using the notion of syndeticity, we can introduce a natural intermediate
step to conjecture 3.13.

Definition 3.14: Let us call S ⊆ Zn k-dimensionally r-syndetic, if S is an r-syndetic set,
and there exists a set {aj}rj=1 contained in a k-dimensional linear subspace of Zn, such that
Zn ⊆ ∪rj=1(S − aj).

Definition 3.15: Let us call S ⊆ Z+ (n, k)-dimensionally r-syndetic Large, if any k-
dimensionally r-syndetic subset of Zn contains arbitrarily large S-gap n-cubes.

We can now prove conjecture 3.6 by first showing that all Large sets are (n, 1)-dimensionally
Large for any n ∈ Z+, then showing that any (n, k)-dimensionally Large set is also (n, k+1)-
dimensionally Large. The following theorem gives good evidence to suggest that this ap-
proach is likely to work. First, recall that for S ⊆ Z+, we let Sr denote the set of elements
of S that are divisible by r.

Theorem 3.16: If S is a (n, 1)-dimensionally (2r − 1)-syndetic Large set, such that Sr is
also a (n, 1)-dimensionally (2r − 1)-syndetic Large set, then S is n-dimensionally r-Large.

Proof: Let f be a r-partition of Zn, and consider the set T given by T = {(rx1+f(x), x2, · · · , xn) | x ∈
Zn}. We can see that T is 1-dimensionally (2r− 1)-syndetic since rZn ⊆ ∪2r−1k=1 (T + ke1), so
there exist some base point ak ∈ Zn and some common difference dk ∈ Sr that generate a
length rk n-cube in T , for any k ∈ Z+. For x, y ∈ Zn, we see that (ry1 + f(y), y2, · · · , yn) +
dke1 = (rx1 + f(x), x2, · · · , xn) if and only if (y1, y2, · · · , yn) + dk

r
e1 = (x1, x2, · · · , xn)

and f(x) = f(y), and for 2 ≤ j ≤ n we have (ry1 + f(y), y2, · · · , yn) + dkej = (rx1 +
f(x), x2, · · · , xn) if and only if (y1, y2, · · · , yn) + dkej = (x1, x2, · · · , xn) and f(x) = f(y),

since r | dk and f(Zn) = [1, r]. We now see that for a′ = (b (ak)1
r
c, (ak)2, · · · , (ak)n), the set

C = {a′ + c1
dk
r
e1 +

n∑
j=2

cjdkej | 0 ≤ c1, c2, · · · , cn ≤ rk − 1} is contained in a single partition

class of f . Taking c1 from C to be an element of {rj}k−1j=0 shows us that the base point a′ and
the common difference dk generate a length k n-cube contained in a single partition class of
f .

We now see that if we can prove for any S ⊆ Z+ and k ∈ Z+ that passing from S to Sk
does not decrease the “Largeness” of S, then we will have shown that (n, 1)-dimensionally
syndetic Large sets are also n-dimensionally Large, so it will only remain to show that Large
sets are (n, 1)-dimensionally syndetic Large. Showing that Sk is just as “Large” as S for
any k, is a special case of partition regularity, since we know that any 2-Large must contain
a multiple of every positive integer. As far as partition regularity is concerned, we present
2 results, either of which can be used to show that the family of Multidimensionally Large
sets is strongly partition regular.
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Theorem 3.17: For any n ∈ Z+, the family of n-dimensionally Large sets is strongly
partition regular. In particular, given A,B ⊂ Z+ such that A is not n-dimensionally r-
Large, and B is not n-dimensionally s-Large, then A ∪B is not n-dimensionally rs-Large.

Proof: Let fA and fB be a r-partition of Zn and a s-partition of Zn respectively, such that
fA does not contain arbitrarily large A-gap n-cubes in any partition class, and fB does not
contain arbitrarily large B-gap n-cubes in any partition class. Let MA be the length of the
largest n-cube on which fA is constant, and define fB similarly. Create the rs-partition fC
of Zn by setting fC(x) = (fA(x), fB(x)). If a ∈ Zn and d ∈ A ∪ B are such that the base
point a and the common difference d generate a length k n-cube C, that is constant under
fC , then C will be constant under fA and fB as well. If d ∈ A, then k ≤ MA, and if d ∈ B,
then k ≤MB, so k ≤ max(MA,MB), which yields the desired result.

Theorem 3.18: For any r ∈ Z+, the family of Multidimensionally r-Large sets is strongly
partition regular. In particular, given A,B ⊆ Z+ such that A is not n-dimensionally r-Large,
and B is not m-dimensionally r-Large, then A ∪B is not (n+m)-dimensionally r-Large.

Proof: Let fA and fB be r-partitions of Zn and Zm respectively, such that fA does not contain
arbitrarily large A-gap n-cubes in any partition class, and fB does not contain arbitrarily
large B-gap m-cubes in any partition class. Let MA be the length of the largest n-cube on
which fA is constant, and define MB similarly. Create the r-partition fC of Zn+m by setting
fC(x) = (fA((xj)

n
j=1), fB((xj)

n+m
j=n+1)). If a ∈ Zn+m and d ∈ A ∪ B are such that the base

point a and the common difference d generate a length k (n+m)-cube that is constant under
fC , then the base point (aj)

n
j=1 and the common difference d generate a length k n-cube that

is contstant under fA, and the base point (aj)
n+m
j=n+1 and the common difference d generate

a length k m-cube that is constant under fB. If d ∈ A, then k ≤ MA, and if d ∈ B, then
k ≤MB, so k ≤ max(MA,MB), which yields the desired result.
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Chapter 4

New Multidimensional Structures

We have already seen that the significance of arbitrarily long arithmetic progressions in Z+,
is that they will contain an affine image of any finite set of points in Z+, which is why we look
for arbitrarily large k-cubes in the Multidimensional Van der Waerden Theorem on Zk. We
also know that it is trivial to ask about the partition regularity of arbitrarily long arithmetic
progressions in Zk, but, if we were to place restrictions on the allowable common differences
d in the arithmetic progressions we are seeking, then the question becomes interesting once
more.

Definition 4.1: A subset S of Zk is called weakly k-dimensionally large, if for any finite
coloring of Zk, there exist arbitrarily long monochromatic arithmetic progressions whose
common differences belong to S.

Definition 4.2: A subset S of Zk is called weakly k-dimensionally r-large, if for any r-
coloring of Zk, there exist arbitrarily long monochromatic arithmetic progressions whose
common differences belong to S.

Definition 4.3: For S ⊆ Z+, let (S,Zk) denote the set {s ∈ Zk | gcd((si)
k
i=1) ∈ S}. We

say by abuse of language that S is weakly k-dimensionally large, or weakly k-dimensionally
r-Large if and only if the same property holds for (S,Zk).

The motivation for the definition of (S,Zk), is that when we restrict our attention to
affine 1-dimensional subspace of Zk, it appears as if we are looking for S-A.P.s in Z. We
see that requiring a set to be weakly n-dimensionally large becomes less restrictive as n
increases, because we can always restrict ourselves to subspaces of lower dimension. We are
led to wonder about what is the interplay between r-large sets, and weakly k-dimensionally
r-large sets.

Theorem 4.4: Let S be a weakly t-dimensionally 2-Large set. For any set of primes {pi}ti=1
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and any set of positive integers {ki}ti=1, there exists d ∈ S such that pkii | di for 1 ≤ i ≤ t.

Proof: We will proceed by induction on t, with the base case being t = 1, but our inductive
hypothesis will be stronger than the statement of the Theorem. In order to motivate this
new inductive hypothesis, let us offer an alternative proof for the case of t = 1, which we
already know to be true.

For any prime p and any n, k ∈ Z+ with k < n, let C[p, n, k] be the 2-partition of
the cyclic group Zpn , in which C[p, n, k](j) = 0 if 0 ≤ j ≤ pk − 1, and C[p, n, k](j) = 1 if
pk ≤ j ≤ pn − 1. Let A = {a + dj}M−1j=0 be any arithmetic progression in Zpn of length M ,
where pn divides M , and let pm = gcd(d, pn). We will show that if m ≤ k, then C[p, n, k]
will take the value 0 pk(M

pn
) times on A, and the value 1 will be taken (pn − pk)(M

pn
) times

on A, therefore C[p, n, k] cannot be constant on A unless pk+1 | d. To see why this is true,
we see that gcd( d

pm
, pn−m) = 1, so the arithmeic progression A′ = {a + d

pm
j}M−1j=0 in Zpn−m

takes on every value precisely ( M
pn−m ) times. In particular, since any individual value in

the range [1, pk−m] is taken on precisely ( M
pn−m ) times in A′, we see that A′ takes on values

in [1, pk−m] a total of pk−m( M
pn−m ) times, therefore A takes on values in the range [1, pk] a

total of pk−m( M
pn−m ) < M times, from which the desired result follows. In particular, we

notice that there must be some interval I of length pm−k−1 such that C[p, n, k](a + jd) = 1
for j ∈ I. To see why this is true, we notice that there are pk+1 intervals of the form
[cpn−k−1, (c + 1)pn−k−1 − 1], and at most pk of them can contain some point g such that
C[p, n, k](g) = 0.

