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Welcome to the Book Reviews Column. We hope to bring you at least two reviews of books every
month. In this column four books are reviewed.

1. Algorithms and Theory of Computation Handbook edited by Mikhail Atallah. Re-
viewed by William Gasarch. This is a new handbook, published in 1999. It is not an update
of the MIT handbook that came out in 1990. It is pitched at a lower level.

2. Handbook of Combinatorics (in two Volumes) edited by R.L. Graham, M. Grötschel,
L. Lovász. Reviewed by William Gasarch. This handbook contains a great deal of material
that is useful to theorists. It is written for a mathematical mature audience.

3. Probabilistic Combinatorics and Its Applications edited by Béla Bollobás. Reviewed
by Danny Krizanc. This book consists of a series of introductory survey articles on topics
in probablistic combinatorics and its applications. The emphasis throughout the book is on
techniques, with sufficient examples to show their usefulness.

4. Spectral Graph Theory by Fan Chung. Reviewed by Jacob Lurie. This book looks at
the interplay between a graph and the mathematical properties of its adjacency matrix. It
draws motivation from rather advanced mathematics, though knowledge of this mathematics
is not strictly neccessary to read it.

I am looking for reviewers for the following books
If you want a FREE copy of one of these books in exchange for a review, then email me at

gasarchcs.umd.edu
The following are DIMACS workshop books which are collections of articles.

1. Randomization Methods in Algorithm Design.

2. Microsurveys in Discrete Probability.

3. Mathematical Support of Molecular Biology.

4. Multichannel Optical Networks: Theory and Practice.

5. Networks in Distributed Computing.

6. Advances in Switching Networks.

7. Network Design: Connectivity and Facilities Location.

Review of Algorithms and Theory of Computation Handbook edited by
Mikhail Atallah

Published by CRC press in 1999
Number of pages 12962

1 c© William Gasarch, 1999.
2The ith page of chapter j is numbered j-i, hence the number of pages is not obvious. I got the number of pages

off of amazon.com
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William Gasarch
University of Maryland at College Park

gasarch@cs.umd.edu

1 Overview

One uses a handbook by looking up things that you always wanted to know or that come up.
Hence, I decided to review this handbook by asking a random collection of theorists (the editors
of SIGACT NEWS and theorists in the Maryland-Wash DC area) to email me questions they are
either curious about or think ought to be in a handbook. I comment on how well the book does on
answering each one, and then summarize how well the book did overall. For each question asked
I looked rather carefully in the table of contents and the index; hence, if I say ‘the book did not
have anything on topic X’ and in reality it does, then the books organization is at fault.

This book is intended for undergraduates who have had the basic undergraduate theory courses,
and for the computer professional. There are 48 chapters. For the table of contents the reader is
referred to the website http://www.crcpress.com.

Section 2 comments on the questions that the handbook did well on, and Section 3 comments
on those that the handbook did not do so well on. Realize that this is a subjective judgement.

2 Questions the handbook did well on

1. What problems are easily parallelizable? There is one chapter on parallel complexity and one
on parallel algorithms. The one on parallel complexity covers P vs. NC and P-completeness.
The one on parallel algorithms uses for its model an algol-like language. Since these models
are incompatible they may give different notions of parallelizable. This is fine since there are
different definitions and the issue is not resolved yet.

2. How does one do primitive operations in Computational Geometry such as determining what
side of a given line a given point is on? Do they discuss convex hulls? Maxima? Triangu-
lation? Delaunay triangulation? Vornoi diagrams? Closest pair? All of these are discussed.
Two dimensional convex hull is solved using the Graham-scan algorithm. For higher dimen-
sion a theorem is stated but not proved. Maxima is done in two dimensions and then in
all dimensions. An O(n logn) triangulation algorithm is given. The O(n log∗ n) Las Vegas
algorithm, and the O(n) algorithm are mentioned but (wisely) not presented.

3. How do you solve recurrences? How about really hard ones? In the chapter ALGORITHM
DESIGN AND ANALYSIS TECHNIQUES they deal with recurrences of the form T (n) =∑k
i=0 aiT (n − i) and T (n) = g(n) + aT (n/b). The treatments are fairly short and leave

out many cases, but include those relevant for algorithm analysis. In AVERAGE CASE
ANALYSIS OF ALGORITHMS they deal with far more sophisticated techniques such as
Mellon transforms.
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4. What is the best known algorithm for graph planarity? They mention the Hopcroft-Tarjan
O(n) algorithm but do not present it.

