SZEMEREDI’S PROOF OF SZEMEREDI’S THEOREM

TERENCE TAO

ABSTRACT. We present Szemerédi’s original proof of Szemerédi’s theorem.

1. INTRODUCTION

The purpose of this note is to present Szemerédi’s original proof of Szemerédi’s
theorem:

Theorem 1.1 (Szemeredi’s theorem). [3] Let A be a subset of Z with positive upper
density

AN[-N,N
limsup| ALl ]|:6>0

N—oo |[_N7N]|

and fic k > 3. Then A contains at least one proper arithmetic progression a,a +
ry...,a+ (k—1)r of length k and r > 0.

We have restricted to the case k > 3 since the cases £ < 3 are trivial. Once
one obtains one progression, it is an easy matter to in fact obtain infinitely many
progressions (e.g. by deleting the progression that we locate from A - which does
not affect the upper density - and then starting over).

It is well known that Szemerédi’s proof relies in such ingredients as Szemerédi’s
regularity lemma, which essentially allows one to approximate an arbitrary large
graph by an object of bounded complexity, as well as van der Waerden’s theorem,
which allows one to locate a monochromatic arithmetic progression of length k in
any coloring of a sufficiently large arithmetic progression. The proof also relies on
another fact, which is that most pairs of integers can be connected by a progression
of length k (specifically, given 1 < j < j' < r and n,m € Z, there often exists
a progression a,a + r,... ,a + (k — 1)r with a + j» = n and a + j'r = m). This
particular property (needed for the regularity lemma to be useful) is not true for
generalizations of Szemeredi’s theorem, such as multidimensional, Hales-Jewett, or
polynomial analogues, and so it is not clear at this point whether Szemerédi’s argu-
ment could extend to cover these cases (unless perhaps one replaces the regularity
lemma with a hypergraph analogue).

Let us close this introduction with a simple lemma, which basically asserts that
Szemerédi’s theorem is easy if the density is sufficiently large.
1
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Lemma 1.2. Let k > 3, and let P = {b,b+s,... ,b+ (I — 1)s} be a progression
of some length | > 10k. Let A be a subset of P such that |A| > (1 — )|P|. Then
A contains at least one proper arithmetic progression a,a +r,... ,a+ (k —1)r of

length k with r > 0.

Proof This is an easy counting argument. The number of progressions of the
form a,a +7,... ,a+ (k — 1)r in P with 7 > 0 is basically 5;|P|?, whereas for
each 0 < 7 < k and b € P the number of such progressions with a + ir = b is at
most 7|P|. Thus for each i, the number of progression with a + ir ¢ A is at most
1oz | P|?, so summing over all i we see that there must be at least one progression
with a+ire Aforall 0 <i < k. [ |

2. PROGRESSIONS

We recall the concept of a generalized arithmetic progression, or progression for
short.

Definition 2.1. If N = (Ny,... ,N,) is a d-tuple of positive integers for some
d > 0, we form the discrete box
[0, N(D) := [0, N7)x...x[0,Ng) = {(n1,... ,nq) € Z4:0< n; < N; for all 1 < i < d}.

A progression P of rank d and dimensions N¥ = (Ny,...,N,) is any subset of Z
of the form

d
pP= a+[0,N(d))-v ={a+nwv:ne€ [O,N(d))} = {a+2nivi :0<n; < N;forall 1 <i<d},
i=1
where v = (v1,...,vq) € Z% is a vector. If the map n — n - v is one-to-one on
[0, N(D) we say that P is proper (this is equivalent to the statement that |P| =
Ny ...Ny. For 0 < ng < Ng, we define the n’fjh component P,, of P to be

d
Py, ={a+) nwi:0<n; <Njforall 1 <i<d—1},
i=1
thus each P,, is a progression of rank d — 1 and dimensions (Ny,...,Ng—1). We

can iterate this definition, defining P, etc.

dsNd—1)

For Szemerédi’s argument we need a couple more notions associated to that of
a progression. We first recursively define what it means for a progression to be
increasing.

Definition 2.2. A progression of rank 0 is always increasing. If d > 0, a progression
P of rank d is said to be increasing if each component P,, is increasing, and if
whenever 0 < ng < n!; < Ng, every element of Py, is larger than every element of
P,,.

Note that increasing progressions are automatically proper. In our analysis we shall
deal almost exclusively with increasing progressions.
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Now we define the notion of a color of a increasing progression (with respect to a
fixed set A).

Definition 2.3. Let 2°V'”) be the power set of [0, N(), i.e. the set of all subsets
of [0, N(D). The color ¢(P) € 20.N) of an increasing progression P = a+[0, N(%).
v is defined to be the set

c(P):={ne[0,ND):a+n-ve A}
We say that P is black if ¢(P) is the empty set.

Note that the color ¢(P) of a progression determines the colors ¢(FPp), ... ,¢(Pn,-1)
of its components, and conversely. Generally speaking, we wish to avoid the black
color whenever we can, and work instead with “saturated” colors which are as
“bright as possible” (roughly speaking, they contain as many points as possible;
the precise definition is more recursive than this).

To prove Szemerédi’s theorem (Theorem 1.1), our strategy shall be to first work
in a progression of large rank and even larger dimensions which contains lots of
“saturated” colors, and then trade in this rank and saturation for an increasingly
“perfect” progression, ultimately ending up with a progression of length k which is
contained entirely in A. We begin by describing a certain recursive procedure that
will set up for us such a large rank progression.

3. ASYMPTOTIC UPPER COLOR DENSITY

Let us fix some dimensions N(@ = (N1,...,Ng). The increasing progressions

O,N(d)),
)

of dimensions [0, N(?) can take any color within 2! let us suppose that

we have some subset X C 20N () of these colors, which we refer to as the
saturated colors (roughly speaking, they are the “brightest” colors which can occur
in progressions of dimensions [0, N(®), and will be quite far away from being black).
For this discussion the exact definition of saturation is not relevant. Given any
increasing progression P of dimensions (Ni,... ,Ng41) for some Ngi1, define the

saturation 0 < oy (P) <1 of P to be the quantity
1

" Nap
i.e. o (P) is the proportion of components of P whose color is saturated. Note

that this quantity depends only on the color ¢(P) of P and not on P itself. We
then define the upper saturation numbers

onw (P) {0 <j < Nay1: c(Pj) € Sy},

O N(d) (Nd+1) = Sup o pn(d) (P),
P
where P ranges over all increasing progressions of dimensions (N, ..., Ngi1), and
the asymptotic upper saturation

On@ (00) 1= lif;[l sup o n@ (Nat1)-
d41

This limit superior is in fact a limit:
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Lemma 3.1. If we define the quantity
pa(M) = |[on@ (M) — oxw@ (00)],

then
lim pqe(M) =0. (1)

M— o0

Proof Let ¢ > 0 be arbitrary. It will suffice to show that

on@ (M) 2 @ (00) — O(e)
for M sufficiently large depending on £. But we can find M’ > M arbitrarily large
such that

on@ (M") = oy (00) = O(e),
and thus we can find an increasing progression P of dimensions (Ny,... ,Ng, M')
such that

OnN(d) (P) = ON(d) (OO) — O(E)
By truncating P by a little bit we may assume M’ is a multiple of M (the error
term in doing so is negligible if M’ is large enough depending on M). But then
by subdividing P into M'/M blocks of dimension (Ny,...,Ng4, M) and using the

pigeonhole principle, we can find a progression P’ of dimension (Ny,...,Ng, M)
such that

on@ (P') = ox@(00) — O(e).

and the claim follows. ]

Let us dispose of an easy case when ug actually does reach zero:

Lemma 3.2. If oy@(00) > 1/2 and pa(M) < ¢(k,N1,...,Ng, M) for some suf-
ficiently small c(k,Ny,... ,Ng, M) > 0 and black is not a saturated color, then we
can find a progression of length k in A.