We are now ready to introduce the inductive hypothesis. For any set P = {(pi, ni, ki)}t+1
i=1

where all pi are prime, and ni and ki are positive integers for all i that satisfy ki < ni, let us

define the 2-partition CP of D =
t∏
i=1

Zpni
i

given by
t∏
i=1

C[pi, ni, ki]. To be more precise, we

have CP ( (xi)
t
i=1 ) = (

t∑
i=1

C[pi, ni, ki](xi)), where the summation takes place in Z2, so that

the result is either a 0 or a 1. We will show that for any set Q = {(pi, ki)}ti=1 where the pi
are primes and the ki are positive integers, there exist a set {ni}ti=1 and some M ∈ Z+, such
that for the set P = {(pi, ni, ki)}ti=1, any M -term arithmetic progression A = {a + jd}M−1j=0

that is constant under CP , must have pkii | di for 1 ≤ i ≤ t. We have already proven this
to be true for the base case of t = 1, so let us assume that the hypothesis has been proven
for 1 ≤ s ≤ t, and that we are trying to prove it for s = t + 1. Consider Q = {(pi, ki)}t+1

i=1,
and Qt = {(pi, ki + 1)}ti=1. By the inductive hypothesis, we can find {ni}ti=1 satisfying the
problem for Qt, so we will now find nt+1 such that {ni}t+1

i=1 satisfies the problem for Q.
Let Pt = {(pi, ni, ki + 1)}ti=1, and let Mt be a positive integer such that if the arithmetic
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progression {b+ jf}Mt−1
j=0 is constant under CPt , then pki+1

i | fi for 1 ≤ i ≤ t. Let N =
t∏
i=1

pni
i

us take nt+1 = Mt + kt+1 + 1, and Mt+1 = pnt+1MtN .

Let A = {a + jd}Mt+1

j=0 be an arithmetic progression, and let q = vpt+1(gcd(dt+1, p
nt+1

t+1 )).
If q ≤ kt+1, then C[Pt+1, nt+1, kt+1](at+1 + jdt+1) = 1 for j ∈ I, for some interval I of length
pnt+1−kt+1−1 ≥ Mt, as seen by our analysis in the t = 1 case. If A was to be constant under
CPt , then we must have pkii | di for 1 ≤ i ≤ t according to the inductive hypothesis. We also

see that {at+1 + cdt+1 + jNdt+1}
pnt+1Mt

j=1 is constant under C[pt+1, nt+1, kt+1], for any c, but
this is a contradiction because c can be chosen such that C[pt+1, nt+1, kt+1](at+1 + cdt+1) = 0
and C[pt+1, nt+1, kt+1](at+1+cdt+1+Ndt+1) = 1. For our next case, we assume that q = nt+1,
so the t+1 component of A is constant, and therefore the partition class of any point in A is
determined by its first t coordinates. Since Mt+1 > Mt, we see by the inductive hypothesis
that we must have pkii | di for all 1 ≤ i ≤ t as desired. For the final case we assume that
kt+1 < q < nt+1. If {at+1 + jdt+1}Mt

j=0 is constant under C[pt+1, nt+1, kt+1], then we are
done as we were in the previous situation. If this is not the case, then let c be such that
C[pt+1, nt+1, kt+1](at+1 + cdt+1) = 0. Since q < nt+1, we see that C[pt+1, nt+1, kt+1](at+1 +
(c + j)dt+1) = 1 for some j, so let us take the minimal value of j that satisfies this and
denote it by j0. We see that C[pt+1, nt+1, kt+1](at+1 + (c+ j0)dt+1 + jpt+1dt+1) = 1 for all j,
so by the inductive hypothesis we have that pki+1

i | pt+1di for all 1 ≤ i ≤ t, so pkii | di for all
1 ≤ i ≤ t+ 1 as desired.

Theorem 4.5: If S is a weakly t-Dimensionally 2-Large set, then for any n ∈ Z+, there
exists s ∈ S such that n | s.

Proof: Let the prime factorization for n be n =
m∏
i=1

pkii . For any 2-partition of Ztm, and any

l ∈ Z+, there must exist an arithmetic progression A = {a + jd}l−1j=0 where d is of the form
d = (d1, · · · , d1︸ ︷︷ ︸

m

, d2, · · · , d2︸ ︷︷ ︸
m

, · · · , dt, · · · , dt︸ ︷︷ ︸
m

), such that (di)
t
i=1 ∈ S, since this is equivalent

to finding an S-A.P. in a t-dimensional subspace of Ztm. Consider Q = {(pi, ki)}mi=1 and
Qt = {(qi, wi)}mti=1, where (qi, wi) = (pi (mod m), ki (mod m)) for 1 ≤ i ≤ mt. By Theorem 4.4,
there exist a coloring CP of Zmt, and M ∈ Z+, such that any monochromatic arithmetic
progression of length M or more must satisfy pkii | di for 1 ≤ i ≤ mt. The structure of d
shows us that pkii | dj for all 1 ≤ i ≤ m, and any 1 ≤ j ≤ t, from which it follows that S
contains a multiple of n.

We can continue to search for the relationships between weakly n-dimensionally r-Large
sets, and r-Large sets through the following series of conjectures.

Conjecture 4.6: If S is weakly n-dimensionally 2-Large, then S is a Bohr(1) set as defined
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in chapter 8.

Conjecture 4.7: If a 2-Large set is partitioned into 2 sets, at least 1 of the sets will be
weakly 2-dimensionally 2-Large.

Conjecture 4.8: If S is weakly n-dimensionally 2-Large, then S is weakly n-dimensionally
Large.

Question 4.9: If S is weakly n-dimensionally 2-Large for some n, then is S weakly m-
dimensionally Large for some m < n, and in particular, is S 2-Large?

While the ideas in this chapter may already seem to be multidimensional, we so far have
only been examining arithmetic progressions, which are 1-dimensional subsets, but we can
also look for structure in subsets of higher dimension.

Definition 4.10: Let S ⊆ Z+ be m-weakly n-dimensionally Large, if for any finite coloring of
Zn and any positive integer k, there exist a, d1, · · · , dm ∈ Zn with {di}mi=1 being a Q-linearly
independent set, and s ∈ S, such that the set {a+ c1sd1 + · · ·+ cmsdm | 0 ≤ c1, · · · , cm ≤ k}
is monochromatic.

We see from the definition that we must require m ≤ n in order for it to make sense.
Furthermore, we once again, see from the Multidimensional Van der Waerden Theorem that
S = Z+ is a m-weakly n-dimensionally Large set for any m,n ∈ Z+.

Question 4.11: If S is a m-weakly n-dimensionally Large set, is S also a m-weakly (n+ 1)-
dimensionally Large set?
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Chapter 5

The Compactness Principle

Many of the ideas that we have been discussing, are set in the framework of the infinite.
This is convenient from the perspective of dynamics and analysis, because it allows for the
thought process of an analyst, in which you allow an ε of error, and show that you are
within this error, if you “go far enough out”, and the infinite is needed in order to “go far
enough out”. We can show that finitistic versions of these ideas exist as well, and they
result from the compactness that will be assumed in the topological dynamics of chapter
8. We can use these finitistic formulations to show that a classification of “Large” sets (of
any kind) purely from the perspective of the infinite, is an unreasonable expectation. Let us
first recall the finitistic version of Van der Waerden’s Theorem, and see how we can obtain
it as a consequence of the infinite version. The technique that we will use is discussed in its
full generality in [9], and is referred to as “The Compactness Principle”. We will only use
this technique in the scope of generalizations of Van der Waerden’s Theorem, so we will not
discuss the most general form of this for the sake of simplicity.

Finitistic Van der Waerden Theorem: For any k, r ∈ Z+, there exists an integer
w(k, r), such that for any n ≥ w(k, r), and any r-coloring of [1, n], there exists a k-term
monochromatic arithmetic progression. The numbers w(k, r) are known as the Van der
Waerden numbers.

Proof: Assume for the sake of contradiction, that we may choose k, r ∈ Z+, such that w(k, r)
does not exist. For each m ∈ Z+, let Cm be an r-coloring of [1,m] that does not contain a
k-term monochromatic arithmetic progression. We will now construct an r-coloring C of Z+

that does not contain a k-term arithmetic progression, and this will contradict the infinite
version of the Van der Waerden Theorem. Pick s ∈ [0, r − 1], such that s appears infinitely
many times in the set {Cm(1)}∞m=1. Let {n1,k}∞k=1 be a subsequence of {m}∞m=1, such that
Cn1,k

(1) = s for all k. Having defined C on [1, t], and created the sequences {{nj,k}∞k=1}tj=1

satisfying Cnj,k
(j) = C(j) for all j and k, we will proceed by induction to define C(t+1) and

create a subsequence {nt+1,k}∞k=1 of {nt,k}∞k=1 satisfying Cnt+1,k
(t+ 1) = C(t+ 1) for all k. It
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will follow from construction that Cnj,k
(s) = C(s) for all 1 ≤ s ≤ j, and any k. The base

case of t = 1 has already been handled. Let s ∈ [0, r − 1] be such that s appears infinitely
many times in the set {Cnt,k

}∞k=1, and let {nt+1,k}∞k=1 be a subsequence of {nt,k}∞k=1, such

that Cnt+1,k
(t+ 1) = s for all k. We have thus defined C(t) for all t ∈ Z+. If {a+ qd}k−1q=0 is a

k-term arithmetic progression such that C(a+qd) = C(a) for all 1 ≤ q ≤ k−1, then we note
that Cna+(k−1)d,1

(s) = C(s) for any 1 ≤ s ≤ a+(q−1)d, so Cna+(k−1)d,1
(a) = Cna+(k−1)d,1

(a+qd)
for any 1 ≤ q ≤ k−1, which contradicts the fact that Ca+(k−1)d,1 contains no monochromatic
k-term arithmetic progression. �

We note that we have not assumed any special properties about d, the common difference
in the arithmetic progression. We have simply proven that if a monochromatic k-term
arithmetic progression with common difference d, does not appear in any of the colorings
{Cm}∞m=1, then a monochromatic k-term arithmetic progression does not occur in the coloring
C that was constructed in the above proof. This leads to the stronger theorem stated below.