5. What are Dijkstra’s algorithm, Kruskal’s algorithm, Prim’s algorithm, and Floyd’s algorithm?
All of these are included. There is a good discussion with algorithms and some analysis. Some
advanced results are mentioned: (1) Dijkstra’s and Prim’s algorithm can be speeded up to
O(|E|+ |V | log |V |) with Fibonacci trees, (2) there is a randomized algorithm (due to Karger-
Klein-Tarjan) that solves MST in O(n) expected time.

6. What’s this I hear about quantum computing? The section on cryptography has four pages
on quantum computing and quantum crypto, including some material on Shor’s factoring
algorithm. Realize that you can’t really say much on this topic in four pages.

7. What is the Chernoff bound? The formula and derivation are there.

8. What is the exponent for matrix multiplication? The book discusses the problem and presents
the O(n2.81) algorithm of Strassen. It mentions but (wisely) does not prove the best known
algorithm which is O(n2.376) and gives a reference.

9. What is known about primality testing? In the chapter on ENCRYTPTION SCHEMES they
give the Solovay-Strassen probablistic algorithm (discovered independently by Lehmer). They
also mention the relatively recent result that there are an infinite number of Carmichael num-
bers. (n is a Carmichael number if n is composite and (∀a 6= 0)[an−1 ≡ 1 (mod n)]. These
are important since they are counterexamples for a certain conjectured primality algorithm.)
They do not mention the probabilistic complexity classes that PRIME is in, nor that it is in
NP ∩ co-NP.

10. What is known about factoring? In the chapter on CRYPTANALYSIS they outline the
Quadratic Sieve algorithm, which works in exp(O((logn)

1
2 (log logn)

1
2 )) steps to factor n, and

the Number Field Sieve which takes exp(O((logn)
1
3 (log logn)

2
3 )).

11. What do they have on scheduling? In particular, do they talk about min tardiness scheduling
(minimize the amount by which a job is late)? There is an entire chapter on scheduling. Min
tardiness is mentioned in that they discuss Jackson’s rule. In addition scheduling comes up
briefly in the chapter on on-line algorithms, and in the chapter on integer programming.

12. What are the levels in Chomsky’s hierarchy of formal languages? This is given a full treatment.

13. How do the various complexity classes relate to each other? There is a diagram of how P,
ZPP, RP, BPP, NP, PP, PH, PPP, and PSPACE relate.

14. What is an LL(1) grammar? LL(2) grammar? They define these terms and give examples
and counterexamples.

15. How do you prove Cook’s Theorem? How do you prove that HALT is undecidable? Both
Cook’s Theorem and the undecidability of HALT are proven.

16. Are there machine-independent characterizations of the usual complexity classes? Fagin’s
theorem, and others like it, are stated but (wisely) not proven.

3



3 Questions the handbook did not do well on

1. What is known about parallel sorting? The book has parallel quicksort and parallel radix
sort but nothing else. No k-round sorting, no expander graphs, no sorting networks, and no
AKS.

2. What is NP? What is PSPACE? What are NP’s natural complete problems? What is UP?
What are UP’s natural complete problems? What is the connection between UP and one-way
functions? The book talks about P, NP, and PSPACE (including Savitch’s theorem). The
book does not discuss UP or FewP. Counting classes are discussed. One-way functions are
not mentioned (except briefly when talking about hashing). The notions of UP and one-way
functions, and the connection, could have been established.

3. What are the known upper and lower bounds for sorting, selection, element distinctness, hi-lo,
and similar problems using comparisons? How about using other types of queries?

They have all the standard sorting algorithms. They do not have the one that is best for
number-of-comparisons (See Ford-Johnson’s algorithm either in Knuth Volume 3 or American
Math Montly Volume 66, 387–389 and also see Manacher’s article in JACM 1979, Volume
26). This may be because these algorithms are bad in practice (for example they both use a
quadratic number of moves). They have the randomized selection algorithm but do not have
the deterministic O(n) algorithm. They do not have element distinctness or hi-lo. They do
not consider other types of queries. In short, they have the practical algorithms you might
need but neglect questions that are of theoretical interest.

4. Do they mention the following important theorems: (1) DSPACE(n) closed under comple-
mentation. (2) If SAT has non-uniform poly-sized circuits then the polynomial hierarchy
collapses to Σp

2. (3) If SAT ≤pm S where S is sparse then P = NP. (4) IP = PSPACE. (5) NP
is contained in PCP(logn, 1). (6) Parity cannot be recognized by poly-size constant depth
circuits. (7) There are sets A and B such that PA = NPA and PB 6= NPB. (8) PERM is
#P-complete.

