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0.1 Every Set of Positive Upper Density has

a 3-AP

0.1.1 Combinatorial Proof

Consider the following statement:
If A ⊆ [n] and |A| is ‘big’ then A must have a 3-AP.

This statement, made rigorous, is true. In particular, the following is true
and easy:

Let n ≥ 3. If A ⊆ [n] and |A| ≥ 0.7n then A must have a 3-AP.

Can we lower the constant 0.7? We can lower it as far as we like if we
allow n to start later:

Roth [?, ?, ?] proved the following using analytic means.
(∀λ > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀A ⊆ [n])[|A| ≥ λn =⇒ A has a 3-AP].

The analogous theorem for 4-APs was later proven by Szemeredi [?, ?]
by a combinatorial proof. Szemeredi [?] later (with a much harder proof)
generalized from 4 to any k.

We prove the k = 3 case using the combinatorial techniques of Szemeredi.
Our proof is essentially the same as in the book Ramsey Theory by Graham,
Rothschild, and Spencer [?].

More is known. A summary of what else is known will be presented in
the next section.

Def 0.1.1 Let sz(n) be the least number such that, for all A ⊆ [n], if |A| ≥
sz(n) then A has a 3-AP. Note that if A ⊆ [a, a + n − 1] and |A| ≥ sz(n)
then A has a 3-AP. Note also that if A ⊆ {a, 2a, 3a, . . . , na} and |A| ≥ sz(n)
then A has a 3-AP. More generally, if A is a subset of any equally spaced
set of size n, and |A| ≥ sz(n), then A has a 3-AP.

We will need the following Definition and Lemma.

Def 0.1.2 Let k, e, d1, . . . , dk ∈ N. The cube on (e, d1, . . . , dk), denoted
C(e, d1, . . . , dk), is the set {e + b1d1 + · · · + bkdk | b1, . . . , bk ∈ {0, 1}}. A
k-cube is a cube with k d’s.
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Lemma 0.1.3 Let I be an interval of [1, n] of length L. If |B| ⊆ I then
there is a cube (e, d1, . . . , dk) contained in B with k = Ω(log log |B|) and
(∀i)[di ≤ L].

Proof:
The following procedure produces the desired cube.

1. Let B1 = B and β1 = |B1|.

2. Let D1 be all
(
β1
2

)
positive differences of elements of B1. Since B1 ⊆ [n]

all of the differences are in [n]. Hence some difference must occur(
β1
2

)
/n ∼ β2

1/2n times. Let that difference be d1. Note that d1 ≤ L.

3. Let B2 = {x ∈ B1 : x + d1 ∈ B1}. Note that |B2| ≥ β2
1/2n. Let

|B2| = β2. Note the trivial fact that

x ∈ B1 =⇒ x+ d1 ∈ B.

4. Let D2 be all
(
β2
2

)
positive differences of elements of B2. Since B2 ⊆ [n]

all of the differences are in [n]. Hence some difference must occur(
β1
2

)
/n ∼ β2

2/2n times. Let that difference be d2. Note that d2 ≤ L.

5. Let B3 = {x ∈ B2 : x + d2 ∈ B2}. Note that |B3| ≥ β2
2/2n. Let

|B3| = β3. Note that

x ∈ B3 =⇒ x+ d2 ∈ B
x ∈ B3 =⇒ x ∈ B2 =⇒ x+ d1 ∈ B
x ∈ B3 =⇒ x+ d2 ∈ B2 =⇒ x+ d1 + d2 ∈ B

6. Keep repeating this procedure until Bk+2 = ∅. (We leave the details of
the definition to the reader.) Note that if i ≤ k + 1 then

x ∈ Bi =⇒ x+ b1d1 + · · ·+ bi−1di−1 ∈ B for any b1, . . . , bi−1 ∈ {0, 1}.

7. Let e be any element of Bk+1. Note that we have e+b1d1+· · ·+bkdk ∈ B
for any b1, . . . , bk ∈ {0, 1}.

We leave it as an exercise to formally show that C(e, d1, . . . , dk) is con-
tained in B and that k = Ω(log log |B|).
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The next lemma states that if A is ‘big’ and 3-free then it is somewhat
uniform. There cannot be sparse intervals of A. The intuition is that if A
has a sparse interval then the rest of A has to be dense to make up for it,
and it might have to be so dense that it has a 3-AP.

Lemma 0.1.4 Let n, n0 ∈ N;λ, λ0 ∈ (0, 1). Assume λ < λ0 and (∀m ≥
n0)[sz(m) ≤ λ0m]. Let A ⊆ [n] be a 3-free set such that |A| ≥ λn.