Theorem 5.1: For a given S ⊆ Z+, let k, r ∈ Z+ be such that for any r-coloring of Z+,
there exists a monochromatic k-term S-A.P.. Then there exists an integer w(S, k, r), such
that for any n ≥ w(S, k, r), and any coloring of [1, n], there exists a monochromatic k-term
S-A.P..

Corollary 5.2: Let S be a Large set. Then for any k, r ∈ Z+, there exists an inte-
ger w(S, k, r), such that for any n ≥ w(S, k, r), and any coloring of [1, n], there exists a
monochromatic k-term S-A.P..

We can easily adapt the proofs above to prove analogous statements for colorings of
Zm, and Multidimensionally Large sets, but we shall do so from the viewpoint of topology
instead to illustrate why this idea is called the Compactness Principle.

Theorem 5.3: For any integers k, r, n ∈ Z+, there exists an integer w(k, r, n), such that for

any m ≥ w(k, r, n), and any r-coloring of
n∏
j=1

[1,m], there exists a monochromatic length k

n-cube.

Proof: Let us assume for the sake of contradiction that the number w(k, r, n) does not exist.

For each m ∈ Z+, let C ′m be an r-partition of
n∏
j=1

[−m,m] that does not contain a length

k n-cube in any partition class, and let Cm be any extension of C ′m to an r-partition of all
of Zn. Since Ωn

r is compact, we see that the sequence {Cm}∞m=1 must have at least 1 limit
point C. Assume that (a, d) generates a length k n-cube C, that is constant under C, and

let N ∈ Z+ be such that C ⊆
n∏
j=1

[−N,N ]. Let M be such that CM ∈ B 1
N+1

(C), so that C is
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constant under CM as well, but this contradicts the fact that CM does not contain a length
k n-cube in any partition class. Since arithmetic progressions are shift invariant, we may
take w(k, r, n) = 2M .

We once again notice that we did not assume any special properties about d, the gap
of the n-cubes in the proof above. We have simply proven that if a monochromatic length
k {d}-gap n-cube does not appear in any of the colorings {Cm}∞m=1, then any limit point C
of the sequence also does not contain a monochromatic length k d-gap n-cube. This once
again leads to a stronger theorem which is stated below.

Theorem 5.4: Let S ⊆ Z+ be m-dimensionally Large. Then there exists an integer

w(S, k, r,m), such that for any n ≥ w(S, k, r,m), and any r-coloring of
m∏
j=1

[1, n], there exists

a monochromatic length k S-gap m-cube.

Corollary 5.5: Let S be a Multidimensionally Large Set. For any k, r, n ∈ Z+, there exists

an integer w(S, k, r, n), such that for any m ≥ w(S, k, r, n), and any r-partition of
n∏
j=1

[1,m],

there exists a length k S-gap n-cube contained in a single partition class.

Before we can illustrate the usage of these Van der Waerden like numbers to construct
Large sets, we require the following lemma.

Theorem 5.6: If S ⊆ Z+ and k, r, n ∈ Z+ are such that w(S, k, r, n) < ∞, then for any
c ∈ Z+, we have w(cS, k, r, n) = cw(S, k, r, n)− c+ 1

Proof: Let f be a r-partition of
n∏
j=1

[1, w(S, k, r, n)− 1] that is not constant on any length k

S-gap n-cube. It follows that the r-partition fc of
n∏
j=1

[1, cw(S, k, r, n)− c] given by fc(x) =

f((bxj
c
c)nj=1) is not constant on any length k cS-gap n-cube, so w(cS, k, r, n) ≥ cw(S, k, r, n)−

c+1. To obtain the reverse inequality, let fc be any r-partition of
n∏
j=1

[1, cw(S, k, r, n)−c+1],

and define the r-partition f of
n∏
j=1

[1, w(S, k, r, n)] by f(x) = fc((cxj − c+ 1)nj=1). Let a ∈ Zn

and d ∈ S be such that (a, d) generates a length k S-gap n-cube that is constant under f ,
so ((caj − c + 1)nj=1, cd) generates a length k cS-gap n-cube that is constant under fc, thus
w(cS, k, r, n) ≤ cw(S, k, r, n)− c+ 1 as desired.

We are now ready to show that the union of an almost arbitrary family of finite sets to
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create a Large set. The family cannot be totally arbitrary, because we may always take the
family {Sj}∞j=1 given by Sj = {2j + 1} for all j, whose union is most certainly not a Large
set. We will see that the family may be seen as arbitrary, in that the finite sets need not have
any relationship with each other, but only need to satisfy the given conditions individually.

Theorem 5.7: Let {Sn}∞n=1 be a collection of subsets of the positive integers. If for any
k, r ∈ Z+, there exists n such that w(Sn, k, r) <∞, then S := ∪∞n=1Sn is a large set.

Proof: We may assume without loss of generality that w(Sn, n, n) < ∞ by taking a sub-
collection of {Sn}∞n=1 if necessary. Let k, r ∈ Z+ be arbitrary, and consider n = max(k, r).
w(S, k, r) ≤ w(S, n, n) ≤ w(Sn, n, n) <∞, as desired. �

Corollary 5.8: Let {Sn}∞n=1 be a collection of subsets of the positive integers, such that for
any k ∈ Z+, there exists n such that w(Sn, k, k) < ∞. Then for any sequence {cn}∞n=1 of
positive integers, the set S := ∪∞n=1cnSn is Large.

Proof: Let us assume once again that w(Sn, n, n) <∞. Since w(cS, k, r) = cw(S, k, r)−c+1
for any c ∈ Z+, we see that w(cnSn, n, n) <∞ for all n, so we may simply apply the previous
Theorem. �

To illustrate the pathology that can arise when studying Large sets, consider the follow-
ing example. Consider Bm,n := {kn}∞k=m, which is a large set for any m,n ∈ Z+. Let C1 be
given by C1 := B1,2 ∩ [1, w(B1,2, 2, 2)], and let c1 := max(C1). Having defined {Cn}kn=1 and
{cn}kn=1, such that w(Cn, n + 1, n + 1) < ∞ and cn = max(Cn) for all n, let us inductively
define by Ck+1 by Ck+1 = Bck,k+2∩ [1, w(Bck,k+2, k+2, k+2)], and ck+1 by ck+1 = max(Ck+1).
By Theorem 5.7, we see that C := ∪∞k=1Ck is a Large set, but there is no obvious global
structure of this set, there only exists the local structure from which it was constructed. We
may also apply corollary 5.8 to the sets {Cn}∞n=1 for any sequence {c′n}∞n=1 of our choosing,
to create a Large set whose structure is even further masked.

In the opposite direction of the preceding theorems, we see that the Van der Waerden
like numbers can be used not only to construct Large sets, but to create meaningful decom-
positions of Large sets as well. We already know that there exist disjoint Large sets as a
result of the Polynomial Van der Waerden Theorem. To see this, simply take the polyno-
mials p1(x) = x2 and p2(x) = x2 + x, and note that the sets S1 = p1(Z+) and S2 = p2(Z+)
are disjoint Large sets. It follows that we cannot find some “minimal” Large set that is
contained in all other Large sets, but we can still search for a “minimal” Large subset of any
given Large set. Even this task is not trivial to formulate, because we know that removing
any finite set from a Large set will still leave us with a Large set, so what would happen
if we were to remove some finite set from the “minimal” Large subset that we found? In
fact, we already know that Large sets are strongly partition regular, so we could always
finitely partition any “minimal” Large set, and still find a Large set within 1 of the partition
classes. The following theorem further suggests that it is futile to search for a “minimal”
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Large subset that contains the crucial structure of a given Large set.

Theorem 5.9: Any Large set S can be partitioned into an infinite number of disjoint Large
sets.

Proof: First, consider an infinite partition of the integers {Ak}∞k=1, such as that given by
Ak = {m | m ≡ 2k−1 (mod 2k)} for all k. Consider S1 := S ∩ [1, w(S, 2, 2)], and note that
w(S1, 2, 2) < ∞. Since S1 is a finite set, it is not Large, so S ′1 := S − S1 is a Large set.
Having defined {Sn}kn=1 and {S ′n}kn=1 such that w(Sn, n+ 1, n+ 1) <∞ for all n, and S ′n is
Large for all n, we inductively define Sk+1 and S ′k+1 by Sk+1 := S ′k∩ [1, w(S ′k, k+2, k+2)] and
S ′k+1 = S ′k−Sk+1. Consider the family of sets {Bn}∞n=1 given by Bn = ∪k∈AnSk for all n. We
see that {Bn}∞n=1 is an infinite partition of S. Furthermore, we see that for any k, n ∈ Z+, we
have that w(Bn, k, k) ≤ w(S2n−1+k2n , k, k) ≤ w(S2n−1+k2n , 2

n−1+k2n+1, 2n−1+k2n+1) <∞,
so by Theorem , Bn is a Large set for any n. �

Theorem 5.10: Any set S of toplogical recurrence, can be partitioned into an infinite
number of disjoint sets of topological recurrence.

Theorem 5.11: Any Multidimensionally Large set S can be partitioned into an infinite
number of disjoint Multidimensionally Large sets.

These Theorems imply that there cannot exist a “smallest” set of recurrence in any
reasonable sense, as it can always be broken down into disjoint sets of recurrence.