All of these results are stated but not proven. The proof of (3) is easy enough to include
(especially using the modern proof that is a subcase of Ogiwara’s–Watnabe theorem on btt-
reductions). The proofs of (1), (2), and (7) should have been included.

5. What is a Hamiltonian graph? Eulerian graph? Planar graph? Genus-g graph? They mention
that recognizing Hamiltonian graphs is NP-complete; however, they do not say anything about
Eulerian graphs at all except their definition. Planar graphs are discussed, however genus-g
graphs are not.

6. Do they state or prove the equivalence of DFA’s, NFA’s, Reg. expressions, Reg grammars?
CFG’s and PDA’s? The chapter on BASIC NOTIONS IN COMPUTATIONAL COMPLEX-
ITY does all the equivalences for regular language. This same chapter defines PDA’s. The
chapter on FORMAL GRAMMARS AND LANGUAGES defines CFG’s, however the con-
nection is not stated.

7. What is a Horn clause? What is Predicate Calculus? What is Propositional Calculus? What
is resolution theorem proving? None of this is discussed except for the proof that SAT is
NP -complete.
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8. What is a garbage collector, what is mark-sweep, why is malloc/free slow? There is nothing
on garbage collection.

9. Is there a general theorem on emergent behavior of distributed systems? There is a section on
distributed computing, but no such theorem is in the handbook. Nor is this issue discussed.

10. What are the paradigms of Dynamic programming, Divide and Conquer, and Greedy? There
are many references to these paradigms in the index, however they all lead to a particular
algorithm using these paradigms. There is no discussion of what either one is in general.

11. What is the polynomial hierarchy? What is the arithmetic hierarchy? How do concepts in
complexity theory and recursion theory relate? The polynomial hierarchy and many other
classes are defined. The arithmetic hierarchy is not defined. There are chapters on com-
putability and on complexity but there is no real strong sense that the two are related.

12. What is Godel’s completeness theorem? incompleteness theorem? This is not mentioned.

13. What is an ω-automata? This is not mentioned.

14. What is known about dynamic algorithms for transitive closure? Both semi-dynamic and
fully dynamic? There is a chapter on DYNAMIC GRAPH ALGORITHMS but this particular
question is not addressed.

15. What is Lenstra’s fixed dimensional integer programming method? While there is a good
chapter on integer programming, this is not included.

16. Which interesting problems fall into which approximability classes? The chapter on complex-
ity classes defines MAX SNP and mentions that MAX CUT and MAX CLIQUE are complete
for MAX SNP (the proof for MAX CLIQUE is given assuming NP ⊆ PCP(logn, 1)). No other
problems are given and the class MAX SNP is not mentioned in the chapters on approximation
algorithms.

17. What is a zero knowledge proof? This is mentioned in passing in the chapter on Electronic
Cash, but is not given any real treatment.

18. What is known about matrix inversion? Finding the determinant? Matrix inversion is not
mentioned. This is surprising since matrix inversion is equivalent to matrix multiplication, and
is covered in standard texts such as Cormen-Leiserson-Rivest. The determinant is mentioned
in the context of randomized algorithms, matrix operations, and complexity theory. They do
mention that PERM is complete for GapP, while DET is complete for GapL.

4 Summary and Opinion

Questions on basic algorithms tended to have good answers and good commentary on practical
concerns. Questions on basic notions in complexity theory tended to have good answers and some
more advanced theorems were stated without proof (usually wisely). Theoretical questions that
do not have a practical angle were usually not answered. There is nothing on semantics or logic;
however, since the book’s title is Algorithms and Theory of Computation Handbook it is not claiming
to cover those areas.

Many of the chapters have a practical bias and the very choice of topics shows a bias towards
practice (e.g., a chapter on graph-drawing algorithms, and seven chapters on cryptography and its

5



variants, while only six chapters on complexity theory). Given the intended audience, this is might
be appropriate.

The book to compare this to is The Handbook of Theoretical Computer Science, edited by Jan
Van Leeuwen, MIT press, published in 1990, (paperback available in 1994). Volume A is on AL-
GORITHMS AND COMPLEXITY and Volume B is on FORMAL MODELS AND SEMANTICS.
I will refer to the old handbook as MIT and the new one as CRC. Hence the fair question is “I have
Volume A of MIT. Do I need CRC?” The following topics are in CRC but not in MIT: dynamic
graph algorithms, graph drawing algorithms, on-line algorithms, comp learning theory, convex op-
timization, AI search algorithms, and simulated annealing techniques. The topics that are in both
books get a deeper treatment in MIT but some of the newer results are stated (but not proven) in
CRC but not in MIT. Note that the price of CRC is very cheap ($89.00)

The combination of the index and the table of contents made items in CRC easy to find.