Proof Suppose that pug(M) < ¢ = ¢(k,N1,... ,Ng, M). By (1), we can find an

arbitrarily large M’ such that pg(MM') < pg(M). In particular we can find a

increasing progression P of rank d + 1 and dimensions (Ni,... , Ng, M M') with
onw (P) 2 on@(00) — pa(M).

We now view P instead as a progression @ of rank d+2 and dimensions (Ny,... , Ng, M, M"),
and observe that

M'—1
1
W > onw@(@n) = onw (P) > Txw (00) — pa(M)
n=0
and thus
1 M —1
i > (on@ (Qn) — Txw@ (00)) > —pa(M)
n=0

On the other hand, we have
on@ (@n) <on@ (M) <on@(o0) + pa(M)
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and hence
1 M'—1
I > (on@(Qn) — Tx@ (00))+ < pa(M)
n=0
and hence
1 M' -1
il > lonw@ (@n) — Fx@ (00)] < 3ua(M).
n=0

By Chebyshev, we see in particular that

{0 <n < M= 1: oy (Qn) — n@ (00)| > via(D)} < 3y/ma(M)M'.

By the pigeonhole principle, we can thus find an interval [M", M" +1/10+/pa(M)]
in [0, M') such that

lon@ (Qn) — Tn@ (00)] < /pa(M) for all n € [M", M" + 1/10\/puq(M)].

Since T (00) > 1/2 and pg(M) is small, we see in particular that @, contains
at least one saturated component and in particular is not black.

The number of possible colors of @, is at most 2V1-NeM  Thus, if ¢ is sufficiently
small (and hence 1/10+/puq(M) sufficiently large) depending on k and 2Nt---NaM,
we see from van der Waerden’s theorem that we can find an increasing progression
n,...,n+ (k—1)r inside [M", M" + 1/10+/pa(M)] such that all the progressions
Q@ns- - s @ny(k—1)r have the same color, which is not black by the preceding discus-
sion. In particular inside @, U. ..U Q4 (x—1)r We can find an increasing arithmetic
progression of length &k, and we are done. k as desired. [ ]

We will assume that the asymptotic upper saturation is quite large, say
UN(d)(OO) Zl—EdZI—l/IOOk (2)

for some small 0 < g4 < 1/100k. This means that we can find arbitrarily large
rank d + 1 increasing progressions which are almost entirely saturated (up to an
exceptional set of density at most €4). In particular we see that X () is non-empty.

Given any saturated color ¢ € X ), we may define the color density

6.(P) =
«(P) Nat1
of any increasing progression P of dimensions (Ny,... , Ngy1) (again note that this
depends only on the color ¢(P) of P, and not on P itself), as well as the upper
color density numbers

{0 <j < Nayr:e(Fy) = c}|

0c(Nat1) = sup 6.(P). ()
P:|o () (P)=T y(ay (00)|<4/pa(Na+1)
Note that we have restricted the supremum to progressions P which are quite
saturated; this set is nonempty by definition of o) (Ngy1) and pa(Ngp1). We
now define the asymptotic upper color density

3.(00) := limsup 6(Ngi1). (4)

Nd+1 — 00
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Since

on@(00) < Y 8(c0)

CEEN(d)

we see from the pigeonhole principle and (2) that there exists a color ¢qg € Xy
(depending of course on N® and ¥ ) such that
J— ]_ —&q ].

> .
0cq(00) 2 |EN(d)| - 2|2[07N(d))| (5)

Let us fix this color ¢4, and refer to it as a perfect color (the notation is essentially
from [3]); one can think of this color as the most “popular” of the saturated colors.
In practice, we will be able to ensure that this color is not black (either by choosing
it specifically (in the d = 0 case), or by assuming inductively that all the saturated
colors are non-black). The condition (5) ensures that the perfect color is attained
quite often; while the denominator |2(0V“)| on the right-hand side of (5) looks
quite large, we shall eventually choose Ngy1 (and related quantities) much larger
than this, to the extent that this denominator ends up being negligible.

Let us now pick a small 0 < £441 < 1/100k (which will in practice be much smaller
than €4 or d,,(00)). By (1), (4), we can find arbitrarily large Ngy1 such that

Boa(Na1) = 825 (00)] < 84y (6)
and
pa(Nag1) < €5y (7)
Suppose we choose such a Ny 1. We then form the dimensions N(d+1) .= (N1,-..,Ng;Ngy1)-

If P is an increasing progression of dimensions N(4*+1) | we say that ¢(P) is saturated
if

lon (P) —on@ (00)| < v/ pa(Nay1) (8)
and
|8cy (P) = 8cy(00)| < €ata- 9)

Note that this definition is well-defined as the quantities oy (P) and d.,(P) de-
pend only on the color ¢(P) of P and not of P itself. Informally, a progression
of rank d + 1 is saturated if almost all of its components are saturated, and as
many of its components as possible have the perfect color. We can thus define a
set Xyt C 20N “) of saturated colors, which in turn induces an asymptotic
upper saturation oy+1) as before. We observe also that (8), (2), (7) implies that

on(P) >1—2e441 (10)
(for instance).
Lemma 3.3. We have

O N(d+1) (OO) >1-— Ed+1-

(In other words, (2) holds for rank d +1).



SZEMEREDI’S PROOF OF SZEMEREDI'S THEOREM 7

Proof Let Kk > 0 and M > 0 be arbitrary. It will suffice to show that there
exists an Ngy2 > M and a increasing progression P of rank d + 2 and dimensions
(N1, ..., Ngy2) such that

(TN(d+1)(P) 2 1-—- Ed+1- (11)

By (1), (4), we can find M' > Ngyq max(M, m) so large that

o (M') = ox@ () + O(pa(Nay1)?) (12)
and then an increasing progression @ of rank d+1 and dimensions (Ny,... , Ng, M')
such that
0eq(Q) = 8c,(00) + O(ka(Nat1)) (13)
and

on@ (@) = Tn@ () + O(pa(Na+1))-

By shrinking @ a little bit we may assume that M' is a multiple of Ng41 (the error
incurred by this is at most O(Ngy1/M") = O(pa(Nas1)€d+1)), say M' = Ngy1Ngyo.
We can then view @) not as an increasing progression of rank d + 1 and dimensions
(N1,...,Ng, M"), but rather as an increasing progression (which we shall call P
to distinguish it from @, even though as sets of integers they are identical) of rank
d + 2 and dimensions (Ny, ... ,Ng, Ngi1, Ngi2). Since

) - Y onv(Pags)

Nayo
+ ng4+2€[0,Ng42)

we thus have

1 _
N > (on@ (Prays) — On@ (00)) = O(pa(Na+1))-
d+2 Nnd4+2€[0,Ngy2)

But from definition of ug(Ng41) we have

1
N > (on@(Pryys) —Tn@ ()4 < pra(Naga)
d+2 na4+2€[0,Ng42)
and hence
1
N X lowe(Puu) — o (00)] = 0(ra(Nara)):

Nng4+2€[0,Ng42)

By Chebyshev’s inequality and (7) we thus have
{nat2 € [0, Nat2) : [on (Paays) = one (00)] > V/ua(Nai1)} < O(€441) Nago

(14)

Now we argue using 4., instead of o). From (13), (7) we have

1
Nd 9 (5Cd (Pnd+2) - 6Cd (OO)) = 0(634—1)’
+ Nd4+2€[0,Ngy2)
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so by (14)

! 4
Nd+2 Z (5Cd (P”d+2)_6cd (OO)) = O(Ed+1).

na4+2€[0,Nat2):|0 (@) (Pnyp ) =0 y(a) (00)|<y/pa(Nay1)
But by (6) we have

1
Nd+2 Z (6Cd (P"d+2)_5cd (OO))+ = 0(634—1)
Na4+2€[0,Nat2):|0 1 (d) (P gy 5)—0 (d) (00)|<y/Ba(Nay1)
and so
1
Naito Z |6Cd (Pnd+2 )_5Cd (OO)| = 0(53+1)

na+2€[0,Nat2):|0 (d) (Pr gy 0)—0 (d) (00)|<y/Ba(Na+1)
and so by Chebyshev

{nat2 € [0, Natz) : [on@ (Prgys) =0nw (00)] < V/pta(Nas1); 8¢, (Prays)=0ci(00)| > €ar1}] = O(efi1) Nase.
Combining this with (14) and the definition of saturation we see that
[{nat2 € [0, Nat2) : Pn,,, is not saturated}| = O(e3, 1) Nato

and hence (11) follows. [ |

This lemma will allow us to iteratively construct a sequence N; €« Np < ...
of integers, with the associated dimensions N(® := (Ny,...,Ny), a set Lyw C
20.ND) of saturated colors, and a collection of perfect colors ¢g € ¥ ) for each
d; we shall formalize this construction in the next section.