Despite the pathology that we have found, these Van der Waerden like numbers give us
an approach to solving the 2-Large is Large Conjecture. Let S ⊆ Z+ be arbitrary. We see
that if for each k ∈ Z+, there exists k′ ∈ Z+ independent of S, such that w(S, k, k) exists
when w(S, k′, 2) exists, then all 2-Large sets will be Large. Conversely, if there exist k ∈ Z+

and S ⊆ Z+, such that w(S, k, k) = ∞, but for any k′ ∈ Z+ we have w(S, k′, 2) < ∞, then
S would be a set that is 2-Large, but not Large. These ideas are not novel restatements of
the 2-Large is Large conjecture, but the benefit of the Van der Waerden like numbers is that
they can guide us as to how to construct a 2-Large set that is not Large. Suppose that for
each k ∈ Z+, we can find a set Sk ⊆ Z+, such that w(Sk, k, 2) < ∞, and w(Sk, 3, 3) = ∞.
We see that S = ∪∞k=2 is a 2-Large set, and we would like to say that w(S, 3, 3) = ∞ as
well so that S is not 3-Large, but there is no reason to expect this to be the case. However,
with the aid of Theorem 5.8, we will show how to achieve this expectation in the following
theorem, but first, we require some notation. Given r-partitions f and g of [1, n] and [1,m]
respectively, let f + g denote the r-Partition of [1, n + m] given by (f + g)(x) = f(x) if
1 ≤ x ≤ n, and (f + g)(x) = g(x− n) if n < x ≤ n+m. Furthermore, let f + 1 denote the
r-partition of [1, n] given by (f + j)(x) = (f(x) + j) (mod r).

Theorem 5.12: Let k′, r′, r ∈ Z+ be arbitrary. Suppose that for any k ∈ Z+, there
exists a finite set Sk ⊆ Z+ such that w(Sk, k, r) < ∞ and w(Sk, k

′, r′) = ∞. Then there
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exists a sequence {ck}∞k=1 such that the set S = ∪∞k=2ckSk is a r-Large set that also satisfies
w(S, 2k′ + 1, r′) =∞, and is consequently not a r′-Large set.

Proof: Let M2 = max(S2), and let l2 = w(S2, 2, r)+(k′+1)M2+1. Let f2 be any r′-partition
of [1, l2] that does not contain a length (k′ + 1) S2-A.P.. Let g2 be the r′-partition of [1, l2]
that coincides precisely with f2, c2 = 1, and S ′2 = S2. We now proceed by induction to define
Mn, ln, cn, S

′
n, fn, and gn with gn being constant on no length k′+ 1 cnSn-A.P., with the base

case of n = 2 having already been handled. Let cn+1 = ln, Mn+1 = max(cn+1Sn+1), ln+1 =
w(Sn+1, n+ 1, r) + (k′+ 1)Mn+1 + 1, and let fn+1 be any r′-partition of [1, ln+1] that does not

contain a length (k′+1) Sn+1-A.P.. Let S ′n+1 = S ′n∪cn+1Sn+1. Let gn+1 =

ln+1∑
j=1

(gn+fn+1(j)).

We will show that gn+1 does not contain a length (2k′+1) S ′n+1-A.P.. We see by construction
that gn+1 does not contain a length (k′ + 1) cn+1Sn+1-A.P., and for 1 ≤ i ≤ n, we see that

gn+1 =
N∑
j=1

(gi + hi(j)), for some N ∈ Z+, and some set of functions {hi}ni=1. It follows that

any length (2k′ + 1) ciSi-A.P. that is constant under gn+1, must have at least (k′ + 1) terms
that are contained in a block of the form gi + hi(j), since the length of each such block is
larger than (k′ + 1) max(Si), but this contradicts the induction hypothesis, so the claimed
(2k′ + 1) term arithmetic progression does not exist. Now let S = ∪∞j=1S

′
j. We see that S is

r-Large by construction. We also see that for any n ∈ Z+, there is a r′-partition of [1, n] that
does not contain a length (2k′ + 1) S-A.P., so w(S, 2k′ + 1, r′) =∞, and S is not r′-Large.

It is also natural to wonder what the relationship is between the Van der Waerden
numbers of different dimensions. Theorem 5.13 below shows that higher dimensional Van der
Waerden numbers are at least proportional to the 1-dimensional Van der Waerden numbers,
where we compare w(Z+, k, r, n) with w(Z+, kn, r) instead of w(Z+, k, r) because a length k
n-cube contains kn points.

Theorem 5.13: If S is a Large set, then for any k, r ∈ Z+, we have that w(S, k, r, n) ≥
k−1
kn−1w(S, kn, r).

Proof: Let C be a coloring of [1, w(kn, r, S)] that contains no monochromatic kn-term S-A.P.,

and define the coloring Cn of
n∏
i=1

[1, b k − 1

kn − 1
w(S, kn, r)c] by Cn(x1, · · · , xn) = C(

n∑
i=1

xik
i−1.

Suppose for the sake of contradiction that there exists a monochromatic length k S-gap
n-cube in Cn generated by the base point a ∈ Zn and the common difference d ∈ S. If
a = (a1, · · · , an), then for any (j1,1, j1,2, · · · , j1,n), (j2,1, j2,2, · · · , j2,n) ∈ [0, k − 1]n, we have

that C((
n∑
i=1

ai) + (
n∑
i=1

j1,idk
i−1)) = Cn(a +

n∑
i=1

j1,idei) = Cn(a +
n∑
i=1

j2,idei) = C((
n∑
i=1

ai) +
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(
n∑
i=1

j2,idk
i−1)), so {(

n∑
i=1

ai)+dj}kn−1j=0 would be a monochromatic kn-term S-A.P. in C, which

yields the desired contradiction.

We note that Theorem 5.13 tells us that it is much harder to find higher dimensional
structure in partitions of higher dimensional lattices. To find a structure of size kn in an
r-partition of Z+, it suffices to examine the interval [1, w(kn, r)], but to find a n-dimensional
structure of kn points in Zn, we must examine a length w(k, r, n) n-cube, which contains at
least w(k, r, n)n ≥ ( k−1

kn−1w(kn, r))n points. We close this chapter with the following question
as to whether or not Van der Waerden like numbers are sufficient for distinguishing Large
sets.

Question 5.14: If S1 and S2 are Large sets such that w(S1, k, r) = w(S2, k, r) for all
k, r ∈ Z+, then must we have S1 = S2? If not, what can be said of the relationship of S1

and S2 if we further suppose that w(S1, k, r, n) = w(S2, k, r, n) for all k, r, n ∈ Z+?
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Chapter 6

A Closure Operation

It is shown in [1], that if A ⊆ Z+ is not 2-Large, then A∪ [1, n] and nA are not 2-Large sets
for any n ∈ Z+. Furthermore, there exist large sets which are disjoint, and as we have seen
in the previous chapter, any Large set can be partitioned into an infinite number of disjoint
Large sets. For these reasons, it is difficult to understand what is the inherent structure
that makes a set Large or not. In an attempt to remedy this problem, we develop a closure
operation on the space Ω2, and a closure operation on P(N).

Let S ⊂ P(N) be a family of sets that are not 2-large. We define f(S) to be the maximal
(with respect to inclusion) subset of Ω2, such that for any S ∈ S, we have that any χ ∈ f(S)
is a 2-validating coloring for S. Similarly, if χ̂ ⊂ Ω2 is a set of finite partitions of Z+, we can
define g(χ̂) to be the maximal family of subsets of N, such that for any χ ∈ χ̂, we have that
χ is a 2-validating coloring for every S ∈ g(χ̂). Let us define h : P(N)→ P(N) by h := g ◦ f ,
and k : Ω2 → Ω2 by k := f ◦ g.

Theorem 6.1: g ◦ k ≡ g and f ◦ h ≡ f .

Proof: Let χ̂ ⊂ Ω2 and S ⊂ P(N) both be arbitrary. First, we note that f and g are
both decreasing functions, in the sense that if χ̂ ⊆ χ̂′ and S ⊆ S′, then g(χ̂′) ⊂ g(χ̂) and
f(S′) ⊆ f(S). Next, we note that h and k are both increasing functions in the analogous
sense. Furthermore, we see that S ⊆ h(S) and χ̂ ⊆ k(χ̂). To see this, let S ∈ g(χ̂) be
arbitrary, and we note that by the definition of g, any element of χ̂ is a 2-validating coloring
for S, but S was arbitrary, so χ̂ ⊂ f(g(χ̂)) = k(χ̂). Similarly, let χ ∈ f(S) be arbitrary,
and we note that by the definition of f , χ is a 2-validating coloring for any element of S,
so S ⊆ g(f(S)) = h(S). Now, let us prove that g ◦ k ≡ g. Since χ̂ ⊆ k(χ̂), we see that
g(χ̂) ⊇ g(k(χ̂)), so we now only need to show that g(χ̂) ⊆ g(k(χ̂)). To see this, we note that
g(χ̂) ⊆ h(g(χ̂)) = g(f(g(χ̂))) = g(k(χ̂)). Next, we can prove that f ◦ h ≡ f with a similar
method of proof. Since S ⊆ h(S), we see that f(S) ⊇ f(h(S)), and as before, we only need to
show that f(S) ⊆ f(h(S)). To see this, we note that f(S) ⊆ k(f(S)) = f(g(f(S))) = f(h(S)),
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which yields the desired result. �

Corollary 6.2: k and h are idempotent operations.

Since k and h are idempotent operations, they are good candidates for closure opera-
tions. To see an example of how these operations work, consider the set S = (2Z+ − 1) −
{9j}∞j=1. If χ ∈ f(S) is constant on a length k arithmetic progression with common difference

9j, then χ is constant on a length bk
3
c arithmetic progression of common difference 3 ∗ 9j.