5 Acknowledgments

I would like to thank Dan Engel, Carolyn Gasarch, James Glenn, Lane Hemaspaandra, Samir
Khuller, Clyde Kruskal, David Kueker, Songrit Maneewongvatana, Dave Mount, Ian Parberry, and
Aaron Rosenzweig for questions and comments.

Review of Handbook of Combinatorics (in two Volumes) edited by
R.L. Graham, M. Grötschel, L. Lovász

Published by MIT press in 1996
Number of pages: 2401

Hardcover, $330.00
ISBN number 0-262-07169-X

Review by

William Gasarch
University of Maryland at College Park

gasarch@cs.umd.edu

One uses a handbook by looking up things that you always wanted to know or that come up.
Hence, I decided to review this handbook by asking a random collection of theorists (the editors
of SIGACT NEWS and theorists in the Maryland-Wash DC area) to email me questions they are
either curious about or think ought to be in a handbook. I comment on how well the book does on
answering each one, and then summarize how well the book did overall. For each question asked
I looked rather carefully in the table of contents and the index; hence, if I say ‘the book did not
have anything on topic X’ and in reality it does, then the books organization is at fault.

This book is intended for undergraduates who have had the basic undergraduate theory courses,
and for the computer professional. There are 48 chapters. The book claims that it is intended for
“working mathematician or computer scientist” For the table of contents, the reader is referred to

http://mitpress.mit.edu/book-table-of-contents.tcl?isbn=026207169X.
Section 1 comments on the questions that the handbook did well on, and Section 2 comments

on those that the handbook did not do so well on. Realize that this is a subjective judgement.
Section 3 comments on what is here of interest to theoretical computer scientists.
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1 Questions the handbook did well on

1. Is there a short or at least shorter proof of the four-color theorem? The handbook reports
that the original proof of Appel and Haken (in 1976) used 1936 configurations; however there
is a new proof due to Robertson et al. (1994) that uses only 633 configurations. They still
have to be examined via computer. The handbook has many other points of interest about
the four-color theorem including some of its history and equivalent formulations.

2. Is there an asymptotic formula for the Stirling numbers of the first or second kind? Generating
functions for both types of Stirling numbers are given and a reference for finding out more
about Stirling numbers of the first kind is given.

3. How do you actually prove Kuratowski’s theorem? They state the theorem and refer to
Kuratowski’s original paper (in French) and a more recent proof by Thomassen (in English).
They also prove the following: a graph is outer-planer iff it does not have K4 or K2,3 as a
minor.

4. What do the eigenvalues of a graph tell us about the graph? There is a nice section on this in
the chapter TOOLS FROM LINEAR ALGEBRA. They prove several theorems including the
following: 1

λmin
≤ χ(G). In a different chapter they state but do not prove 1−λmax

λmin
≤ χ(G) ≤

1+λmax. This was in the chapter COLORING, STABLE SETS, AND PERFECT GRAPHS.
The result was hard to find since the page it was on is NOT in the index under “eigenvalues”
or anything close. (I found it by accident.)

5. Are well-quasi-orders covered? How about the GMT (Graph minor theorem— the set of
graphs under minor ordering forms a well quasi order). Are better-quasi-orders covered?
Well quasi orders are in the book and the basic theorems are covered, including Kruskal’s
Theorem. The full GMT is (wisely) not proven. Better quasi orders are not covered, which
is okay if you are a theorist using this book as a reference (I’ve never seen better quasi orders
used in Theoretical computer science) but it still seems like it should be there.

6. What does it have on infinite combinatorics? It has the basic theorems of infinite combina-
torics (e.g., infinite Ramsey) and a few more.

7. Is there a primitive recursive bound on the Van Der Waerdan numbers? There is, and this is
presented well.

8. What are the known Ramsey numbers? Van Der Waerdan numbers? It has a table of the
known Ramsey numbers, but not of the VDW numbers. There are very few VDW numbers
known so this is not really a bad thing.

9. What are matroids good for? There is over 100 pages on matroids. The introduction says that
it is motivated by matrix theory and graph theory, but doesn’t really say where its heading.
However, skimming those 100 pages you can see some applications.

10. For which p is the graph G(n, p) almost surely connected? an expander? other properties?
The handbook stated a theorem which implies that there is such a probability for both cases.
For connectivity they state that if limn→∞ np − logn = c then Pr(G(n, p)) is connected
approaches e−e

−c
. For expander graphs they do not have any theorem, however they do point

out that for many second order properties the threshold is not known, hence that may be the
case here.
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11. Is there a cardinality so large that if A is a set of that cardinality and you color unordered
pairs from A you get an uncountable homogeneous set? Yes, and 22ℵ0 suffices. The proof is
there too.