4. SETTING UP THE DIMENSIONS

We shall need a growth function Fy : RT — R™T, depending on k and § to be chosen
later. One should think of this function as a rapidly increasing function, such as

Ey(n) := 222kn/5, though in practice we shall need a much faster function than
this (it has to grow faster than the bounds one obtains from both the Szemeredi
regularity lemma and the van der Waerden theorem). It will be important that
our bounds will not depend on this extremely rapidly growing function. We will
however make the (very mild) assumption that Fy(n) grows faster than n, e.g.
Fo(n) > 2".

As mentioned in the previous section, we wish to construct a sequence Ny € Ny <

. of integers as well as appropriate notions of saturated color and perfect color
for each d > 0 (actually, at the end of the day we will only need this for d < 2%).
We will also obtain error estimates of the form (2) for some 0 < g4 < 1/100%, as
well as lower bounds on the asymptotic perfect color density.



SZEMEREDI’S PROOF OF SZEMEREDI'S THEOREM 9

4.1. The d = 0 constructions. We begin with the d = 0 case. Here N(® = ()
is the empty tuple, and progressions of rank O are just singleton sets of integers.
Such singletons are either black (if they are not contained in A) or white (if they are
contained in A), giving two colors. We declare both of them to be saturated (thus
Yo = 2l0.N) _ {black, white}) and we declare ¢y := white to be the perfect
color.

Since every color is saturated, we have o (00) = 1 and so if we set gg := 0 then
(2) is satisfied.
|[AN[=N,N]|
5 _N. N)) =2 5
N(O),Co([ ? ]) |[—N7N]|

and A has upper density at least §, we see that
Oco > 0. (15)

4.2. The general case. Now we assume inductively that the quantities N(®), g4,
Yy, cq have already been constructed for some d > 0, and turn now to the
construction for d + 1.

Using (1), (4), we can find a length

Lgt1 > Fo(Ni ... Na) (16)
such that
|6y (Las1) — 6cy(00)] < 1/Fy(Ny ... Ny) (17)
and
|wa(Lay1)| < 1/Fo(Ny ... Ng)*. (18)
We then define a small number 0 < g441 < 1 defined as
€dt1 := (100kFy(Lgy,))~ 100k (19)
(so in particular 441 < 1/100k), and then using (4) again we can find a length
Nay1 > Fo(1/€441) (20)
such that (6), (7) hold. We then use this length Ng41 to construct the dimensions
N1 .= (Ny, ..., Ng41), and then define the saturated color set X y+1) and the

perfect color cg41 as in the previous section. We can then iterate this construction
indefinitely to create N9, g4, ¥ na), cq for all d.

Note that the quantities Lgy1, 1/€441, Ngt1 are widely separated in magnitude,
indeed we have

. KNy K Ly €1/eg1 € Nggp1 € Layo < ...

where A € B denotes the statement that B > Fy(A). The fact that Fy is ex-
tremely rapidly growing will mean that any reasonable quantity involving variables
to the left of this hierarchy will be dominated by any reasonable quantity involving
variables to the right of this hierarchy. The parameter Ly is an intermediate
dimension which is huge compared to Ny but miniscule compared to Ngy1; the
point is that when we are working in a progression of dimensions N(#+1) we shall
be easily able to introduce a free parameter ranging over an interval of length Lj41
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(or even Fy(Lgy1), which would be pretty useless if we stayed in rank d + 1, but
if we then drop rank to d, this additional parameter becomes extremely useful -
roughly speaking, it (combined with the Szemerédi regularity lemma and the van
der Waerden theorem, and the fact that Lgy1 has upper perfect color density close
to the asymptotic limit) can be used to upgrade the existence of progressions of
length 4 to progressions of length 7 + 1 (although this “uses” up our parameter and
we have to go create it again). Thus we shall be able to “spend” the large rank
in our progressions, one rank at a time, to eventually obtain progressions of length
k. This strategy may appear extremely convoluted, but it in fact appears to be
the minimally complex strategy that would combine all these ingredients to yield
a successful proof (and avoid all the difficulties associated with the bounds for the
regularity lemma and van der Waerden theorem being incredibly poor).

We now observe that none of the perfect colors ¢4 are black. For d = 0 this is clear
from construction. For d = 1, we see from (19) that

g1 < (5/2

if Fy is chosen to sufficiently large depending on 4, and so from (9) we see that
0co(P) > 0 whenever P is a rank 1 saturated increasing progression. This implies
that all the saturated colors in X 1) are non-black, and in particular the perfect
color ¢; is not black.

Now suppose inductively that ¢g is known to be non-black for some d > 1. From

(19) we certainly have
1

4[20.N@)]

if Fp is chosen sufficiently large, and so by (5), (9) we see that d.,(P) > 0 whenever
P is a rank d + 1 saturated increasing progression, thus as before we see that all
the saturated colors in ¥ 1) are non-black, and in particular the perfect color
Cd+1 is also non-black.

Ea+1 <

Since none of the saturated colors in X ) are black for d > 1, we see from Lemma
3.2 that we may assume

pa(Lay1) > e(k, N1, ... ,Ng, Lay1). (21)

Note from the above construction that we have in fact shown
1
€a+1 < §5cd (c0)

and hence

1

50ca(00) < 0¢c,(P) < 26c,(00) (22)
whenever P is a rank d + 1 saturated increasing progression.
Ifd > 0,0 <4 < k, and P is an increasing progression of dimensions (Ny, ... , Ng, k+
1), we say that P is perfect of order ¢ if the first ¢ components Py,...,P; 1
all have the perfect color ¢4. Clearly all increasing progressions of dimension

(N1,...,Ng,k + 1) are perfect of order 0; in order to prove Theorem 1.1 we will
seek to find progressions which are perfect of order k and have dimension k + 1



SZEMEREDI’S PROOF OF SZEMEREDI'S THEOREM 11

(actually we can eventually obtain progressions which are perfect of order k£ and
have dimension (Ny,...,Ng, k+ 1) for any k).

We mentioned earlier that our basic strategy is to start with a large rank progres-
sion, and spend those ranks in order to improve the order ¢ of perfection. We now
turn to setting up the notation required to execute this strategy.

5. HOMOGENEOUS PROGRESSIONS, AND WELL-ARRANGED SEQUENCES OF
PROGRESSIONS

Let d > 1, and let P be arank d+1 increasing progression of dimensions (N, ... , Ng, k+
1). Thus P consists of k + 1 components Py, ... , P, which are rank d increasing
progressions of dimensions (Ny,...,Ng), and each component P; in turn consists

of Nq components Pjy,... ,Pjn,—1 which are rank d — 1 increasing progressions of
dimensions (Ny,...,Ng_1).