Since χ is not constant on arbitrarily long arithmetic progressions with common difference of
the form 3∗9j, we see that χ is not constant on arbitrarily long arithmetic progressions with
common difference of the form 9j, so (2Z+− 1) ⊆ h(S). To obtain the reverse inequality, let
χ denote the 2-partition of Z+ given by putting the even and the odd numbers in different
partition classes. We certainly have that χ ∈ g(S), so no even number can be contained
in h(S), thus h(S) = (2Z+ − 1). We see in this case that the operation h has filled in the
unnatural holes given by the powers of 9 being removed from the odd numbers. Now to show
that the union of 2 sets A,B ⊆ Z+ is not 2-Large when neither of A and B are 2-Large, it
suffices to show that g(A) ∩ g(B) 6= ∅. However, since g ◦ h ≡ g, we only need to show that
g(h(A)) ∩ g(h(B)) 6= ∅, which will hopefully be an easier task to accomplish, since it would
be easier to construct pleasant elements of g(h(A)) in comparison to g(A), given that h(A)
should have more of its inner structure revealed.

We see from corollary 6.2 and the fact that A ⊆ h(A) for all A ∈ P(N), that h behaves
like a closure operation on P(N). Similarly, we see that k behaves like a closure operation
on Ω2. The duality between h and k can be seen from the relations g ◦ k ◦ f ≡ g ◦ f ≡ h and
f ◦ h ◦ g ≡ f ◦ g ≡ k, both of which follow immediately from theorem 6.1.

We see that we can extend these ideas to study other classes of Large sets by defining f tr ,
gtr, h

t
r and ktr as we did f , g, h and k, by simply replacing Ω2 with Ωt

r, and 2-validating with
t∗ − r-validating. We can see that gtr ◦ htr ≡ gtr and f tr ◦ ktr ≡ f tr , since the proof of g ◦ h ≡ g
and f ◦ k ≡ f was independent of the number of partition classes, or the dimension of the
integer lattice being partitioned. We list some possible directions for future research with
these ideas stated with f, g, h, and k for simplicity. Can we create a σ-algebra of measurable
sets on ω2 such that for any S ⊂ N, we can show that f(S) is a measurable set? If this
is possible, we can define how small a set is with the function T : P(N) → [0, 1] given by
T (S) = 1 − T (f(S)). Even if f(S) is not always measurable, for 2 subsets S1, S2 ⊂ N, we
can define the partial ordering S1 ≤ S2 if and only if f(S2) ⊂ f(S1). We can also define the
equivalence relation S1 ∼ S2 if and only if f(S1) = f(S2), which is equivalent to requiring
h(S1) = h(S2). What do these relations tell us about the structure of sets that are not
2-Large? Can we show that h3(S) ( h(S) for any S ⊂ N? This question is in some sense an
analogue to the 2-Large is Large conjecture, since it is an attempt to measure if searching for
arithmetic progressions in a 3-partition is truly more restrictive than searching for arithmetic
progressions in a 2-partition.
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Chapter 7

Canonical Ramsey Theory

In all of our discussions so far, we have assumed that the number of partition classes is
finite, so it is natural to wonder what happens when we allow for an infinite number of
partition classes. The first partition that comes to mind is allowing each integer to have
its own partition class, so that we cannot even find a 2-term arithmetic progression in any
partition class. However, in this particular scenario, another interesting event occurs, we
find arbitrarily long Rainbow arithmetic progressions in which each term is in a different
partition class from any other term in the progression. Graham and Erdos have proved that
this is the only other scenario that needs to be considered in what they call the Canonical
Van der Waerden Theorem.

Canonical Van der Waerden Theorem: For any (not necessarily finite) coloring C of
the positive integers, and any k ∈ Z+, there either exists a monochromatic progression of
length k in C, or a rainbow progression of length k in C.

A copy of the original proof of this Theorem is provided in [10], but a much simpler
elementary proof is provided in [11]. We define a Canonically Large set, to be the analog of
a Large set in this new setting. To be more precise, we give the following definition.

Definition: A subset S of the positive integers is Canonically Large, if for any coloring of
Z+, there are arbitrarily long monochromatic S-A.P.s, or arbitrarily long rainbow S-A.P.s.

It is natural to wonder if we can apply the compactness principle in this situation to
get Canonical Van der Waerden numbers. In particular, we want to prove the following
Theorem.

Theorem 7.1: For any k ∈ Z+, there exists an integer N(k), such that for any n ≥ N(k),
and any coloring of [1, n], there either exists a monochromatic k-term arithmetic progression,
or a rainbow k-term arithmetic progression.
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To prove this, we cannot simply apply the compactness principle, because symbolic
space on an infinite number of characters is not a compact topological space. To illustrate
some of the issues that can occur, let {pn}∞n=1 be any enumeration of the primes, and let the
coloring Cn of Z+ be given by Cn(j) = pjn, for all n, j ∈ Z+. It is intuitively obvious that the
sequence of colorings {Cn}∞n=1 is really a constant sequence of colorings that converges to the
coloring in which no 2 elements share the same color, but this intuition has been shrouded
by the names of the colors. In the proof below, we will demonstrate how to circumvent this
problem.

Proof of Theorem 7.1: Assume for the sake of contradiction that N(k) does not exist for
some k ∈ Z+. For each n ∈ Z+, let C ′n be a coloring of [1, n] that does not contain any k-term
monochromatic arithmetic progression, or any k-term rainbow arithmetic progression. For
each n ∈ Z+, we create a coloring Cn from C ′n as follows. Let the partition classes of Cn
be precisely the same as those of C ′n, but relabel the colors of Cn, such that the label of
a partition class is determined by its smallest element, i.e., the partition class containing
1 is labeled with the color 1, the partition class containing the smallest integer that is not
contained in the color 1, is labeled with the color 2, and so forth. We now see that for any
m ≥ n, Cm is a n-coloring of [1, n], so we are now ready to proceed as we did in the proof of
the existence of the Van der Waerden numbers. We will construct a coloring C of Z+ from
the sequence of colorings {Cn}∞n=1. Since Cn(1) = 1 for all n, let C(1) = 1. Let t ∈ {1, 2}
be such that the set S2 := {n ≥ 1 | Cn(2) = t} is infinite, and define C(2) = t. Having
defined C(j) for 1 ≤ j ≤ k, and constructed a descending sequences of sets {Sj}kj=2 satisfying
Cn(j) = C(j) for all n ∈ Sj, we will proceed inductively to construct Sk+1 and define C(k+1).
Let t ∈ [1, k+ 1] be such that the set Sk+1 := {n ∈ Sk ∩ [k+ 1,∞) | Cn(k+ 1) = t is infinite,
and define C(k + 1) = t to obtain the desired result. By the Canonical Van der Waerden
Theorem, let {a + qd}k−1q=0 be a k-term arithmetic progression that is either monochromatic
or rainbow under C. Let n ∈ Sa+(k−1)d be arbitrary. Since Cn(a + qd) = C(a + qd) for
0 ≤ q ≤ k − 1, we see that {a + qd}k−1q=0 is also a monochromatic or rainbow arithmetic
progression under Cn as well, which is a contradiction. �

We notice as in the proof of the finitistic Van der Waerden Theorem, that we have not
made any special assumptions about the common difference d of the arithmetic progressions
we are examining. What we have actually proven, is the following theorem.

Theorem 7.2: If S is a Canonically Large set, then for any k ∈ Z+, there exists an integer
N(S, k), such that for any n ≥ N(S, k), and any coloring of Z+, there either exist arbitrarily
long monochromatic S-A.P.s, or arbitrarily long rainbow S-A.P.s.

Theorem 7.3: If S is a Canonically Large set, then S can be partitioned into infinitely
many disjoint Canonically Large sets.

This leads us to wonder if Canonically Large sets are strongly partition regular as Large
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sets and Multidimensionally Large sets are, but this is not yet known, which gives us the
following conjecture.

Conjecture 7.4: The family of Canonically Large sets is strongly partition regular.

We also note that we can show that the set nZ+ is Canonically Large for any n, but
other than this, there are no known examples of Canonically Large sets. Are all Large sets
also Canonically Large? Can we show that IP sets are Canonically Large? What about
the polynomial image of the positive integers for some nice polynomial? In particular, if
p(x) ∈ Q[x] is an integral polynomial that satisfies p(0) = 0, then is p(Z+) a Canonically
Large set? Using Theorem 5.8, we can give a method analogous to that of Theorem 5.12,
which instructs us on how to try and construct a Large set that is not Canonically Large.
Once again, given partitions f and g of [1, n] and [1,m] respectively, we will define the
partition f + g of [1, n + m] by (f + g)(x) = f(x) if 1 ≤ x ≤ n, and (f + g)(x) = g(x) if
n < x ≤ n+m. We will also define for any j ∈ Z the partition f+j by (f+j)(x) = f(x)+j,
where we are assuming that the partition classes are labeled by integers.

Theorem 7.5: Let k0 ∈ Z+ be such that for any k ∈ Z+, there exists a finite set Sk ⊆ Z+

satisfying w(Sk, k, k) < ∞ and N(Sk, k0) = ∞. Then there exists some {ck}∞k=1 ⊆ Z+ such
that S := ∪∞k=1ckSk is a Large set satisfying N(S, 2k0 − 1) = ∞, and is consequently not a
Canonically Large set.