12. What is the maximum number of facets of any polytope in d dim of n vertices? The handbook
has the answer as

(n−b0.5(d+1)c
n−d

)
+
(n−b0.5(d+2)c

n−d
)
.

13. How do the degree, genus, and chromatic number relate to each other? A surface of genus g
is a sphere with g handles. A graph is of genus g if it can be embedded on a surface of genus

g. The handbook states Heawood’s formula χ(G) ≤ b 7+
√

48g+1
2 c and proves it for g ≥ 1.

The book states that this is optimal. Note that the g = 0 case is the 4-color theorem. The
handbook states ad proves Brook’s theorem: (1) χ(G) ≤ deg(G) + 1, (2) if deg(G) = 2 then
χ(G) = deg(G) + 1 iff G has an odd cycle as a connected component, (3) if deg(G) 6= 2
then χ(G) = deg(G) + 1 iff G has a complete graph on deg(G) + 1 vertices as a connected
component.

14. Given a positive integer n, how many ways can n be partitioned as a sum of positive integers?
The handbook gives a generating function for this, some asymptotics, some theorems, and
some references.

15. What to they have on Szemerdi’s theorem that every set of positive upper density has arith-
metic progressions of arbitrary length? They state the theorem and give some background
information. They (wisely) do not prove it.

16. It has been said that combinatorics and number theory are cousins. How much material is
there on number theory in the book? (I realize that its not really the focus of the book.)
There is a chapter on combinatorial number theory which includes sieve methods and Van
der Waerden’s theorem. In the section on asymptotics they prove that the sum of all the
primes ≤ n approaches n2

2logn .

17. Let d2(n) be the maximum number of times the distance 1 occurs between n points in R2.
What is known about d2(n)? In the chapter on EXTREMAL PROBLEMS IN COMBINA-

TORIAL GEOMETRY they state that n
1+ c

log log n < d2(n) < cn
4
3 . Proofs of weaker results,

and results in higher dimensions, are sketched.

2 Questions the handbook did not do well on

1. What is the number of triangulations of a convex polygon (Catalan numbers)? The Catalan
numbers are in the handbook, but the fact that they are also the number of triangulations of
a convex polygon is not.

2. Can some of the graph parameters (chromatic number, crossing number, genus, etc.) be
defined in a way to allow fractional values? If so, is the (say) 4.5-color theorem easier to
prove than the 4-color theorem? Fractional edge-colorings, fractional matching, and fractional
node-covers are mentioned. Fractional chromatic number is not mentioned.

3. Can binomial coefficients be defined for negative numbers? Fractions? Irrational Numbers?
Complex numbers? How about multinomial coefficients? None of this seems to be in the
handbook. It is hard to tell since the index only gives one reference to “binomial coefficient”
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and two to “multinomial coefficient” and both of these are in the section on HISTORY OF
COMBINATORICS.

4. Are there applications of Ramsey theory to theoretical computer science? My first attempt to
find any yielded none (the index was not very helpful). Later, by accident, I found one in the
chapter on PROB. METHOD. And then a few in the chapter on Ramsey theory. The ones
they listed were ones I had not heard of before, but other standard ones (e.g., Yao’s paper
SHOULD TABLES BE SORTED, Manber, Moran, and Snir’s APPLICATIONS OF RAM-
SEY THEOREM TO DECISION TREE COMPLEXITY, Snir’s ON PARALLEL SEARCH-
ING, Alon and Maass RAMSEY THEORY AND LOWER BOUNDS FOR BRANCHING
PROGRAMS) were not listed. Alon’s paper on constructive lower bounds for certain types
of Ramsey Numbers was listed but is not an application.

5. Given a number n I want to know the minimal N such that if you 2-color KN you are
guaranteed a monochromatic cycle of length n. This leads to the field of Graph Ramsey
Theory. There was some on this but not alot.

6. What can the number of k-sets be for a set of n points? This problem is not addressed.

7. What is the number of cells that a set of k planes (or hyperplanes) creates? This problem is
brought up tangentially, but no results are stated.

8. How many 8 × 8 knight’s tours are there? Knight tours are mentioned in the HISTORY
chapter, but this question is not addressed.

9. Under what conditions does a tournament have a directed Hamiltonian cycle? This is not
addressed.

3 What is of interest to us?

The prior sections of this review viewed a handbook as a reference. In this section we look at the
book to see what is of interest to us as computer scientists.