Let us say that P is completely saturated if each of its k + 1 components Fy, ... , Py
are saturated. By (10) this means that

1
FHO S ng < Nd : Pj,nd is saturated}| Z 1-— 26(1,1 for all 0 S] S k
d
and from (22) we similarly have

1
FHO < ng < Ng: Pj,, has the perfect color ¢g_1}| = dc,_,(00) + O(eq) for all 0 < j < k.
! (23)

If mg,mq+r,... ,mg+(k—1)r is a progression of integers in [0, N4) (not necessarily
increasing or proper), we can define the associated subprogression Py, ) C P of
P to be the set

P(mdﬂ") = Povmd U Pl,md-H" u...u Pk—l,md—',-kr;

observe that this is a rank d increasing progression of dimensions (N1, ... , Ng_1,k+

1).
We shall need the counting functions
fpij(na) == {Pumyur) C P: Py, ) is perfect of order i and mg 4 jr = ng}|

defined for all 0 < i < j < k and nq € [0, Ng); thus fp; j(nq) counts the number
of subprogressions P,y which are perfect of order i and contain the specific
component Pj,,. Thus, for instance, the existence of a subprogression which is
perfect of order i is equivalent to fp; ;(nq) being non-zero for some j and some
ng. This quantity is clearly decreasing in 4, fpi1+1,;(nqa) < fpi,;(nq), and is easy to
compute when 7 = 0:

Lemma 5.1. Ifng € [0,Ny) and 0 < j < k, then we have the upper bound
fpo,i(na) < Na. (24)
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If in addition ng lies in the middle third [Nq/3,2N4/3) of [0,N4), then we can
complement this upper bound with the lower bound

1

fP,O,j(nd)mNd-

Proof The estimate (24) just reflects the fact that once ng is fixed, one can
specify the progression P, .y by fixing mg4+ j'r for some j' # j, but this ranges in
[0, Ng). The lower bound follows for instancce by observing that any |r| < 1/20k will
generate a progression P(,,, »y C P with mg+ jr = ng, which is then automatically
perfect of order Q. [ |

Recall from (23) that the proportion of components P;,, which have the perfect
color is roughly d.,_, (00), or in other words the probability that a randomly chosen
component is perfectly colored is roughly d.,_,(oc0). If the perfectly colored compo-
nents were distributed “independently of each other”, then probabilistic heuristics
would then suggest that fp; ;(ng) ~ 6;_1(00) fpo,j(ng), and so in particular for ng
in the middle third [Nq/3,2N4/3) one would expect fp; j(nq) to be roughly of the
order of (sid_1(oo)Nd for most ng. Now, a priori there is no reason why one should
expect this property (which is broadly analogous to the concepts of “weak mixing”
used in the Furstenberg proof of Szemerédi’s theorem, “Gowers uniformity” in the
Gowers’ proof, or “e-regularity” in the proof of the Szemerédi regularity lemma)
should be hold for a typical progression P. If however we have a long sequence of
such progressions P which are arranged in a special way (we will make this concept
more precise later), it will turn out that this type of property will in fact hold for
at least one progression in a sequence, by means of the Szemerédi regularity lemma
combined with van der Waerden’s theorem. This observation is crucial in letting
us induct on the parameter ¢ and create increasingly perfect progressions.

We must first formalize the notion of what it means for fp; ;(n4) to be roughly
of the order of 6id_1(oo)Nd for most ng. This will be done using the concept of a

homogeneous progression (again, the notation is from [3]).
Definition 5.2. Let d > 1, let 0 < ¢ < k, and let P be a rank d + 1 increasing

progression of dimensions (Ni,..., Ny, k+ 1). We say that P is homogeneous of
order i if it obeys the following two properties:

e P is completely saturated (i.e. each of the k + 1 components Py, ... , Py is
saturated); and
e For all 1 < j <k, we have

[{nq € [0, Nq) : fp,ij(na) > (100k)*6c,_, (00) Ng}| < ieq—16c,_, (00)" 1 Ny

(25)
and
[{na4 € [N4/3,2N4/3) : fpij(na) < (100k)~14,, ,(00)'Ny}| < iedlécd_l(oo)k“(Nd).
26

Thus for almost all ng in [0, N4), and especially in the middle third [N4/3,2N4/3),
the counting function fp; ;j(ng) is fairly close to its expected value of
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&
a—1(00)
the very huge numbers and very small being manipulated here).

Ny (the factors of (100k)*¢ are extremely negligible compared to

Thus for instance, any progression P of dimensions (N1, ... , Ng, k+1) which is com-
pletely saturated will automatically be homogeneous of order 0, thanks to Lemma
5.1. It will be of interest to obtain progressions which are homogeneous of as high
an order 7 as possible, as this will imply (by (26)) that there are many subprogres-
sions Py, ,,») which are perfect of order 7 (this is the place where we drop a rank).
Furthermore, we will later show (by means of the van der Waerden theorem and the
Szemerédi regularity lemma) that given a sufficiently long sequence of progressions
P which are homogeneous of order ¢ and are arranged in a special way, one of them
will be homogeneous of order 7+ 1. The combination of these two facts (by a simple
induction argument) will eventually give us progressions which are perfect of any
order 0 < 4 < k, which in particular will give Proposition ?7?.

To make this argument rigorous we need to pin down what we mean by a sequence of
progressions P being “arranged in a special way”. We shall do this via the following
somewhat technical definition (which is forced on us by the inductive argument we
shall use).

Definition 5.3. Let d > 1, let  C [0,k]. We define a well-arranged sequence of
progressions P[] of rank d+1 and parameterization 2 to be an assigment P[(};);eq]
of a rank d + 1 increasing progression of dimensions (N, ... ,Ng, k+ 1) to each Q-
tuple (\;)jeq € [0, Fo(Lq))$ (which we refer to as the parameters of the sequence)
such that

e (i) (Complete saturation property) For each ()\;)jeq € [0,L4)%, the pro-
gression P[(\;j);jeq] is completely saturated.

e (ii) (Independence property) For any 0 < i’ < k, the color ¢(P[(A;) enls) €
2[0.N) of the 4 component of P[(););cq] is determined entirely by those
A; for which j < ¢'; to put this another way, the parameter \; influences
the colors of the j,... , k components of P[(\;);eq] but has no effect on the
colors of the 0,...,j — 1 components.

e (iii) (Arithmetic structure) For each jo € €, if we fix all of the ); indices
except for the Aj, index, then the components P[(\;)jealjo, as Aj, ranges
from 0 to Ly — 1, form an increasing rank d progression of dimensions
(N1, ..., Nu_1,La).

Note that in the case = @), then there are no free praameters, and any completely
saturated rank d+1 progression P of dimensions (N1, ... , Ng, k+1) is automatically
well-arranged. The independence assumptions (ii) are necessary in order for us to
manipulate the parameters \;,7 € () more or less independently; the arithmetic
structure assumptions (iii) are needed in order for us to apply van der Waerden’s
theorem at a key juncture.

The proof of Proposition ?? centers around the following two key propositions,
which correspond roughly to Lemma 6 and Lemma 5 from [3].
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Proposition 5.4. [3, Lemma 6] Let d > 2, 0 < i < k, and let Q C [i, k] be such
that i ¢ Q (i.e. Q C [i + 1,k]). Suppose that we have a well-arranged sequence of
progressions P[] of rank d + 1 and parameterization Q such that every progression
P[(Xj)jeq)] in this sequence is homogeneous of order i. Then there ezists another
well-arranged sequence of progressions Q|| of rank d and parameterization QU {i}.

Proposition 5.5. [3, Lemma 5] Let d > 1, 0 < i < k, and let Q C [i, k) be
such that i € Q. Suppose that we have a well-arranged sequence of progressions
P[] of rank d+ 1 and parameterization Q such that every progression P[(A;)jcq] in
this sequence is homogeneous of order i. Then there exists another well-arranged
sequence of progressions Q[ of rank d + 1 and parameterization Q\{i}, such that
every progression Q[(A;)jea\{i}] 0 this sequence is homogeneous of order i + 1.