Proof: By Theorem 5.8, we see that S will be a Large set regardless of what values are
chosen for the sequence C = {ck}∞k=1, so we only need to specify the values of C to ensure
that S is not Canonically Large. Let M2 = max(S2), let l2 = w(S2, 2, 2) + (k0 + 1)M2 + 1,
let f2 be any partition of [1, l2] that does not contain a length k0 canonical S-A.P., let g2
be the partition of [1, l2] that coincides precisely with f2, let c2 = 1, and S ′2 = S2. We
now proceed by induction to define Mn, ln, cn, S

′
n, fn, and gn with gn containing no canonical

length k0 cnSn-A.P., with the base case of n = 2 having already been handled. Let cn+1 = ln,
let Mn+1 = max(cn+1Sn+1), let ln+1 = w(Sn+1, n + 1, n + 1) + (k′ + 1)Mn+1 + 1, and let
fn+1 be any partition of [1, ln+1] that does not contain a canonical length k0 Sn+1-A.P.. Let

S ′n+1 = S ′n∪cn+1Sn+1. Let gn+1 =

ln+1∑
j=1

(gn+fn+1(j)). We will show that gn+1 does not contain

a canonical length 2k0 + 1 S ′n+1-A.P.. We see by construction that gn+1 does not contain a

canonical length k0 cn+1Sn+1-A.P., and for 1 ≤ i ≤ n, we see that gn+1 =

Ni∑
j=1

(gi + hi(j)), for

some Ni ∈ Z+, and some set of functions {hi}ni=1. It follows that any canonical length 2k0−1
ciSi-A.P. that is contained in gn+1, must have at least k0 terms that are contained in a block
of the form gi + hi(j), since the length of each such block is larger than (k′ + 1) max(Si),
but this contradicts the induction hypothesis, so the claimed (2k0 − 1) term arithmetic
progression does not exist. Now let S = ∪∞j=1S

′
j. We see that N(S, 2k0 − 1) = ∞, so S is
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not Canonically Large.

In addition to examining Canonically Large sets, we may try to generalize the Canon-
ical Van der Waerden Theorem by polynomializing it in a manner similar to that of the
Polynomial Van der Waerden Theorem.

Canonical Polynomial Van der Waerden Conjecture: Let {pi(x)}ni=1 be a family of
polynomials with integer coefficients satisfying pi(0) = 0 for all 1 ≤ i ≤ n. Then for any
coloring of Z+, there exist a, d ∈ Z+, such that {a + pi(d)}ni=1 is either monochromatic, or
rainbow.

We would also like to state a Canonical Multidimensional Polynomial Van der Waerden
Conjecture, but that means we must first state the Canonical Multidimensional Van der
Waerden Theorem. The first proof of this theorem can be found in [10], but an alternative
elementary proof can be found in [11].

Canonical Multidimensional Van der Waerden Theorem: For any n ∈ Z+, and any
partition C of Zn, at least 1 of the following 3 possibilities must occur.

(1) There exist arbitrarily large n-cubes that are constant under C.

(2) There exist arbitrarily large n-cubes that are rainbow under C.

(3) There exists a linear subspace S of Zn satisfying the following. For each k ∈ Zn, there
exists a length k n-cube denoted by Tk, such that for any points p, q ∈ Tk, we have C(p) = C(q)
if and only if p− q ∈ S.

Below are some pictures of the partitions described in situation (3) in Z2.

What would be a good formulation for the Canonical Multidimensional Polynomial
Van der Waerden Theorem? To see why this is much harder to formulate, we note that
an equivalent formulation of the Canonical Van der Waerden Theorem, is that for any fi-
nite set of points F ⊂ Z+, and any coloring C of Z+, there exist a, d ∈ Z+, such that
a + dF is either monochromatic or rainbow. This is analogous to the formulation of Van
der Waerden’s Theorem we used to see why squares are the appropriate structures to seek
in the Multidimensional Van der Waerden Theorem. However, this statement fails to gener-
alize appropriately to the Canonical Multidimensional Van der Waerden Theorem, since the
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canonical coloring obtained from a given coloring of Zm, may be constant along translates
of some subspace, so the structure of the points in our finite set F play a significant role.

To see the issues that can arise, let F be a set of 4 points in general position in Z3.
We note that for any 3 points in F , there exists a plane passing through them, so there
exist colorings of Z3, for which the induced canonical coloring on F results in precisely 3
points having the same color. Similarly, for any 2 points in F , there is a line passing through
them, so there exists colorings of Z3, for which the induced canonical coloring on F results
in precisely 1 set of 2 points having the same color. We may of course still find colorings
of Z3, for which the induced canonical coloring on F is monochromatic, or rainbow, and
lastly, we may find colorings of Z3, for which the induced canonical coloring on F results
in 2 points {f1, f2} of a given color, and 2 points {f3, f4}of another color, if and only if the
line passing through f1 and f2, is parallel to the line passing through f3 and f4. We see
now that depending on the geometry of the points in F , we can have the induced canonical
coloring of F be anything we would like, which makes the Canonical Multidimensional Van
der Waerden Theorem difficult to state for an arbitrary finite set of points. Consequently, if
we cannot state the Canonical Multidimensional Polynomial Van der Waerden Theorem for
an arbitrary set of integer coefficient polynomials {pi(x)} satisfying pi(0) = 0 for all i, then
for what sets of polynomials do we get a nice statement of the Theorem?
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Chapter 8

Topological Dynamics

A dynamical system is a pair (X,T ), where X is a compact topological space, and T : X → X
is a homeomorphism. Some sources only require that T be a continuous map, but we shall
see in the proofs below, that for our purposes it suffices to restrict ourselves to the case
in which T is a homeomorphism. Nonetheless, to be consistent with the notation of other
sources, many of our theorems will be stated using the action of T−1 instead of T , which is
only necessary when T is assumed to be continuous, but not necessarily a homeomorphism.
We shall soon see that there is a strong interplay between many of the “Large” sets that
were discussed in the previous chapters, and topological dynamics.

In dynamics, we generally take some point x ∈ X, and examine the set {T n(x)}∞n=1,
which is called the orbit of x under T . We want to see the effect of iterating T on X by
examining the properties of the iterations on any given point x. It is also often times the
case in topological dynamics that we study the orbit of some open set O being acted on by
T , or T−1. One of the first questions we can ask is, must the orbit of a given point x return
arbitrarily close to x? This is equivalent to requiring that for any open set O, there exists
some n ∈ Z+ such that O ∩ T−n(O) 6= ∅. We see that this is not the case by considering
the dynamical system (X,T ), in which X is the closed unit ball in R2 under the standard
topology, and T is the map given by T (x, y) = 1

2
(x, y). We see that any point that is not

the origin, and any open set that does not contain the origin, fail to satisfy the desired
properties. The problem can be attributed to the fact that for any open set O about the
origin, there is some n ∈ Z+ such that T n(X) ⊆ O, so most regions of our space X are
completely ignored after a finite amount of time, and are arguably useless. To circumvent
this problem, we need the idea of a minimal dynamical system. A dynamical system (X,T )
is said to be minimal if for any open set O, there exists n ∈ Z+ such that ∪nj=1T

j(O) ⊇ X.
This condition is equivalent to requiring the orbit of any point x ∈ X to be a dense set.
While these may seem like strong conditions to impose, it is known that for any dynamical
system (X,T ), there exists Y ⊆ X such that the dynamical system (Y, T ) is well defined
and minimal. A detailed discussion of these ideas and their proofs can be found in [3]. We
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are now ready to state our first theorem.

Theorem 8.1: Let (X,T ) be a minimal dynamical system. For any open set O, there exists
n ∈ Z+ such that T−n(O) ∩O 6= ∅.

Proof: LetN ∈ Z+ be such that ∪Nj=1T
−j(O) ⊇ X ⊇ T−(N+1)(O). It follows that T−(N+1)(O)∩

T−j(O) 6= ∅ for some 1 ≤ j ≤ N , so T−(N+1−j)(O) ∩O 6= ∅.

An attempt to generalize this theorem in the same direction as that of Large sets for
Van der Waerden’s Theorem leads to the following definition.

Definition 8.2: S ⊆ Z+ is topologically recurrent, if for any minimal dynamical system
(X,T ), and any open subset O, there exists some s ∈ S such that T−s(O) ∩O 6= ∅.

To see the connections of topologically recurrent sets and Ramsey Theory, we consider
the following theorem.

Theorem 8.3: S is topologically recurrent, if and only if w(S, 2, r) <∞ for every positive
integer r. In particular, Large sets are topologically recurrent.

Proof: We will prove the contrapositive of each statement. For the first direction, let us
assume that S is not topologically recurrent. Let (X,T ) be a minimal invertible dynamical
system, and O an open subset of X such that T sO ∩O = ∅ for every s ∈ S. Let N be such
that {T iO}Ni=0 is an open cover of X, and let p ∈ X be arbitrary. Now consider the partition
of X into N + 1 classes {O′i}Ni=0 as follows. O′0 = O, and for 1 ≤ i ≤ N , we have O′i =
T iO − (∪i−1j=0O

′
j). We can now construct the (N + 1)-coloring Cp of Z by setting Cp(n) = m

where 0 ≤ m ≤ N is such that T n(p) ∈ O′m. Suppose Cp(n1) = Cp(n2) for some distinct
positive integers n1 and n2, then let m = Cp(n1), so we note that T n1(p) ∈ O′m ⊆ TmO
and T n2(p) ∈ O′m ⊆ TmO, thus T n1−m(p) ∈ O and T n2−m(p) ∈ O, so T n2−n1O ∩ O 6= ∅. It
follows by our choice of O that n2 − n1 6∈ S, so we see that w(S, 2, N + 1) = ∞. For the
converse, let us assume that w(S, 2, r0) =∞ for some positive integer r0. Let C be a minimal
r0-coloring of Z with no 2-term S-A.P., and let us view C as an element of Ωr0 . Consider
the minimal invertible dynamical subsystem (X,T ) of (Ωr0 , T ) where X = {T iC|i ∈ Z}.
Consider O = B 1

2
(C) ∩X, and let C ′ and s be arbitrary elements of O and S respectively.