1. Let a, b be such that a < b, a > n0, and n− b > n0. Then λ0(b− a)−
n(λ0 − λ) ≤ |A ∩ [a, b]|.

2. Let a be such that n− a > n0. Then λ0a− n(λ0 − λ) ≤ |A ∩ [1, a]|.

Proof:

1) Since A is 3-free and a ≥ n0 and n − b ≥ n0 we have |A ∩ [1, a − 1]| <
λ0(a− 1) < λ0a and |A ∩ [b+ 1, n]| < λ0(n− b). Hence

λn ≤ |A| = |A ∩ [1, a− 1]|+ |A ∩ [a, b]|+ |A ∩ [b+ 1, n]|
λn ≤ λ0a+ |A ∩ [a, b]|+ λ0(n− b)

λn− λ0n+ λ0b− λ0a ≤ |A ∩ [a, b]|
λ0(b− a)− n(λ0 − λ) ≤ |A ∩ [a, b]|.

2) Since A is 3-free and n−a > n0 we have |A∩ [a+1, n]| ≤ λ0(n−a). Hence

λn ≤ |A| = |A ∩ [1, a]|+ |A ∩ [a+ 1, n]|
λn ≤ |A ∩ [1, a]|+ λ0(n− a)

λn− λ0n+ λ0a ≤ |A ∩ [1, a]|
λ0a− (λ0 − λ)n ≤ |A ∩ [1, a]|.

Lemma 0.1.5 Let n, n0 ∈ N and λ, λ0 ∈ (0, 1). Assume that λ < λ0 and
that (∀m ≥ n0)[sz(m) ≤ λ0m]. Assume that n

2
≥ n0. Let a, L ∈ N such

that a ≤ n
2
, L < n

2
− a, and a ≥ n0. Let A ⊆ [n] be a 3-free set such that

|A| ≥ λn.

1. There is an interval I ⊆ [a, n
2
] of length ≤ L such that

|A ∩ I| ≥
⌊

2L

n− 2a
(λ0(

n

2
− a)− n(λ0 − λ))

⌋
.
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2. Let α be such that 0 < α < 1
2
. If a = αn and

√
n << n

2
−αn then there

is an interval I ⊆ [a, n
2
] of length ≤ O(

√
n) such that

|A ∩ I| ≥
⌊

2
√
n

(1− 2α)
(λ0(

1

2
− (λ0 − λ)− α))

⌋
= Ω(

√
n).

Proof: By Lemma 0.1.4 with b = n
2
, |A ∩ [a, n

2
]| ≥ λ0(

n
2
− a− n(λ0 − λ).

Divide [a, n
2
] into

⌈
n−2a
2L

⌉
intervals of size ≤ L. There must exist an interval

I such that

|A ∩ I| ≥
⌊

2L

n− 2a
(λ0(

n

2
− a)− n(λ0 − λ))

⌋
.

If L = d
√
ne and a = αn then

|A ∩ I| ≥
⌊

2L
n−2a(λ0(

n
2
− a)− n(λ0 − λ))

⌋
≥
⌊

2
√
n

n(1−2α)(λ0(
n
2
− αn)− n(λ0 − λ)))

⌋
≥
⌊

2
√
n

(1−2α)(λ0(
1
2
− α)− (λ0 − λ))

⌋
= Ω(

√
n).

Theorem 0.1.6 For all λ, 0 < λ < 1, there exists n0 ∈ N such that for all
n ≥ n0, sz(n) ≤ λn.

Proof:
Let S(λ) be the statement

there exists n0 such that, for all n ≥ n0, sz(n) ≤ λn.

It is a trivial exercise to show that S(0.7) is true.
Let

C = {λ | S(λ)}.

C is closed upwards. Since 0.7 ∈ C we know C 6= ∅. Assume, by way of
contradiction, that C 6= (0, 1). Then there exists λ < λ0 such that λ /∈ C
and λ0 ∈ C. We can take λ0 − λ to be as small as we like. Let n0 be such
that S(λ0) is true via n0. Let n ≥ n0 and let A ⊆ [n] such that |A| ≥ λn but
A is 3-free. At the end we will fix values for the parameters that (a) allow
the proof to go through, and (b) imply |A| < λn, a contradiction.
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PLAN : We will obtain a T ⊆ A that will help us. We will soon see
what properties T needs to help us. Consider the bit string in {0, 1}n that
represents T ⊆ [n]. Say its first 30 bits looks like this:

T (0)T (1)T (2)T (3) · · ·T (29) = 000111111100001110010111100000

The set A lives in the blocks of 0’s of T (henceforth 0-blocks). We will
bound |A| by looking at A on the ‘small’ and on the ‘large’ 0-blocks of T .
Assume there are t 1-blocks. Then there are t + 1 0-blocks. We call a 0-
block small if it has < n0 elements, and big otherwise. Assume there are
tsmall small 0-blocks and tbig big 0-blocks. Note that tsmall + tbig = t + 1 so
tsmall, tbig ≤ t+ 1. Let the small 0-blocks be Bsmall

1 , . . . , Bsmall
tsmall , let their union

be Bsmall, let the big 0-blocks be Bbig
1 , . . . , Bbig

tbig
, and let their union be Bbig.

It is easy to see that

|A ∩Bsmall| ≤ tsmalln0 ≤ (t+ 1)n0.

Since each Bbig
i is bigger than n0 we must have, for all i, |A ∩ Bbig

i | <
λ0|Bbig

i | (else A ∩Bbig
i has a 3-AP and hence A does). It is easy to see that

|A ∩Bbig| =
tbig∑
i=1

|A ∩Bbig
i | ≤

tbig∑
i=1

λ0|Bbig
i | ≤ λ0

tbig∑
i=1

|Bbig
i | ≤ λ0(n− |T |).

Since A can only live in the (big and small) 0-blocks of T we have

|A| = |A ∩Bsmall|+ |A ∩Bbig| ≤ (t+ 1)n0 + λ0(n− |T |).

In order to use this inequality to bound |A| we will need T to be big and
t to be small, so we want T to be a big set that has few blocks.

If only it was that simple. Actually we can now reveal the

REAL PLAN: The real plan is similar to the easy version given above.
We obtain a set T ⊆ A and a parameter d. A 1-block is a maximal AP with
difference d that is contained in T (that is, if FIRST and LAST are the first
and last elements of the 1-block then FIRST − d /∈ T and LAST + d /∈ T ).
A 0-block is a maximal AP with difference d that is contained in T . Partition
T into 1-blocks. Assume there are t of them.

Let [n] be partitioned into N0∪· · ·∪Nd−1 where Nj = {x | x ≤ n∧x ≡ j
(mod d)}.
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Fix j, 0 ≤ j ≤ d−1. Consider the bit string in {0, 1}bn/dc that represents
T ∩Nj Say the first 30 bits of T ∩Nj look like

T (j)T (d+j)T (2d+j)T (3d+j) · · ·T (29d+j) = 00011111110000111001011111100

During PLAN we had an intuitive notion of what a 0-block or 1-block
was. Note that if we restrict to Nj then that intuitive notion is still valid.
For example the first block of 1’s in the above example represents T (3d+ j),
T (4d+ j), T (5d+ j), . . ., T (9d+ j) which is a 1-block as defined formally.

Each 1-block is contained in a particular Nj. Let tj be the number of

1-blocks that are contained in Nj. Note that
∑d−1

j=0 tj = t. The number of
0-blocks that are in Nj is at most tj + 1.

Let j be such that 0 ≤ j ≤ d − 1. By reasoning similar to that in the
above PLAN we obtain

|A ∩Nj| ≤ (tj + 1)n0 + λ0(Nj − |T |).
We sum both sides over all j = 0 to d− 1 to obtain

|A| ≤ (t+ d)n0 + λ0(n− |T |)
In order to use this inequality to bound |A| we need T to be big and t, d

to be small. Hence we want a big set T which when looked at mod d, for
some small d, decomposes into a small number of blocks.

What is a 1-block within Nj? For example, lets look at d = 3 and the
bits sequence for T is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17;
0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0.

Note that T looked at on N2 ∪ T has bit sequence

2 5 8 11 14 17;
0 1 1 1 1 0.

The numbers 5, 8, 11, 14 are all in T and form a 1-block in the N2 part.
Note that they also from an arithmetic progression with spacing d = 3. Also
note that this is a maximal arithmetic progression with spacing d = 3 since
0 /∈ T and 17 /∈ T . More generally 1-blocks of T within Nj are maximal
arithmetic progressions with spacing d. With that in mind we can restate
the kind of set T that we want.

We want a set T ⊆ A and a parameter d such that
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1. T is big (so that λ0(n− |T |) is small),

2. d is small (see next item), and

3. the number of maximal arithmetic progressions of length d within T ,
which is the parameter t above, is small (so that (t+ d)n0 is small).