1. There is some nice stuff on Graph Minors and embeddings. GREAT— I don’t have to read
the Robertson Seymour papers (Graph Minors 1, Graph Minors 2,. . ., Graph Minors 24) to
get a sense of the subject.

2. The chapter on Random graphs answered most of my questions on that topic.

3. The chapters on COMBINATORIAL OPTIMIZATION, COMBINATORICS IN OPERA-
TIONS RESEARCH, and COMPUTATIONAL COMPLEXITY look like nice overviews of
these fields.

4. The chapter on COMBINATORICS IN COMPUTER SCIENCE is nice but badly titled since
COMPUTER SCIENCE or even COMPUTER SCIENCE THEORY is quite broad. It would
be more accurate to call it COMBINATORICS FOR PROVING LOWER BOUNDS ON
CONCRETE MODELS.

5. The chapters on COMBINATORIAL GAMES and HISTORY OF COMBINATORICS look
readable and very interesting. The chapters on ASYMPTOTIC ENUMERATION METH-
ODS looks hard but very interesting.
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4 Opinion

This book has very striking PROS and CONS.
PROS: The topics in it are fascinating and there is much that is worth learning. The articles are
well written and the choice of topics is reasonable.
CONS: The combination of index and table of contenst was not that good for finding answers to
questions. (It should be noted that it is very hard to index a handbook.) I found many things by
accident that the index was no help on. In addition there are several topics that should be in the
book but appear not to be.
NEUTRAL: The book is on a sophisticated mathematical level. The audience is mathematicians
and computer scientists who already know some combinatorics.
FINAL THOUGHTS: In a perfect world I would have a year free from all obligations and would
read this book cover to cover. Alas, since we are not in a perfect world, is it worth the $330.00 to
have it as a reference and to browse sometimes? I would say its worth having your local library
buy it for such purpose.

5 Acknowledgement

I would like to thank Dave Bindel, Dave Clark, Dan Engel, Carolyn Gasarch, Lane Hemaspaandra,
Samir Khuller, Aaron Rosensweig, Joseph O’Rourke, Dave Mount, Michael Murphy, Ian Parberry,
Joel Seiferas, Zeke Zalcstein for questions and comments.

Review of
Probabilistic Combinatorics and Its Applications3

Editor: Béla Bollobás
Publisher: American Mathematical Society, 1991

ISBN 0-8218-5500-X
Hardcover

Price: $43.00 (US)

Reviewed by: Danny Krizanc
Carleton University, Ottawa, Canada.

1 Overview

Probablistic arguments have been applied in many areas of combinatorics and theoretical computer
science ever since Erdös first used one to prove bounds on Ramsey numbers. Applications range from
constructing graphs with properties useful in building communication networks to almost uniform
generation of random structures for the purpose of approximately solving intractable counting
problems. This book consists of a series of introductory survey articles on topics in probablistic
combinatorics and its applications. (The articles are derived from lectures given in one of a series
of short courses sponsored by the American Mathematical Society.) The topics covered include
random and random-like graphs, discrete isoperimetric inequalities, rapidly mixing Markov chains,
and finite Fourier methods. The emphasis throughout the book is on techniques, with sufficient
examples to show their usefulness.

3 c© Danny Krizanc, 1999
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2 Summary of Contents