By construction of X, we see that for any positive integer M , there exists an integer j, such
that C ′(i) = C(j + i) for −M ≤ i ≤ M , so let us pick some M > s and the corresponding
value of j, and we see that C(0) = C ′(0) = C(j) 6= C(j + s) = C ′(s) = (T sC ′)(0), so
T sC ′ 6∈ B 1

2
(C), but C ′ and s were arbitrary, so S is not topologically recurrent.

We now see that any Large set is a set of topological recurrence, so we have an extensive
list of topologically recurrent sets other than Z+. It is natural to wonder if any topologically
recurrent set is also a Large set. To see that this is not true, we will first construct a family
of topologically recurrent sets that we have not shown to be Large.
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Theorem 8.4: Let S be an infinite subset of the positive integers, and let H = S − S =
{s1 − s2|s1, s2 ∈ S, s2 < s1}, then T is topologically recurrent.

Proof: Let (X,T ) be a minimal dynamical system and O an open set. Let N be such that
{T iO}Ni=0 is an open cover of X, and let {O′i}Ni=0 be as in the proof of theorem 5.1.1. Let
p ∈ X be arbitrary, and let the (N + 1)- coloring Cp also be defined as in the proof of
theorem 5.1.1. If {si}∞i=1 is an enumeration of the elements of S, we may apply the pigeon
hole principle to see that Cp(si) = Cp(sj) for some 1 ≤ i < j ≤ N + 2, so it follows that
T sj−siO ∩O 6= ∅, and H is topologically recurrent. �

In [12], V. Jungic constructs a set of the form H = S − S, such that for some integer
k, we have that w(H, 3, k) = ∞, so we see that topological recurrence is a strictly weaker
notion than that of largeness. In order to obtain the topologically equivalent notion of a
Large set, we must first introduce the topological Van der Waerden Theorem, whose proof
can be found in [3].

Topological Van der Waerden Theorem: Let (X,T ) be a minimal dynamical system.
For any open subset O of X, and any k ∈ Z+, there exists n ∈ Z+ such that ∩kj=0T

−njO 6= ∅.

Definition 8.5: S ⊆ Z+ is a set of k-topological recurrence, if for any minimal dynam-
ical system (X,T ), any open set O, and any k ∈ Z+, there exists some s ∈ S such that
∩k−1j=0T

−sjO 6= ∅. If S is a set of k-topological recurrence for all k, then S is a set of multiple
topological recurrence.

We will show that the notions of Large sets and sets of multiple topological recurrence
are equivalent. In order to do this, we will show an extension of theorem 8.3 in which we
show that S is a set of k-topological recurrence if and only if w(S, k, r) <∞ for all r ∈ Z+.
We see that the notion of k-topological recurrence is dual to that of r-Large sets, because
instead of fixing the number of colors and letting the length of the progression become
unbounded, we are fixing the length of the progression, and letting the number of colors
become unbounded. In this setting, the natural dual of the 2-Large is Large conjecture is
whether or not there exists some k0 ∈ Z+, such that any set of k0-topological recurrence is
a set of multiple topological recurrence. We have already seen that we must have k0 ≥ 3
in order for this conjecture to have any hope of being true. However, we conjecture the
opposite of this phenomenon below.

Conjecture 8.6: For any k ≥ 2, there exists S ⊆ Z+ such that S is a set of k-topological
recurrence, but not a set of (k + 1)-topological recurrence.

The reason for this conjecture, is that in [13], this result was proven for the analogous
statements of k-measure recurrence, which corresponds combinatorially to density state-
ments rather than partition regular statements. While we will not be discussing density
Ramsey Theory, the reader may find a dynamical introduction to the subject in [3] and a

35



combinatorial introduction to the subject in [9].

Theorem 8.7: S ⊆ Z+ is a set of k-topological recurrence if and only if w(S, k, r) <∞ for
all r ∈ Z+.

Proof: We will prove the contrapositive of each statement. For the first direction, let us
assume that S is not k-topologically recurrent. Let (X,T ) be a minimal invertible dynamical
system, and O an open subset of X such that ∩k−1j=0T

−sjO = ∅ for every s ∈ S. Let N be
such that {T iO}Ni=0 is an open cover of X, and let p ∈ X be arbitrary. Now consider
the partition of X into N + 1 classes {O′i}Ni=0 as follows. O′0 = O, and for 1 ≤ i ≤ N ,
we have O′i = T iO − (∪i−1j=0O

′
j). We can now construct the (N + 1)-partition Cp of Z by

setting Cp(n) = m where 0 ≤ m ≤ N is such that T n(p) ∈ O′m. Suppose Cp is constant
on the arithmetic progression {a + jd}k−1j=0 with d ∈ S, then let m = Cp(a), so we note

that T a+jd(p) ∈ O′m ⊆ TmO for all 0 ≤ j < k. It follows that p ∈ ∩k−1j=0T
−(a−m+jd), which

contradicts the assumption about O. It follows that Cp is not constant on any k-term S-
A.P., so w(S, k,N + 1) = ∞. For the converse, let us assume that w(S, k, r0) = ∞ for
some positive integer r0. Let C be a minimal r0-coloring of Z with no k-term S-A.P., and
let us view C as an element of Ωr0 . Consider the minimal invertible dynamical subsystem
(X,T ) of (Ωr0 , T ) where X = {T iC|i ∈ Z}. Consider O = B 1

2
(C) ∩ X, and let C ′ ∈ O,

s ∈ S, and a ∈ Z all be arbitrary. By construction of X, we see that for any positive
integer M , there exists an integer j, such that C ′(i) = C(j + i) for −M ≤ i ≤ M , so let
us pick some M > |a| + ks and the corresponding value of j. We see that C ′(a + is) =
C(j + a + is) for 0 ≤ i < k, but C is not constant on any k-term S-A.P., so C ′ is not
constant on {a + is}k−1i=0 . Let 0 ≤ i1 < i2 < k be such that C ′(a + i1s) 6= C ′(a + i2s),
so T−(a+i1s)(B 1

2
(C ′)) ∩ T−(a+i2s)(B 1

2
(C ′)) = ∅ → T−(a+i1s)(B 1

2
(C)) ∩ T−(a+i2s)(B 1

2
(C)) = ∅,

hence ∩k−1i=0 T
−(a+is)(O) = ∅, and S is not k-topologically recurrent.

Next, we want to see what topological notions are equivalent to the Multidimensional
Van der Waerden Theorem and Multidimensionally Large sets, which leads us to a general-
ization of topological recurrence called strong topological recurrence. Let X be a compact
topological space, and G a commuting group of homeomorphisms of X. We say that the
dynamical system (X,G) is minimal, if no closed subset of X is fixed under every element
of G. This is equivalent to requiring the existence of a subset {Si}Ni=1 of G for any open set
O, such that {Si(O)}Ni=1 is an open cover of X. Both of the previous conditions are also
equivalent to requiring a dense orbit for any point x ∈ X, where the orbit in this case is
defined as Ox = {g(x) | g ∈ G}. We see that in a general group, there is the possibility
of having more than 1 generator, which is what happens with the group of translations in
Zn, which is what also motivates the commutativity condition. In [17], nilpotent versions of
these recurrence theorems have been proven, but we will not focus on these. Below we state
the Topological Multidimensional Van der Waerden Theorem, a proof of which can be found
in [3].
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Topological Multidimensional Van der Waerden Theorem: Let (X,G) be a minimal
dynamical system, and let O be any open set. For any {Ti}ni=1 ⊆ G, and any k ∈ Z+, there
exists some j ∈ Z+ such that ∩ni=1T

−ji(O) 6= ∅.

Definition 8.8: S ⊆ Z+ is a set of strong topological recurrence if for any minimal dynamical
system (X,G), any open set O, any {Ti}ni=1 ⊆ G, and any k ∈ Z+, there exists some s ∈ S
such that ∩ni=1T

−si(O) 6= ∅.

Theorem 8.9: A set S is Multidimensionally Large if and only if it is strongly topologically
recurrent.

Proof: For the first direction, let us assume that S is Multidimensionally Large. Let (X,G)
be a minimal dynamical system, and let O be an arbitrary non-empty open set. Let {Ti}Mi=1

be any finite subset of G. Let {Si}Ni=1 be a subset of G such that {Si(O)}Ni=1 is an open cover
of X. We will use this open cover to construct a partition {O′i}Ni=1 of X as in Theorem 5.1.1.
Let O′1 = S1(O), and for 2 ≤ i ≤ N , let O′i = Si(O) − (∪i−1j=1O

′
j). Let p ∈ X be arbitrary,

and let Cp be the N -coloring of ZM given by Cp(x1, x2, · · · , xM) = n, where 1 ≤ n ≤ N
is such that (T−x11 ◦ T−x22 ◦ · · · ◦ T−xMM )(p) ∈ O′n. Since S is Multidimensionally Large, let
s ∈ S and a ∈ ZM be such that {Cp(a+ sei)}Mi=1 is a monochromatic set of color n. Letting
T ′ = T−a11 ◦ T−a22 ◦ · · · ◦ T−aMM , we see that T ′(p) ∈ T si (O′n) ⊆ T si (Sn(O)) for all i, so we see
that (S−1n ◦ T ′)(p) ∈ T si (O) for all i after recalling that G is a commutative group, which
yields the desired result.