Proposition 5.4 allows us to convert homogeneity of order i to an additional pa-
rameterization, by the \; parameter, at the cost of dropping one rank; Proposition
5.5 allows us to spend such a A; parameter to upgrade homogeneity of order i to
homogeneity of order i + 1, keeping the rank constant. These two propositions
will be proven in the next two sections. Assuming them for the moment, the two
propositions combine to form the following key fact, which is essentially Fact 12
from [3]:

Corollary 5.6. [3, Fact 12] Let 0 < i < k, d > 2%, and let Q C [i,k]. Suppose that
we have a well-arranged sequence of progressions P[] of rank d + 1 and parameter-
ization Q. Then there exists another well-arranged sequence of progression Q|| of
rank d — 2¢ + 2 and parameterization Q such that every progression Q[()\;)jeq] in
this sequence is homogeneous of order i.

Proof We prove this by induction on i. The claim is trivial for 4 = 0 since, by
property (i) of a well-arranged sequence, each P[(););cq] is completely saturated
and hence homogeneous of order 0, so we may simply take @ := P.

Now suppose that 1 < i < k, and the claim has already been proven for i—1. Let PJ]
be a well-arranged sequence of progressions P[] of rank d+ 1 and parameterization
Q for some Q C [i,k]. By the induction hypothesis, we can find a well-arranged
sequence of progressions P'[] of rank d — 26! 4+ 2 and parameterization Q such
that each P'[(\;) eq] in this sequence is homogeneous of order ¢ — 1. If we then
apply Proposition 5.4 to this sequence, we obtain another well-arranged sequence
of progressions P[] of rank d—2¢~! + 1 and parameterization QU{i—1}. Applying
the induction hypothesis again, we can then find another well-arranged sequence of
progressions P"'[] of rank d— 2%+ 2 and parameterization QU {i— 1}, such that each
P'[(A\j)jeq] in this sequence is homogeneous of order i — 1. Applying Proposition
5.5, we finally obtain a well-arranged sequence of progressions Q[] of rank d — 2t +2
and parameterization (2, such that every progression Q[(A;);cq] in this sequence is
homogeneous of order 4, thus closing the induction. [ ]

We can now prove Theorem 1.1, as follows.
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Proof [Proof of Theorem 1.1] Let d := 2*. From (2) we know that
O N(d) (OO) Z 1- 1/100k‘

and hence there exists some L > 100k and some increasing progression P of rank
d+ 1 and dimensions (Ny, ..., Ny, L) such that

onw@ (P) >1-1/100k,

i.e. all the components Py,...,Pr_1 of P are saturated with at most L/100k
exceptions. Applying Lemma 1.2, we can thus find an increasing subprogression
P'=PUP..,...UP,y which is completely saturated. This progression P’ has
rank d + 1 and dimensions (Ny,... , Ny, k + 1); since it is completely saturated, it
can be viewed as a well-arranged sequence P’ = P'[] of rank d + 1 parameterized
by the empty set O = 0. Applying Corollary 5.6 with ¢ = k£ and Q = @ we can
thus find a completely saturated increasing progression Q' of rank 2 and dimensions
(N1,k + 1) which is homogeneous of degree k. From (26) we thus see that there
exists an nq € [N1/3,2N1/3) such that fg kk(n1) > 0, which implies in particular
that there exists an increasing progression R of length k£ 4+ 1 which is perfect of
order k, i.e. the first k elements of this progression lie in A, as desired. [ |

The only thing left to do is prove Propositions 5.4 and 5.5.

6. PROOF OF PROPOSITION 5.4

We now prove Proposition 5.4, which is the more elementary of the two propositions
(it does not require either the van der Waerden theorem or the Szemerédi regular-
ity lemma); the principal difficulty is to ensure that ensure that all the relevant
components of the various progressions involved are saturated.

Fix P, i, Q. If mg,mq +7,... ,mq + kr is a progression of integers in [0, Ng), let
us call the pair (mgq,r) perfect of order i if the subprogression P[(};)jeca](m,,r) 18
perfect of order i for some (\;)jeq € [0, Fo(L4—1))%; we have truncated the range of
the parameters A; from [0, Fo(Lg)) to the much smaller (and hence more tractable)
range of [0, Fo(L4—1)) as we shall eventually drop rank by 1 . Actually, the choice
of the A; is irrelevant since the concept of perfection will only depend on the color
of first i components P[()j)jealo,mys-- - » P[(Aj)jenli—1,ma+(i—1)r, Whereas by the
hypothesis © C [i, k] and and by the independence property (ii) of a well-arranged
sequence, the colors of the first ¢ components do not depend on any of the parame-
ters \; for j € Q. Let us call the pair (mg,r) totally saturated if the subprogression
P[(Xj)j€0])(ma,r) is completely saturated for every (\;)jeq € [0, Fo(La-1))®. Unlike
the concept of perfection of order 7, the parameters A; do play a non-trivial role in
this concept, as the concept of saturation involves the colors of all k+1 components
of P[(Aj)jee](ma,r)- However, since all the P[(););eq] are completely saturated (by
property (i) of a well-arranged sequence), the estimate (10) asserts that almost all
components P[(\;)jcali,n, Will be saturated:

1
EHnd S [O,Nd) : P[(/\j)jeﬂ]'i’,nd is not saturated}| S 26d_1 for all (/\j)jEQ S [O,Fo(Ld_l))Q,O S il S k.
(27)
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This basically means that the property of being completely saturated is easy to
attain. This, combined with (26) makes the following lemma fairly reasonable:

Lemma 6.1. Call an element ng € [Ngq/3,2N4/3) good if there exists a progression
M, ... ,mq + kr in [0, Ng) with mg + ir = ng such that (mgq,r) is both perfect of
order i and totally saturated. Then most elements of [Ng/3,2N4/3) are good, or
more precisely

1

Ng/3,2Ny/3) :ng i < 100k Fo (Lo D)
[{na € [Na/3,2Na/3) : na is not good}| < 100kFo(La-1)

Ny

Proof This will be a simple counting argument. There will be a slight technical
difficulty in that some of the error terms have size equal to some power of £4_1,
which is is somewhat large compared to the factors of d., ,(co) which appear in
(26), but by counting things carefully (and taking advantage of the upper bound
(25) as well as the lower bound (26)) the factors of d.,_, (c0) will eventually cancel
each other out harmlessly.

First of all, observe from (26) that
[{na € [Na/3,2N4/3) : |[{(mgq,r) perfect of order i : mq + ir = ng}| < (100k)_i_15id_1(00)Nd}|
< i€q—106,_,(00)F T Ny.

Also, since Q C [i + 1, k], the component P[(););jeqli,n, does not depend on (};),
so by (27)

|{na € [Na/3,2N4/3) : P[()\j)jealin, is not saturated for some ()\;);eq € [0,La_1)?} < 264 1Ng-

Both these terms are acceptable by (19). Thus it will suffice to prove that

1
X <———
| | - QOOkF()(Ld_l)

(for instance), where X is the set of those ng € [Ngq/3,2N4/3) such that ng is not
good, but

Ny

[{(mgq,r) perfect of order i : mq + ir = ng}| > (100k)_i_15id_1(oo)Nd

C

(28)

and such that P[(\;);ecqlin, is saturated for all (\;);eq € [0, Fo(La-1))%.