How do we obtain a big subset of A? We will obtain many pairs x, y ∈ A
such that 2y− x ≤ n. Note that since x, y, 2y− x is a 3-AP and x, y ∈ A we
must have 2y − x ∈ A.

Let α, 0 < α < 1
2
, be a parameter to be determined later. (For those

keeping track, the parameters to be determined later are now λ0, λ, n, and
α. The parameter n0 depends on λ0 so is not included in this list.)

We want to apply Lemma 0.1.5.2.b to n, n0, a = αn. Hence we need the
following conditions.

αn ≥ n0
n
2
≥ n0

n
2
− αn ≥

√
n

Assuming these conditions hold, we proceed. By Lemma 0.1.5.b there is
an interval I ⊆ [αn, n

2
] of length O(

√
n) such that

|A ∩ I| ≥
⌊

2
√
n

(1− 2α)
(λ0(

1

2
− α)− (λ0 − λ))

⌋
= Ω(

√
n).

By Lemma 0.1.3 there is a cube C(e, d1, . . . , dk) contained in |A∩ I| with
k = Ω(log log |A ∩ I|) = Ω(log log

√
n) = Ω(log log n) and d ≥

√
n.

For i such that 1 ≤ i ≤ k we define the following.

1. Define C0 = {e} and, for 1 ≤ i ≤ k, define Ci = C(e, d1, . . . , di).

2. Ti is the third terms of AP’s with the first term in A∩ [1, e−1] and the
second term in Ci. Formally Ti = {2m−x | x ∈ A∩ [1, e−1]∧m ∈ Ci}.

Note that, for all i, Ti ∩A = ∅. Hence we look for a large Ti that can be
decomposed into a small number of blocks. We will end up using d = 2di+1.

Note that T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ Tk. Hence to obtain a large Ti it suffices
to show that T0 is large and then any of the Ti will be large (though not
necessarily consist of a small number of blocks).

Since C0 = {e} we have
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T0 = {2m−x | x ∈ A∩ [1, e−1]∧m ∈ C0} = {2e−x | x ∈ A∩ [1, e−1]}.
Clearly there is a bijection from A ∩ [1, e − 1] to T0, hence |T0| = |A ∩

[1, e− 1]|. Since e ∈ [αn, n
2
] we have |A ∩ [1, e]| ≥ |A ∩ [1, αn]|.

We want to use Lemma 0.1.4.2 on A∩[1, αn]. Hence we need the condition

n− αn ≥ n0.

By Lemma 0.1.4

|T0| ≥ |A ∩ [1, αn]| ≥ λ0αn− n(λ0 − λ) = n(λ0α− (λ0 − λ)).

In order for this to be useful we need the following condition

λ− λ0 + λ0α > 0
λ0α > λ0 − λ

We now show that some Ti has a small number of blocks. Since |Tk| ≤ n
(a rather generous estimate) there must exist an i such that |Ti+1 − Ti| ≤ n

k
.

Let t = n
k

(t will end up bounding the number of 1-blocks).
Partition Ti into maximal AP’s with difference 2di+1. We call these max-

imal AP’s 1-blocks. We will show that there are ≤ t 1-blocks by showing a
bijection between the blocks and Ti+1 − Ti.

If z ∈ Ti then z = 2m− x where x ∈ A ∩ [1, αn− 1] and m ∈ Ci. By the
definitions of Ci and Ci+1 we know m+di+1 ∈ Ci+1. Hence 2(m+di+1)−x ∈
Ti+1. Note that 2(m+ di+1)− x = z + 2di+1. In short we have

z ∈ Ti =⇒ z + 2di+1 ∈ Ti+1.

NEED PICTURE
We can now state the bijection. Let z1, . . . , zm be a block in Ti. We know

that zm + 2di+1 /∈ Ti since if it was the block would have been extended
to include it. However, since zm ∈ Ti we know zm + 2di+1 ∈ Ti+1. Hence
zm + 2di+1 ∈ Ti+1 − Ti. This is the bijection: map a block to what would be
the next element if it was extended. This is clearly a bijection. Hence the
number of 1-blocks is at most t = |Ti+1 − Ti| ≤ n/k.

To recap, we have

|A| ≤ (t+ d)n0 + λ0(n− |T |)

with t ≤ n
k

= O( n
log logn

), d = O(
√
n), and |T | ≥ n(λ0α− (λ0−λ)). Hence

we have
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|A| ≤ O((
n

log log n
+
√
n)n0) + nλ0(1− λ+ λ0 − λ0α).