For the converse, let us assume that S is strongly topologically recurrent, let M ∈
Z+ be arbitrary, and let C be an arbitrary minimal r-coloring of ZM . Let (X,G) be the
minimal dynamical subsystem of (ΩM

r , G), where G is the group of integer translations, and
X = {g(C) | g ∈ G}. Consider the open set O = B 1

2
(C) ∩ X, and let {Ti}Ni=1 be some

finite subset of G. Since S is strongly topologically recurrent, let s ∈ S be such that
O ∩ (∩Ni=1T

s
i (O)) 6= ∅. Let C ′ ∈ O ∩ (∩Ni=1T

s
i (O)) be arbitrary. Since T si (C ′) ∈ B 1

2
(O) for

all i, we see that C(0) = C ′(0) = (T si (C ′))(0) for all i. Since C is a minimal coloring, and
C ′ ∈ {g(C) | g ∈ G}, we have that C ∈ {g(C ′) | g ∈ G}, so for any ε > 0, there exists
gε ∈ G such that gε(C

′) ∈ Bε(C). For ε sufficiently small, we will have that T si (gε(C))(0) =
T si (C ′)(0) = C(0) for all i, which yields the desired result.

Most theorems in standard Ramsey Theory have formulations in terms of topological
dynamics, but can we find a dynamical formulation of theorems in canonical Ramsey Theory?
This would involve the loss of compactness in the most general case, so new methods would
have to be developed.

We will now examine a concrete case of topological recurrence known as Bohr recurrence.
Let us identify [0, 1) with the unit torus T. A subset S of the integers is called Bohr(1) if
for any α ∈ T, and any ε > 0, there exists s ∈ S such that sα ∈ (−ε, ε). In general, S
is called Bohr(n) if for any (α1, α2, · · · , αn) ∈ Tn, and any ε > 0, there exists s ∈ S such
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that sαi ∈ (−ε, ε) for 1 ≤ i ≤ n. If S is Bohr(n) for all n, then we simply say that S
is Bohr recurrent. We see that Bohr(n) recurrence is just the special case of topological
recurrence where the ambient space X is the n-dimensional torus Tn, and the allowable
homeomorphisms are the translations. We can construct a family of colorings out of the
dynamical systems created by these tori as follows.

For any α ∈ [0, 1), let Cα denote the coloring of the integers given by

Cα(i) = { 0 if {iα} ∈ [0, 1
2
)

1 if {iα} ∈ [1
2
, 1)

.

It is shown in [3], that in Ω2, under the standard shift operator T , Cα is a minimal
coloring for any α. If a set S is 2-Large, then there exist arbitrarily long monochromatic
S-A.P.s in any Cα simply from the definition of 2-Large. Since the set of colorings Ĉ =
{Cα}α∈[0,1) is a massive set of colorings, we are led to wonder if the converse is true?

Theorem 8.10: S is Bohr(1) if and only if any coloring in Ĉ contains arbitrarily large
S-A.P.s.

Proof: Let us first assume that S is Bohr(1), and let Cα ∈ Ĉ be an arbitrary coloring. Since
S is Bohr(1), for an arbitrary positive integer k, let s ∈ S be such that sα ∈ (− 1

2k
, 1
2k

). If
sα ∈ [0, 1

2k
), then nsα ∈ [0, 1

2
) for 1 ≤ n ≤ k, so Cα(ns) = 0 for all such n, and Cα contains

a k-term S-A.P.. If sα ∈ (− 1
2k
, 0), then nsα ∈ (−1

2
, 0) = (1

2
, 1) for 1 ≤ n ≤ k, so Cα(ns) = 1

for all such n, and Cα contains a k-term S-A.P., thus every coloring in Ĉ contains arbitrarily
long S-A.P.s. For the converse, let us assume that every coloring in Ĉ contains arbitrarily
long S-A.P.s. To show that S is Bohr(1), let α ∈ [0, 1) and ε > 0 both be arbitrary. Let k be
a positive integer such that 1

2k
< ε, and let s ∈ S be such that {a+si}ki=0 is a monochromatic

(k + 1)-term S-A.P. in Cα. If sα ∈ [0, 1
2
), then assume for the sake of contradiction that

sα ∈ ( 1
2k
, 1
2
). We note that aα ∈ [0, 1

2
), and that for some 0 ≤ j < k, we must have

(a+ js)α ∈ (1
2
− 1

2k
, 1
2
) since sα ∈ ( 1

2k
, 1
2
), so we must also have (a+ (j + 1)s)α ∈ (1

2
, 1), thus

Cα(a + (j + 1)s) = 1, which is the desired contradiction. If sα ∈ (1
2
, 1), then −sα ∈ [0, 1

2
),

and the (k+1)-term S-A.P. {a+ks+ i(−s)}ki=0 is monochromatic in Cα, so we have reduced
this to the previous case. �

Corollary 8.11: Every 2-Large set is Bohr(1).

Corollary 8.12: Lacunary sets are not 2-Large.

Proof: According to [14], Lacunary sets are not Bohr(1), and are consequently not 2-Large.
This solves a conjecture of Brown, Graham, and Landman posed in [1].

Is every Bohr(1) set a 2-Large set as well? In order to investigate this, we will investigate
Bohr(1) recurrence from another perspective. Note that for any ε > 0, the open set In(ε) =
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∪ni=1(
i−ε
n
, i+ε
n

) is the set of α ∈ [0, 1) such that {nα} ∈ I1(ε) = (−ε, ε). We can see an
alternative formulation of a set S being Bohr(1) if and only if {Is(ε)}s∈S is an open cover of T
for every ε > 0. This is equivalent to saying that [0, 1) = Ī(S) := ∩ε>0(∪s∈SIs(ε)). With this
new definition, we can verify the known fact that S = mZ+ is Bohr(1) for any positive integer
m as follows. It is clear that Q ∩ [0, 1) ⊂ Ī(mZ+), as for any p

q
∈ Q, we see that mq ∈ mZ,

and (p
q
)mq = pm ≡ 0. In fact, we see from this proof that Q ∩ [0, 1) ⊆ Ī(S) if S contains a

multiple of any positive integer. Next, consider any irrational α ∈ [0, 1) and any ε > 0. Let
p
q

be a continued fraction convergent of α with q > m
ε

, so ε
mq

> 1
q2
> |α − p

q
| = |α − mp

mq
|,

hence α ∈ Imq(ε), which gives the desired result.

While there exist more direct proofs of this result, this proof raises the question of how
much the theory of continued fractions can tell us about recurrence? Furthermore, we can
verify that any Bohr(1) set S must contain a multiple of every positive integer n. To see this,
we will show that if S does not contain a multiple of some n0, then 1

n0
6∈ In( 1

n0
) for any n

with n0 - n, which will give the desired result. Let n = mn0 + q with m ≥ 0 and 1 ≤ q < n0.
We see that m

mn0+q
< 1

n0
< m+1

mn0+q
, so we now have that 1

n0
− m

mn0+q
= q

n0(mn0+q)
≥ 1

nn0
and

m+1
mn0+q

− 1
n0

= n0−q
n0(mn0+q)

≥ 1
nn0

, so 1
n0
6∈ In( 1

n0
) as desired. Now let us consider the sets

Bn,m = {nx + m|x ∈ Z+}. We already know that Bn,m is not Bohr(1) if n - m, but we will
be able to show that [0, 1)−Q ⊆ Ī(Bn,m) in this case. Let α ∈ [0, 1)−Q be arbitrary. We
note that nα is also irrational, so {xnα}x∈Z+ is dense in [0, 1), so let x be chosen so that
xnα ∈ (−mα,−mα + ε), and it follows that (nx + m)α ∈ (0, ε), which yields the desired
result. The set N̂ := {n!|n ∈ Z+} is known to not be Bohr(1) because it is a lacunary
set, but Q ⊆ Ī(N̂) since N̂ contains a multiple of every positive integer, so it follows that
Sn,m := Bn,m ∪ N̂ is Bohr(1) for any choice of n and m, thus Bohr(1) sets are not partition
regular.

While Bohr(1) sets are not partition regular, we can see that sets of Bohr recur-
rence are partition regular. To see this, let R and S be sets of positive integers that
are not Bohr(r) and Bohr(s) respectively. Let α̂1 = (α1,1, α1,2, · · · , α1,r) be an element
of Tr such that for some fixed ε > 0, and any x ∈ R, there exists 1 ≤ i ≤ r such that
xα1,i 6∈ (−ε, ε), and let α̂2 = (α2,1, α2,2, · · · , α2,s) be defined similarly for S. Consider
α̂3 = (α1,1, α1,2, · · · , α1,r, α2,1, α2,2, · · · , α2,s), which is an element of Tr+s that demonstrates
R ∪ S is not Bohr(r + s). An intermediate step to determining the relationship between 2-
Large sets and sets of topological recurrence, would be to determine the relationship between
2-Large sets and sets of Bohr recurrence, which leads to the following conjecture.

Conjecture 8.13: Every 2-Large set is also a set of Bohr recurrence.

Since we already know that all 2-Large sets are Bohr(1), the next step would be to
determine if 2-Large sets are Bohr(2). From our discussion of the partition regularity of sets
of Bohr recurrence, we see that the set S2,1 from above is Bohr(1) but not Bohr(2), so it
is natural to wonder if S2,1 is a 2-Large set. In order to investigate this conjecture in full
generality, we need to create a family of partitions of T2 similar to the partitions above of
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T. Let T2 = A ∪B be a partition of T2, and let the coloring Cα,β,A,B be given by

Cα,β,A,B(i) = { 0 if (iα, iβ) ∈ A
1 if (iα, iβ) ∈ B .

In order to show that every 2-Large set is Bohr(2), it would suffice to find a partition
A,B of T2, such that a long monochromatic A.P. is found in the coloring Cα,β,A,B, only if the
common difference d of the arithmetic progression satisfies (dα, dβ) < ε, where ε depends
only on the length of the arithmetic progression. Below are 3 partitions of T2, which I believe
satisfy this criteria, but for which I am unable to prove whether or not it is true.
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