Now suppose that nq € X. From (28) we have (100k)~*~'4; ) Nq pairs (ma,r)
mgq + jr = ng and (mg,r) perfect of order i. Since ng is not good, we know that
for each such pair (mg,7), at least one Q-tuple (\;)jcq € [0, Fo(Lq—1))% exists
such that P[(););eq] is not totally saturated. Since (mg,r) is perfect of order i, we
know that the first i+ 1 components P[(A;)je]os- - s P[(Aj)jcalimatir are already
saturated, so we must have P[(\;)jeali,mat+#r unsaturated for some i < i’ < k.

Thus
2 2

(ma,r) perfect of order i:mg+jr=ng (Xj)jea€l0,La—1)? i<i'<k

e
Lpi(as)sealis my4urr unsaturated = (100K) ™00, ooy Na-
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Summing over all ng € X, we obtain
—i—1¢i
Z Z Z lp[(/\j)jen]il’md+ilr unsaturated = (100%)~* 5zd—1(00)|X|Nd'
(ma,r) perfect of order i (Aj)ie€[0,La—1)? i<i’'<k

The number of possible (););eq is at most Fy(Lg—1)*¥*1, and the number of i’ is at
most k, so by the pigeonhole principle we can find a (A\;);eq and ¢ < i’ < k such
that

(100k) 7762, (00| X | Na.

Z lP[(Aj)jeg],-,,md+,-,r unsaturated = kFo(Lg_1)k+1
(ma,r) perfect of order i

We rearrange this using the substitution n/, := mgq +i'r as

Z [{(mgq,r) perfect of order i : mq +i'r = nj;}|
n€[0,Na):P(Aj)jealir a1 unsaturated

1 e
2 FF Lot 00K e, (oo X Na

or (by definition of f)

1 i
Z FPiAy) el (Ng) > W(IOOM 00, (00| X NG
ny€[0,Na):P[(A\;)jealir nr, unsaturated 29)

On the other hand, from (25) and (24) we have

! - k+1 A72
) FPIO) el (M) < i€a—10c,_,(00)" T Ny
"QE[O’Nd):fP[(Aj)jen],i,i’ (nd)>(100k)i6id_1(m)Nd

while from (27) we have
Z FPIO)seal i (ng)
n&e[o,Nd):fP[()\j)jen],i,i/(”ld)s(100]{:)1'5id_1(m)Nd;P[()\j)jen]i,!nii unsaturated
< (100k)'6%,_ (ooyNa X 241Ny
so on adding we have

> FPi()sealivir (M) < A(L00K)'S;, | (oy€a-1 NG
ny€[0,Na):P[(\s)jealir nr, unsaturated

(since €4-1 and d.,_,(s0) are at most 1). Combining this with (29) we obtain the
bound

|X| < 4k(100k)* T Lt ey 1 Ny;
the claim then follows by (19) (and the trivial bound ¢ < k). [ |

Combining this lemma with Lemma 1.2, we can find an increasing arithmetic pro-
gression {ng + \;s : \; € [0,Fp(Lg))} of length Fo(Lg) in [Ng/3,2N4/3), all of
whose elements are good. Thus for each A; € [0, Fo(Lg)), there exists a progression
ma(Ai), ... ,ma(N;)+kr();) in [0, Ng) such that mg(A;)+ir(\;) = ng+ \;s which is
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perfect of order ¢ and which is totally saturated. Thus if we define the progressions
Q[(A\j)jequiiy] for any (A)jequiiy € [0, Fo(La))? 1 by the formula

k
QI jeauit] = U Pl el matro+ir(r)
i'=0
we see that Q[(A;) jequqi}] is a progression of rank d and dimensions (N1, ..., Ny 1, k+

1) which is completely saturated and perfect of order i. In particular, the color of
the first i components of Q[(););equqi}] are the perfect color ¢g_1, which clearly
does not depend on any of the A; including A;. As for the remaining components,
the independence properties of these components from the A; follow from the cor-
responding independene properties of the corresponding components of P[(};);eq]
(note that the quantities m4(A;) and 7();) do not depend on any of the A; for any
J € 9Q). Also if we fix all the A; for j € Q, then

Q[(Nj)jeaugit]i = Pl(Aj)jealimar)+ir(n) = Pl(Aj)jealinatrs

which forms an increasing arithmetic progression in A;. The analogous arithmetic
structural properties for the other parameters A; again follow from the correspond-
ing properties for P. Thus we have constructed a well-arranged sequence of pro-
gressions Q[ of rank d and parameterization QU {i}, as desired. [ |

7. PROOF OF PROPOSITION 5.5

We now turn to Proposition 5.5, which is the harder of the two propositions. The
main task is to prove the Proposition in the case Q = {i}, in which case we let Q
simply be one of the elements of the sequence. In other words, we will showl

Proposition 7.1. Letd > 1 and 0 < i < k Suppose that we have a well-arranged
sequence of progressions P[] of rank d+1 and parameterization {i} such that P[X;]
is homogeneous of order i for all A\; € [0, Fy(Lq)]. Then there exists A; € [0, Fo(Lg)]
such that P[)\;] is homogeneous of order i + 1.

This proposition clearly gives Proposition 5.5 in the case = {i}. To handle
the general case, when () contains elements other than i, we simply fix all the
variables A; for j € Q\{i} and apply the above proposition to locate a A; such
that P[(Aj)jeq] is homogeneous of order ¢ + 1. Note that the concept of being
homogeneous of order ¢+ 1 depends only on the colors of the first ¢ + 1 components
of the progression under consideration, which by the independence property (ii) of
a well-arranged sequence, does not depend on any of the A; for j € Q\{i}. Thus
we can choose \; independently of all the other \; in such a way that P[()\;);eq]
is always homogeneous of order ¢ + 1. We can then define @[] by restricting P to
this value of A;, thus i.e.

QI(Nj)jea\(i] = Pl(Aj)jeal-

The complete saturation, independence, and arithmetic structure properties of @
then trivially follow from those of P, and the claim follows.
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It remains to prove Proposition 7.1. Let us first state what we are trying to achieve.
From (25), (26) we already have

[{naq € [0, Na) : fpri,i,j(na) > (100k)Se,_, (00)' Ng}| < i€g—18c,_, (00)* T Ny
(30)

and

[{n4 € [Na/3,2N4/3) : fpiri),ij(na) < (100k) 18, , (00)'Ng}| < ieg—16c,_, (00)" 1 Ny
(31)

for all \; € [0, Fy(L4)] (in fact the left-hand sides here are independent of A; thanks
to the independence property of well-arranged sequences) and all 1 < j < k, and
we are trying to find a single A; € [0, Fo(Lg)] such that

|{nd € [OﬂNd) : fP[)\i],’i+l,j(nd) > (IOOk)i+16Cd—1(OO)i+1Nd}| < (i+1)6d—156d_1(00)k+1Nd

[{na € [Na/3,2Na/3) : fpixiit1,i(na) < (100k) ™26, (00)' Na}| < (i+1)eq-10¢,, (00)* ' N
for all i < j < k (One does not need to verify that P[);] is completely saturated,

as this is given to us by the hypothesis that P[);] is already homogeneous of order

i). We introduce the small quantity®

€:= 65(101’“6%_1(00)100’“ (32)

and observe that to prove our claim it will suffice to find a single \; € [0, Fo(Lq)]
such that

FPinitt,j(ma) = 0cq_y (00) frpail,ini(Ma) + Ok(eNg) for all i < j <k
(33)

for all but Og(€) Ng many values of ng € [0, Ng). To explain why one could hope for
such a statement, let us rephrase the task in terms of graph theory. We temporarily
fix i < j <k, and introduce a bipartite graph Gj;, connecting the interval A; :=
[0, Ng) to another copy of the interval A; := [0, Ng) (which strictly speaking we
should label differently to emphasize the bipartite nature of the graph, but let us
ignore this technicality), thus the edge set E(G;;) can be thought of as a subset of
A; x A;. This graph is defined as follows: we connect an element a; € A; with an
element a; € A; by an edge if we can find a progression mg4,mq+s,... ,mg+ks in
[0, Ng4) which is perfect of order i (i.e. all the components P[A;]i* m,+is have the
perfect color for all 0 < ¢’ < 4; note that the choice of A; is not relevant here by the
independence property of well-arranged sequences), and such that mg+is = a; and
mgq + js = a;. Note that each pair (a;,a;) is associated to at most one progression
md, ... ,mg+ks and so the graph has no multiplicity. For each A;, we let A;[\;] C A4;
be the set of those a; € A; for which P[\;]; 4; has the perfect color. Unraveling the
definitions, we see that