We want this to be < λn. The term O(( n
log logn

+
√
n)n0) can be ignored

since for n large enough this is less than any fraction of n. For the second
term we need

λ0(1− λ+ λ0 − λ0α) < λ

We now gather together all of the conditions and see how to satisfy them
all at the same time.

αn ≥ n0
n
2
≥ n0

n
2
− αn ≥

√
n

n− αn ≥ n0

λ0α > λ0 − λ
λ0(1− λ+ λ0 − λ0α) < λ

We first choose λ and λ0 such that λ0 − λ < 10−1λ20. This is possible
by first picking an initial (λ′, λ′0) pair and then picking (λ, λ0) such that
λ′ < λ < λ0 < λ′0 and λ0 − λ < 10−1(λ′)2 < 10−1λ20. The choice of λ0
determines n0. We then chose α = 10−1. The last two conditions are satisfied:

λ0α > λ0 − λ becomes

10−1λ0 > 10−1λ20
1 > λ0

which is clearly true.
λ0(1− λ+ λ0 − λ0α) < λ becomes

λ0(1− 10−1λ20 − 10−1λ0) < λ
λ0 − 10−1λ30 − 10−1λ20 < λ

λ0 − λ− 10−1λ30 − 10−1λ20 < 0
10−1λ20 − 10−1λ30 − 10−1λ20 < 0

−10−1λ30 < 0

which is clearly true.
Once λ, λ0, n0 are picked, you can easily pick n large enough to make the

other inequalities hold.
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0.1.2 Analytic Proof

Consider the following statement:
If A ⊆ [n] and #(A) is ‘big’ then A must have a 3-AP.

This statement, made rigorous, is true. In particular, the following is true
and easy:

Let n ≥ 3. If A ⊆ [n] and #(A) ≥ 0.7n then A must have a 3-AP.

Can we lower the constant 0.7? We can lower it as far as we like if we
allow n to start later:

Roth [?, ?, ?] proved the following using analytic means.
(∀λ > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀A ⊆ [n])[#(A) ≥ λn =⇒ A has a 3-AP].

The analogous theorem for 4-APs was later proven by Szemeredi [?, ?]
by a combinatorial proof. Szemeredi [?] later (with a much harder proof)
generalized from 4 to any k.

We prove the k = 3 case using the analytic techniques of Roth; however,
we rely heavily on Gowers [?, ?]

Def 0.1.7 Let sz(n) be the least number such that, for all A ⊆ [n], if #(A) ≥
sz(n) then A has a 3-AP. Note that if A ⊆ [a, a+ n− 1] and #(A) ≥ sz(n)
then A has a 3-AP. Note also that if A ⊆ {a, 2a, 3a, . . . , na} and #(A) ≥
sz(n) then A has a 3-AP. More generally, if A is a subset of any equally
spaced set of size n, and #(A) ≥ sz(n), then A has a 3-AP.

Throughout this section the following hold.

1. n ∈ N is a fixed large prime.

2. Zn = {1, . . . , n} with modular arithmetic.

3. ω = e2πi/n.

4. If a is a complex number then |a| is its length.

5. If A is a set then |A| is its cardinality.

Counting 3-AP’s
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Lemma 0.1.8 Let A,B,C ⊆ [n]. The number of (x, y, z) ∈ A×B×C such
that x+ z ≡ 2y (mod n) is

1

n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z).

Proof:
We break the sum into two parts:

Part 1:

1

n

∑
x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z).

Note that we can replace ω−r(x−2y+z) with ω0 = 1. We can then replace∑n
r=1 1 with n. Hence we have

1

n

∑
x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)n =
∑

x,y,z∈[n],x+z≡2y (mod n)

A(x)B(y)C(z)

This is the number of (x, y, z) ∈ A×B×C such that x+z ≡ 2y (mod n).
Part 2:

1

n

∑
x,y,z∈[n],x+z 6≡2y (mod n)

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z).

We break this sum up depending on what the (nonzero) value of w =
x+ z − 2y (mod n). Let

Su =
∑

x,y,z∈[n],x−2y+z=2

A(x)B(y)C(z)
n∑
r=1

ω−ru.

Since u 6= 0,
∑n

r=1 ω
−ru =

∑n
r=1 ω

−r = 0. Hence Su = 0.
Note that

1

n

∑
x,y,z∈[n],x+z 6≡2y (mod n)

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z) =
1

n

n−1∑
u=1

Su = 0

The lemma follows from Part 1 and Part 2.