There are total of seven articles on various aspects of probabilistic combinatorics. The first and
fourth articles are on random graphs and are both written by Béla Bollobás. The first of these
articles introduces the two standard models of random graphs: G(n,M) - uniform over n vertex
graphs with M edges and G(n, p) - n vertex graphs with edges included independently with proba-
bility p. (A variation of G(n,M) where edges are chosen with replacement is also mentioned.) The
relationship between the models, the concept of a threshold function for a graph property, and the
basic inequalities used to establish thresholds are discussed. Classical results concerning Ramsey
numbers, the chromatic number of sparse graphs and the clique number of random graphs are
shown. In the second Bollobás article more advanced techniques such as martingale inequalities,
Janson’s inequality and the Stein-Chen method are introduced and used to show more detailed
results concerning the chromatic and clique numbers of random graphs.
The second article by Fan Chung introduces a number of useful properties of graphs and shows rela-
tionships between them. These properties include the Ramsey, discrepancy, expansion, eigenvalue
and different extremal properties. In many cases, the existence of graphs having these properties
was first shown using probabilistic arguments. Much of the chapter is devoted to describing de-
terministic constructions of such graphs including Paley, coset, Margulis, and Ramanunjan graphs.
Applications to communication networks and open problems are discussed.
There is natural correspondence between the space of random graphs and the hypercube whereby
graph properties are identified with subsets of the hypercube. Using this correspondence, thresholds
for graph properties can be established using the t-boundary A(t) of a subset A of the hypercube,
i.e., the set of points within distance t of A. The third article by Imre Leader concentrates on
discrete isoperimetric inequalities or bounds on the size of the t-boundary of a set of a given
size. Martingale techniques are used to show sharper bounds then those obtained using traditional
expectation and variance methods. An application of these inequalities to the chromatic number
of random graphs is discussed by Bollobás in his second article.
Problems complete for the class #P of counting problems (see [5]), such as computing the per-
manent, network reliability, the volume of a convex body and the partition function in the Ising
model, are believed to be intractable and therefore research has concentrated on finding approxi-
mate solutions to them. Jerrum, Valiant and Vazirani [4] proved for sets defined by self-reducible
relations (e.g., the examples mentioned above), finding a fully polynomial randomized approximate
counting scheme is equivalent to almost uniform generation of a random element of the set. The
fifth article by Umesh Vazirani focuses on the technique of rapidly mixing Markov chains (i.e.,
Markov chains that converge rapidly to a stationary distribution which is uniform over the given
set) for performing almost uniform generation. Methods for defining a suitable Markov chain and
proving its rapid convergence are surveyed. The concept of the conductance of a chain, bounds on
the mixing time it implies, and relationships to eigenvalue separation and expansion are discussed.
The topic of the sixth article by Martin Dyer and Alan Frieze is the problem of computing the
volume of a convex body in Rn. For this problem it can be shown that no deterministic approx-
imation algorithm exists but by exploiting a powerful isoperimetric inequality and the method
of rapidly mixing Markov chains an efficient fully polynomial randomized approximation scheme
may be derived. The problem is especially important because of the large number of applications
it has. Those discussed in the article include integration of non-negative functions over a convex
body, counting linear extensions of a partial order, approximate solution to stochastic programming
problems and learning a halfspace.
In the final article, Persi Diaconis shows how finite Fourier methods can be applied to bounding
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the rate of convergence and estimating covering and first hitting times of random walks on graphs
with certain symmetry properties (describable using group theory ). The most important example
of such a graph is the hypercube which has been studied in detail. This paper begins with the
basis of Fourier analysis relevant to the study of random walks and then proceeds to several more
sophisticated examples.

3 Opinion

This book is recommended for two audiences: experts in the area and researchers not knowledgeable
in the area but who are interested in working in the area or who suspect some of the techniques
may be applicable to problems they are working on. For the expert the book makes for a good
reference, covering the state of the art of the field up to 1991. Each article gives a large number of
references to the historical development of each of the areas covered and to the major applications
of the methods described. For the novice the book is an excellent primer, introducing the major
techniques of probabilistic combinatorics and giving some examples of how these techniques may
be applied to a variety of problems. Some of the material is covered in more depth elsewhere (e.g.,
Bollobás’ own book on random graphs [2], Chung’s book on spectral graph theory [3] and the book
of Alon and Spencer on the probabilistic method [1]) but for most of the topics these surveys are
the only ones I know of. The writing is clear and concise throughout.
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1 Overview

Specifying a graph is equivalent to specifying its adjacency relation, which may be encoded in the
form of a matrix. This suggests that study of the adjacency matrix from a linear-algebraic point
of view might yield valuable information about graphs. In particular, any invariant associated to
the matrix is also an invariant associated to the graph, and might have combinatorial meaning.
Spectral graph theory is the study of the relationship between a graph and the eigenvalues of
matrices (such as the adjacency matrix) naturally associated to that graph. This book looks at the
subject from a geometric point of view, exploiting an analogy between a graph and a Riemannian
manifold: Chung defines the Laplacian of a graph, a matrix closely related to the adjacency matrix,
in analogy with the continuous case and studies the eigenvalues of this Laplacian.
There are several reasons that these eigenvalues may be of interest. On the purely mathematical
level, the eigenvalues have the advantage of being an extremely natural invariant which behaves
nicely under operations such as Cartesian product and disjoint union. From a combinatorial point
of view, the eigenvalues of a graph are related to many other more “discrete” invariants. From a
geometric point of view, there are many respects in which the eigenvalues of a graph behave like
the spectrum of a compact Riemannian manfiold. For the computationally-minded, the eigenvalues
of a graph are easy to compute, and their relationship to other invariants can often yields good
approximations to less tractible computations.