® fpiri,i,j(a;) (which does not depend on );) is precisely the number of edges
in G;; connecting an element of A4; to a;; and

LAt this point it is useful to note the relative magnitudes here are basically
1/ed-1 K Ng—1 K 1/8cy 4 (00) K 1/e K Ly K Fo(La) K 1/eq < Ng

thanks to (16), (19), (20), (5); actually, the quantity 1/dc,_,(co) could be unexpectedly smaller
than what (5) would suggest, but that will help us, not hurt us. As discussed earlier, the basic
point is that Ly and Fo(Lg) are much smaller than Ny, but much larger than 1/¢ or any quantity
subscripted by d — 1.
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® fp[xni,i+1,5(a;) is precisely the number of edges in G;; connecting an element
of Az[)\,] to a;.

Furthermore, since P[);] is completely saturated, the progression P[)\;]; obeys (9)
(with one smaller rank), and hence

|4i[Ad]| = (0c,-, () + O(ea)) Na, (34)

i.e. A;[\;] has density roughly d.,_,(00) in A;. In particular we would also expect

fPiaii+1,5(a;) to be roughly é.,_, (oo) times as large as fppy,),5,j(a;), which is (33).

Unfortunately we are not done yet, because the graph G;; and the set A;[A;] could
“conspire” to create multiplicities fp[,},i+1,j(a;) which are quite different from
what one would expect given the multiplicities of G;; and the density of A;[A;].
Indeed, for any individual )\;, one could easily make (33) fail. However, it will turn
out (from an application of the Szemerédi regularity lemma) that in order to make
(33) fail, one must make the relative density A;[A;] on some component A;”;ij of
A; to be anomalously large or anomalously small. If one does this for each A;,
then using van der Waerden’s theorem we will eventually be able to make a single
component A7 consistently anomalous (either anomalously large or anomalously
small) for all ); in a long progression (of length Ly now rather than Fy(Lg)). But
then by some density counting arguments we will be able obtain a contradiction
from these facts, (34), and the fact (from (17)) that progressions of Ly cannot have
too large a color density.

We turn to the details. We begin by counting the number of edges in G;;.

Lemma 7.2. The number |E(G;;)| of edges in Gi; obeys the estimates
(100k) =" 28, _, (00)' N7 < |E(Gij)| < (100k)**+16,,_, (00)'Ng.

In other words, up to factors depending only on k, the edge density of G;; is com-
parable to 8., ,(00)".

Proof Observe that
E@Gi)l= > friangaia)
ajE[O,Nd)
Applying (30) and the crude bound fp(y,},i,5(a;) < N to handle the exceptional
set, we obtain the desired upper bound. For the lower bound, we trivially bound
B(Gyy)| > (100k) 71, (00) Nal{a; € [Na/3,2Na/3) : fpiag s (na) > (100k) =18, (00)'Na}|
and use (31). [ |

Now we use the Szemerédi regularity lemma. We shall use the modern version
of this lemma (see e.g. my expository note [5], or many other references in the
literature), rather than the original one in [3]. For any non-empty subsets A; C A;,
A} C Aj, define the density 0 < d(A;, A}) <1 of this pair to be the quantity
E(Gi;) N (A x A
aar, a1y = [EG1) 0 (i x 43)
’ |47 x Aj]
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We say that a pair Aj, A} is €2 -regular if we have

[B(Giy) N (A x AY)| = d( Al AD|AY x 4]+ O()] A} x A}
for all subsets A} C A}, A/ C A}. The Szemerédi regularity lemma asserts that
there is a constant C(€) depending only on €, and partitions?

A= AP UL U AN G AT for [ =
with M;; < C(e) and |47 | = O(e)Ny and |[A™| ~ Ny/M;; for m € [1, M;;),
such that all but O(e* M7;) pairs (A4 ,A;nl;ij ) are e2-regular. Actually, we can
refine the last statement a bit, to say that for every m/, the pair (A;"”'j , A;."I;ij ) is
epsilon regular for all but O(e?M;;) values of m, since the values of m' which do
not obey such a property can be safely absorbed into the exceptional set (and then

one has to reduce M;; accordingly, e.g. by removing the corresponding values of m
into an exceptional set also).

Let us fix this decomposition. The point of this decomposition is that if a; €
A7 and a; € ATV, then one should behave as if a; were connected to a; in
G with “probability” d(AT%, A;”I;ij ). In particular, one now expects to have the
approximation B
fP[Ai],i+1,j(aj) R fP[)\i],H»l,j(aj)
where
Fepganglag) = Do dAT AT AN NATVIL, s
m,m’€[1,M;;] (35)
Similarly one expects _
frinii(ai) = fppaag(as)
where
Frpgiga) = Y dA7 AT AT e qmi - (36)

m,m’ €[1,M;;]

The point is that the dependence of fp[)‘i]’i 41, O0n A; is much more controllable
than the original function fp[y,],i+1,5(a;), as one only needs to control the M;;

numbers |4;[A;] N A;’”ij|. The functions fp[)\i],i,j(aj),7P[,\i]7i’j(aj), of course, do
not depend on A; at all.

Let us first verify that fp(y;}s41,; and 7P[z\i],i+1,j are in fact quite close (and simi-
larly with 4 + 1 replaced by 7).

Proposition 7.3. We have

FPingiv1,i(a5) = Fppagivn; (@) + O(eNa) (37)
for all a; € [0, Nq) with at most O(eNg) exceptions. Similarly we have
FPiriii (@) = Frpagig(as) + O(eNa) (38)

2The notation here is unfortunately a bit heavy, but we have to keep track of the dependence
on j as the definition of homogeneity will eventually require us to let j range over all values in
(3, k]. However for the next few paragraphs one can suppress the dependence on j.
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for all a; € [0, Nq) with at most O(eNg) exceptions.

Proof We just prove (37), as the proof of (38) is the same. The entire case
aj € A" can be placed in the exceptional set, so now let us assume that

a; € A;”’;“ for some m/; for this fixed value of m’ we will show that (37) holds for

all a; € A;”"ij with at most O(eNg/M;;) exceptions.