0.1. EVERY SET OF POSITIVE UPPER DENSITY HAS A 3-AP 13

Lemma 0.1.9 Let A ⊆ [n]. Let B = C = A ∩ [n/3, 2n/3]. The number of
(x, y, z) ∈ A×B × C such that x, y, z forms a 3-AP is at least

1

2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z) −O(n).

Proof: By Lemma 0.1.8

1

n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z)

is the number of (x, y, z) ∈ A× B × C such that x+ z ≡ 2y (mod n). This
counts three types of triples:

• Those that have x = y = z. There are n/3 of them.

• Those that have x+ z = 2y + n. There are O(1) of them.

• Those that have x 6= y, y 6= z, x 6= z, and x+ z = 2y.

Hence

#({(x, y, z) : (x+z = 2y)∧x 6= y∧y 6= z∧x 6= z}) =
1

n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z)−O(n).

We are not done yet. Note that (5, 10, 15) may show up as (15, 10, 5).
Every triple appears at most twice. Hence

#({(x, y, z) : (x+ z = 2y) ∧ x 6= y ∧ y 6= z ∧ x 6= z})
≤ 2#({(x, y, z) : (x < y < z)∧(x+z = 2y)∧x 6= y∧y 6= z∧x 6= z}).
Therefore

1

2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z)−O(n) ≤ the number of 3-AP’s with x ∈ A, y ∈ B, z ∈ C .

We will need to re-express this sum. For that we will use Fourier Analysis.

Fourier Analysis
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Def 0.1.10 If f:Zn → N then f̂:Zn → C is

f̂(r) =
∑
s∈[n]

f(s)ω−rs.

f̂ is called the Fourier Transform of f .

What does f̂ tell us? We look at the case where f is the characteristic
function of a set A ⊆ [n]. Henceforth we will use A(x) instead of f(x).

We will need the following facts.

Lemma 0.1.11 Let A ⊆ {1, . . . , n}.

1. Â(n) = #(A).

2. maxr∈[n] |Â(r)| = #(A).

3. A(s) = 1
n

∑n
r=1 Â(r)ω−rs. DO WE NEED THIS?

4.
∑n

r=1 |Â(r)|2 = n#(A).

5.
∑n

s=1A(s) = 1
n

∑n
r=1 Â(r).

Proof:
Note that ωn = 1. Hence

Â(n) =
∑
s∈[n]

A(s)ω−ns =
∑
s∈[n]

A(s) = #(A).

Also note that

|Â(r)| = |
∑
s∈[n]

A(s)ω−rs| ≤
∑
s∈[n]

|A(s)ω−rs| ≤
∑
s∈[n]

|A(s)||ω−rs| ≤
∑
s∈[n]

|A(s)| = #(A).

Informal Claim: If Â(r) is large then there is an arithmetic progression
P with difference r−1 (mod n) such that #(A ∩ P ) is large.

We need a lemma before we can proof the claim.
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Lemma 0.1.12 Let n,m ∈ N, s1, . . . , sm, and 0 < λ, α, ε < 1 be given
(no order on λ, α, ε is implied). Assume that (λ − m−1

m
(λ + ε)) ≥ 0. Let

f(x1, . . . , xm) = |
∑m

j=1 xjω
sj |. The maximum value that f(x1, . . . , xm) can

achieve subject to the following two constraints (1)
∑m

j=1 xj ≥ λn, and (2)
(∀j)[0 ≤ xi ≤ (λ+ ε) n

m
] is bounded above by εmn+ (λ+ ε) n

m
|
∑m

j=1 ω
sj |

Proof:

Assume that the maximum value of f , subject to the constraints, is
achieved at (x1, . . . , xm). Let MIN be the minimum value that any vari-
able xi takes on (there may be several variables that take this value). What
is the smallest that MIN could be? By the constraints this would occur
when all but one of the variables is (λ+ ε) n