2 Summary

The first chapter is devoted to definitions, examples, and basic facts about the spectrum of the
graph, and their application to the study of random walks on a graph. It gives a good taste of
what the rest of the book is like in terms of the structure of the arguments, and the application is
very natural. It is well worth reading for any who wish an introduction to the subject matter.
The next four chapters investigate the relationship between the spectrum of a graph and other
properties of a graph which are of greater combinatorial interest. Stress is put on computational
applications, and the mathematics is no longer as pretty.
The sixth chapter has a very different flavor: after indicating how the ideas of spectral graph theory
may be applied to aid in the construction (or, more properly, the validation) of expander graphs,
Chung launches into a discussion of expanders and their applications to computer science. She also
gives many examples of constructions of extremal graphs, whose properties are asserted without
proof. This chapter is less mathematically involved than the rest of the book, focusing on bringing
ideas together rather than expounding on any one in depth; it is a survey of connections that graph
theory has with other subjects.
The seventh chapter is again very different from the remainder of the book. It contains a general
discussion of symmetric graphs, with emphasis on the properties of their spectrum. In the last
section of this chapter, Chung briefly sketches some connections with group representation theory.
The mathematics is simple and elegant, making the chapter a pleasure to read.
The last five chapters delve more deeply into the geometric analogy which informs the entire book:
Chung investigates the discrete analogues of diffeo-geometric notions like boundary conditions and
the heat equation. Though she never completely loses sight of applications, these fade into the
background. As a result, this part of the book seems poorly motivated. It should primarily appeal
to those who are already familiar with the geometry in a different setting and want to see the
“discrete analogue”.
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3 Mathematics

For the most part, this book requires few prerequisites: elementary graph theory, linear algebra, and
group theory. It is a book about graph theory which employs ideas, but not results, from differential
geometry. However, since the origin of these ideas is usually not made clear, a background in
geometry is extremely helpful for motivational purposes.
Some sections of the book employ more advanced mathematical ideas. Some sections make the anal-
ogy with differential geometry explicit by proving both a combinatorial theorem and its geometric
analogue: reading these sections requires a reasonable understanding of Riemannian geometry, but
only for understanding the geometric results (which are not needed in other sections of the book).
Only once are geometric ideas actually used to obtain combinatorial results (section 10.4). Some
relationships to still other areas of mathematics are briefly sketched, but no results or ideas from
these other fields are required in order to follow the discussion. This can be disappointing at times,
since Chung tends to bring one just close enough to an interesting idea to know that it is out there,
but not close enough to grasp it. Luckily, she provides ample references for all of these topics.
The proof techniques employed are fairly homogeneous throughout the book: clever manipulation
of inequalities and variational arguments (always for polynomials on a finite dimensional vector
space). Theorems typically assert an inequality betwen some combinatorial invariants of a graph
(such as the degrees of the vertices, girth, or diameter) and a quantity involving one or more of the
eigenvalues of some linear transformation associated with the graph. For example, in the last section
of the sixth chapter Chung proves that ω(G) ≤ σ(G) ≤ χ(G), where ω(G) is the clique number
of G, χ(G) the chromatic number of G, and σ(G) is the extremal value of an eigenvalue-related
problem.

4 Opinion

The book promises and delivers a good mix of mathematical ideas. Though devoted for the most
part to discrete mathematics, it touches briefly upon many areas of mathematics, including repre-
sentation theory, algebraic geometry (in the construction of some extremal graphs), and, of course,
differential geometry. Unfortunately, some of the connections between these different areas are
sketched too briefly to give a reader a good idea of what these connections are. In perhaps the
most extreme example of this, section 8.6 is entitled “Determinants and invariant field theory.”
The latter topic is mentioned in the first line of the section, its connection to graph theory implied
but not explained, and is promptly forgotten.
The biggest shortcoming of Chung’s book is poor motivation. The intended applications to com-
puter science are clear throughout the first few chapters, but as the book progresses it is easy to lose
sight of her objectives. This is particularly frustrating because most theorems express inequalities
between various quantities associated to a graph. A nonexpert such as the reviewer is not likely to
have an intuition for the relative sizes of these quantities, so the import of the theorem is lost. A
similar criticism may be applied to some of the hypotheses. In section 9.2, Chung defines convex
subgraphs and strongly convex subgraphs. No connection between these notions is given, and in the
former case the relationship of the definition with convexity in the usual sense is not made clear.
The book contains many typos, but no mathematical errors (to the reviewer’s knowledge). Many of
the theorems and their proofs have analogues in differential geometry; Chung mentions this several
times but generally fails to explain the origin of many of the geometric ideas she applies. As a
result, the mathematics is clear but often seems poorly motivated.
This book is appropriate for people who are interested in graph theory and its connections to
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other branches of mathematics, know a little differential geometry, and are willing to look up some
reference to get a fuller picture.
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