For a; € A;-"I”'j, we have
fepairni(a) = Y Hai € A7V : (ai,05) € B(G)}+{ai € 477"V < (as,05) € E(G)}
me[l,MiJ‘]

and
7P[)\1~],z’+1,j (a;) = Z d(AT AT Ay N AT
me(1,M;;]
The error term |{a; € A" : (a;,a;) € E(G)}| is O(JAS™"%|) = O(eNy), so it
will suffice to show that
3" (Hai € A - (as, a5) € B(G)}|=d(ATY, A7) 43 NINATS|) = O(eNa)
me(1,M;;]

with at most O(eNq/M;;) exceptions. By Chebyshev’s inequality, it will suffice to
show that

S Y (Hai € A < (ai,a5) € B(G)}—d(AT5, AT59) | A NINATY )| = O(2 N2 /M)

aje Ay H me[lMij]

The contribution of those m for which (A7%%, A]"-]I;ij ) is not e2-regular is acceptable
since each such m contributes at most O(Nj/M?) and there are only O(e* M;;)
such m. So we can restrict to the e?-regular pairs. By the triangle inequality, it
then will suffice to show that

Y Iai € A7 < (ai,q5) € E(G)}—d(ATY, AT )| AiNINAT V)| = O( N7 /M)

m!iij
ajEAJ- 314

whenever (A?m'j , A;”'”'j ) is e2-regular. Without the absolute values, the summand
has mean zero, so it suffices to show that

> Hai € AT 2 (ai,05) € B(G)}—d(AT, AT H9)| A NINATYY| = O(€2 N /M)
aj ex

uniformly for all subsets X of A;.""ij . But the left-hand side is the same as
[B(G) N ((AlA] N A7) x X)|d(A7, A7) | A\ 0 AT X| = O( NG /M])

and the claim now follows by e?-regularity. [

In light of (37), (38), we see that in order to prove (33) it will suffice to find a
A € [O,Fo(Ld)) such that

FPinit1,j(@5) = 0cy_y (00) frpailini (@) + Ok(eNg) for all i < j < k,a; € [0, Ny).
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On the other hand, from (35), (36), and the triangle inequality we have

|fP[)\i],i+1,j (aj) - 50(1_1 (OO)fP[Ai],i,j (aj)| S sup Z d(Azn;ij7 A;n ;ij)
m'€[1,M;;] me[l,M;;]

AN N AT | = 6, (00) | AT

<My sup  [[A] N AT = 6, (00)|| AT

m,m’E[l,Mij]
and so it suffices to find a A; € [0, Fo(Lg4)) such that
|AiA] NAT ) = 6., (00)[|AT5 | + Ok (eNa/Mij) for all i < j < k;m € [1, My;].

The point here is that the free parameter a;, which ranged over an enormous set
(of size Ny, which is larger than all the other quantities currently in play, and
in particular is significantly larger than the number of possible A; at our disposal,
which is Fy(Lg)) has now been replaced by the parameters m, m', which range over a
much smaller set (of size M;;, which as it depends ultimately on e4_; and d.,_, (o0)
will in particular be quite small compared to Fy(Lg)). This makes our task far
easier to perform (we now are trying to locate a solution to a problem which has
many more degrees of freedom than constraints, whereas previously the situation
was reversed). This is the power of the Szemerédi regularity lemma: to reduce a
complicated object (a graph on many vertices) to a simpler one (a probabilistic
graph on a much smaller set of vertices).

We still have to locate A;. Suppose for contradiction that this was not possible.
Then for each A; in [0, Fo(Lg)), there exists 1 < j < k, m € [1, M;;], and a sign +
such that A;[\;] has anomalous density in A]"":

* (JAA] NAT] = be,_y (00)|| ATV )) > eNa/ M. (39)

At present the quantities j, m, £+ depend on \;. However, we now invoke our second
powerful tool, the van der Waerden theorem, to eliminate this dependence (while
still retaining arithmetic structure on the );). From the Szemerédi regularity lemma
we had M;; < C(e). Combining this with (32), (16), (20) we have the number of
triplets (j,m, £) is bounded by

< 2kC(e) = C(eg—1,0¢,_,(0)) = C(Ng—1) € Lgq

(if Fy is sufficiently fast) and so the map A\; — (4, m, £) colors the interval [0, Fo(Lg))
into at most Lg colors. By the van der Waerden theorem we can thus find (if Fp
is sufficiently fast growing®) an increasing arithmetic progression R in [0, Fo(Lg))
of length L; and fized j,m,+ such that (39) holds for all A; € R; thus we have
a consistently anomalous density in this progression R. We now use some density
counting arguments to obtain a contradiction from this and (17).

3This step is the step that causes Fp to grow extremely fast; even the Szemerédi regularity
lemma only demands tower-type growth of Fp, whereas the best elementary bound on van der
Waerden’s theorem, due to Shelah, is a triply iterated tower. This in turn leads to very poor final
bounds on Szemerédi’s theorem. The bound of Gowers gives much better bounds here - double
exponential, to be precise - but it would be rather perverse to use Gowers’ bound here, since the
argument in [2] gives Szemerédi’s theorem directly.
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Summing (39) for all A; € R (and taking full advantage of the consistency of the
parameters j,m,+) we see that
| AN N AT = 6, (00)|| AT | Ly| > €LaNa/Ms;. (40)
MER
On the other hand, by applying (34) for all A; € R and summing to obtain
> AN = (6cu_ (00) + O(ea)) LaNa. (41)

AiER

To obtain a contradiction we need to somehow restrict (41) to A;”;ij . As we shall
see, this will be possible thanks to the control (17) on the perfect color density at
scale Lg.

We turn to the details. We rearrange the left-hand side to obtain
Z [{\i € R : P[Ai]i,q; has the perfect color}| = (dc,_,(o0) + O(€q))LaNg.
a,-E[O,Nd)

Note that the progression Qai := Upy,er P[Aili,a; is an increasing progression of
rank d and dimensions (Ny,...,Ng_1,L4). Thus we can rearrange the left-hand
side again to obtain

Z 6Cd 1 Q(h :( Cd— 1( )+O(6d))Nd'
€[0,Nq)
We now apply

Lemma 7.4. We have

L 1
2 (o (@u) = Feur (00 = Ol gy N

a; €[0,Ng)

Proof There are two contributions, depending on whether J,, obeys the condition

lon@-1 (Qa;) — Tn—1(00)] < v/ pra—1(La)
or not. If it does, then by (3) we have
6Cd—1(Qai) < 6Cd—1(Ld)

and this contirbution will be acceptable from (17). In the other case, we bound the
summand crudely by 1, and reduce to showing that

1
[{a: € [0, Ng) : lon@-1(Qa;)—Onw—1 ()| > /pra—1(La)}| = W)Nd-

To see this, we first observe from (8), (7) and the saturation of the P[A;]; that
|{a; € [0, Ng) : P[\i]i.q; is saturated}| = (Gyw@=n(o0) + O(e5)) Na
for all \; € R; averaging this in \; and rearranging the left-hand side we obtain
> onw-1(Qa;) = (Fna-1(0) + O(eh)) Na
a;€[0,Ng)

and thus
> (onw-1(Qa;) — Fxw(00)) = O(e§) Na.

CLiE[O,Nd)
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But from definition of pg—1(Lg4) we have

Z (onw@-1(Qa;) — On@—1(00))+ = O(pa—1(La)) N4

aiE[O,Nd)
so by (21)
> lona-1(Qa;) — Fna=1(00)| = O(a—1(La))Na
CLiE[O,Nd)
and the claim now follows from Chebyshev and (18). [ |

From this Lemma and the preceding estimate we have (from (19), (16))
1
D 10easi(Qar) = 8eai(00)] = O(———— ) Na-
aiCON) Fo(Ny...Ng—q)

In particular we have

1
Z 10cq_1(Qa;) = Ocy_, (00)] = (m)Nd

a,'EA;";”

and hence
1

Fo(N1...Na_1)

> Geui(Qa) = ey, ()| AT + O(

. m;ij
a;EA;]

)N,

We now reverse our previous manipulations, to obtain

Ai € R : P[);]i,q; has the perfect color}| = é.,_, (00 A;”‘ij +0(—=———————)Ly4N,
ol Adias hs the p } = B COIAT Y [0 Lal
a; €A
1
whichrearrangesasbe foreto E Ai[NINAT =3, L AT 4+0(—=——=—"——-)L4N,.
g f | | d— ( )l (3 | (FO(NI---Nd—l)) d d

XER
Comparing this with (40) we obtain

o/ Mij = O N

which is a contradiction if F grows quickly enough, because €/M;; can be bounded
below by a quantity depending on €, which in turn depends on £4_; and d,,_, (c0),
which in turn is bounded by Nj...Ny_; thanks to (5) (and (20)). This finally
completes the proof of Proposition 5.5 and hence of Szemerédi’s theorem.
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