m
and the remaining variable has

value MIN . Since
∑

xi
≥ λn we have

MIN + (m− 1)(λ+ ε) n
m
≥ λn

MIN + m−1
m

(λ+ ε)n ≥ λn

MIN ≥ λn− m−1
m

(λ+ ε)n

MIN ≥ (λ− m−1
m

(λ+ ε))n

Hence note that, for all j,

xj −MIN ≤ xj − (λ− m−1
m

(λ+ ε))n

Using the bound on xj from constraint (2) we obtain

xj −MIN ≤ (λ+ ε) n
m
− (λ− m−1

m
(λ+ ε))n

≤ ((λ+ ε) 1
m
− (λ− m−1

m
(λ+ ε)))n

≤ ((λ+ ε) 1
m
− λ+ m−1

m
(λ+ ε))n

≤ εn

Note that

|
∑m

j=1 xjω
sj | = |

∑m
j=1(xj −MIN)ωsj +

∑m
j=1MINωsj |

≤ |
∑m

j=1(xj −MIN)ωsj |+ |
∑m

j=1MINωsj |
≤

∑m
j=1 |(xj −MIN)||ωsj |+MIN |

∑m
j=1 ω

sj |
≤

∑m
j=1 εn+MIN |

∑m
j=1 ω

sj |
≤ εmn+MIN |

∑m
j=1 ω

sj |
≤ εmn+ (λ+ ε) n

m
|
∑m

j=1 ω
sj |
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Lemma 0.1.13 Let A ⊆ [n], r ∈ [n], and 0 < α < 1. If |Â(r)| ≥ αn and
|A| ≥ λn then there exists m ∈ N, 0 < ε < 1, and an arithmetic progression
P within Zn, of length n

m
± O(1) such that #(A ∩ P ) ≥ (λ + ε) n

m
. The

parameters ε and m will depend on λ and α but not n.

Proof: Let m and ε be parameters to be picked later. We will note
constraints on them as we go along. (Note that ε will not be used for a
while.)

Let 1 = a1 < a2 < · · · < am+1 = n be picked so that
a2− a1 = a3− a2 = · · · = am− am−1 and am+1− am is as close to a2− a1

as possible.
For 1 ≤ j ≤ m let

Pj = {s ∈ [n] : aj ≤ rs (mod n) < aj+1}.

Let us look at the elements of Pj. Let r−1 be the inverse of r mod n.

1. s such that aj ≡ rs (mod n), that is, s ≡ ajr
−1 (mod n).

2. s such that aj + 1 ≡ rs (mod n), that is s ≡ (aj + 1)r−1 ≡ ajr
−1 + r−1

(mod n).

3. s such that aj +2 ≡ rs (mod n), that is s ≡ (aj +2)r−1 ≡ ajr
−1 +2r−1

(mod n).

4.
....

Hence Pj is an arithmetic progression within Zn which has difference r−1.
Also note that P1, . . . , Pm form a partition of Zn into m parts of size n

m
+O(1)

each.
Recall that

Â(r) =
∑
s∈[n]

A(s)ω−rs.

Lets look at s ∈ Pj. We have that aj ≤ rs (mod n) < aj+1. Therefore
the values of {ωrs : s ∈ Pj} are all very close together. We will pick sj ∈ Pj
carefully. In particular we will constrain m so that it is possible to pick
sj ∈ Pj such that

∑m
j=1 ω

−rsj = 0. For s ∈ Pj we will approximate ω−rs by
ω−rsj . We skip the details of how good the approximation is.
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We break up the sum over s via Pj.

Â(r) =
∑

s∈[n]A(s)ω−rs

=
∑m

j=1

∑
s∈Pj

A(s)ω−rs

∼
∑m

j=1

∑
s∈Pj

A(s)ω−rsj

=
∑m

j=1 ω
−rsj

∑
s∈Pj

A(s)

=
∑m

j=1 ω
−rsj#(A ∩ Pj)

=
∑m

j=1 #(A ∩ Pj)ω−rsj
αn ≤ |Â(r)| = |

∑m
j=1 #(A ∩ Pj)ω−rsj |

We will not use ε. We intend to use Lemma 0.1.12; therefore we have the
constraint (λ− m−1

m
(λ+ ε)) ≥ 0.

Assume, by way of contradiction, that (∀j)[|A∩Pj| ≤ (λ+ε) n
m

. Applying
Lemma 0.1.12 we obtain

|
m∑
j=1

#(A ∩ Pj)ω−rsj | ≤ εmn+ (λ+ ε)
n

m
|
m∑
j=1

ω−rsj | = εmn.

Hence we have
αn ≤ εmn
α ≤ εm.
In order to get a contradiction we pick ε and m such that α > εm.
Having done that we now have that (∃j)[|A ∩ Pj| ≥ (λ+ ε) n

m
].

We now list all of the constraints introduced and say how to satisfy them.

1. m is such that there exists s1 ∈ P1, . . ., sm ∈ Pm such that
∑m

j=1 ω
−rsj =

0, and

2. (λ− m−1
m

(λ+ ε)) ≥ 0.

3. εm < α.

First pick m to satisfy item 1. Then pick ε small enough to satisfy items
2,3.

Lemma 0.1.14 Let A,B,C ⊆ [n]. The number of 3-AP’s (x, y, z) ∈ A ×
B × C is bounded below by

1

2n

n∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).
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Proof:
The number of 3-AP’s is bounded below by

1

2n

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z) −O(n) =

We look at the inner sum.

∑
x,y,z∈[n]

A(x)B(y)C(z)
n∑
r=1

ω−r(x−2y+z) =

n∑
r=1

∑
x,y,z∈[n]

A(x)ω−rxB(y)ω2yrC(z)ω−rz =

n∑
r=1

∑
x∈[n]

A(x)ω−rx
∑
y∈[n]

B(y)ω2yr
∑
z∈Zr

C(z)ω−rz =

n∑
r=1

Â(r)B̂(−2r)Ĉ(r).

The Lemma follows.

Main Theorem

Theorem 0.1.15 For all λ, 0 < λ < 1, there exists n0 ∈ N such that for all
n ≥ n0, sz(n) ≤ λn.

Proof:
Let S(λ) be the statement

there exists n0 such that, for all n ≥ n0, sz(n) ≤ λn.

It is a trivial exercise to show that S(0.7) is true.
Let

C = {λ : S(λ)}.

C is closed upwards. Since 0.7 ∈ C we know C 6= ∅. Assume, by way of
contradiction, that C 6= (0, 1). Then there exists λ < λ0 such that λ /∈ C
and λ0 ∈ C. We can take λ0 − λ to be as small as we like. Let n0 be such
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that S(λ0) is true via n0. Let n ≥ n0 and let A ⊆ [n] such that #(A) ≥ λn
but A is 3-free.

Let B = C = A ∩ [n/3, 2n/3].
By Lemma 0.1.14 the number of 3-AP’s of A is bounded below by

1

2n

n∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).

We will show that either this is positive or there exists a set P ⊆ [n] that
is an AP of length XXX and has density larger than λ. Hence P will have a
3-AP.

By Lemma 0.1.11 we have Â(n) = #(A), B̂(n) = #(B), and Ĉ(n) =
#(C). Hence

1

2n
Â(n)B̂(n)Ĉ(n) +

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n) =

1

2n
#(A)#(B)#(C) +

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)−O(n).

By Lemma 0.1.5 we can take #(B),#(C) ≥ nλ/4. We already have
#(A) ≥ λn. This makes the lead term Ω(n3); hence we can omit the O(n)
term. More precisely we have that the number of 3-AP’s in A is bounded
below by

λ3n2

32
+

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)).

We are assuming that this quantity is ≤ 0.

λ3n2

32
+

1

2n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)) < 0.

λ3n2

16
+

1

n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)) < 0.

λ3n2

16
< − 1

n

n−1∑
r=1

Â(r)B̂(−2r)Ĉ(r)).
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Since the left hand side is positive we have

λ3n2

16
< | 1

n

∑n−1
r=1 Â(r)B̂(−2r)Ĉ(r)|

< 1
n
(max rÂ(r))

∑n−1
r=1 |B̂(−2r)||Ĉ(r)|

By the Cauchy Schwartz inequality we know that

n−1∑
i=1

|B̂(−2r)||Ĉ(r)| ≤ (
n−1∑
i=1

|B̂(−2r)|2)1/2)(
n−1∑
i=1

|Ĉ(r)|2)1/2).

Hence

λ3n2

16
< | 1

n
max

1≤r≤n−1
|Â(r)|(

n−1∑
i=1

|B̂(−2r)|2)1/2)(
n−1∑
i=1

|Ĉ(r)|2)1/2).

By Parsaval’s inequality and the definition of B and C we have

n−1∑
i=1

|B̂(−2r)|2)1/2 ≤ n#(B) =
λn2

3

and

n−1∑
i=1

|Ĉ(r)|2)1/2 ≤ n#(C) =
λn2

3

Hence

λ3n2

16
< ( max

1≤r≤n−1
|Â(r)|) 1

n

λn2

3
= ( max

1≤r≤n−1
|Â(r)|)λn

3
.

Therefore
|Â(r) ≥ 3λ2n

16
.

0.1.3 What more is known?

The following is known.

Theorem 0.1.16 For every λ > 0 there exists n0 such that for all n ≥ n0,
sz(n) ≤ λn.

This has been improved by Heath-Brown [?] and Szemeredi [?]
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Theorem 0.1.17 There exists c such that sz(n) = Ω(n 1
(logn)c

). (Szemeredi

estimates c ≤ 1/20).

Bourgain [?] improved this further to obtain the following.

Theorem 0.1.18 sz(n) = Ω(n
√

log logn
logn

).


