
The Book Review Column1

by William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD, 20742

email: gasarch@cs.umd.edu

I give the price as quoted on amazon; however, the reader would do well to consult www.bestbookbuys.com
or bookpool.com.

In this column we review the following books.

1. Automata and Languages: Theory and Applications by Alexander Meduna. Review
by James Rauff. This is a textbook in automata theory in the theorem-proof style.

2. Control Flow Semantics , by J. de Bakker and E. de Vink. Review by Riccardo Pucella.
This book looks at semantics of imperative languages.

3. External Memory Algorithms (proceedings of DIMACS Workshop, May 20-22,1998)
Edited by J.M. Abello and J.S. Vitter. Review by Gianluca Della Vedova. This is a collection
of articles on external memory algorithms, where are used when there is too much memory
to store in core.

4. π - Unleashed. Authors: Jörg Arndt and Christoph Haenel. Review by David Marcus.
This is a history of π with an emphasis on the progress made in computing in quickly.

5. Chaotic Elections! by Donald Saari and Mathematics and Politics by Alan Taylor.
Review by William Gasarch. These book looks at some of the mathematical problems that
arise in elections and other political issues such as escalation.

I am looking for reviewers for the following books
If you want a FREE copy of one of these books in exchange for a review, then email me at

gasarchcs.umd.edu If you want more information about any of these books, again, feel free to email
me. Reviewing a book is a great way to learn a field. I have personally reviewed books and then
went on to use what I learned in my research.

1. Modal Logic by Blackburn, De Rijke, and Venema.

2. Metamathematics of First-order Arithmetic by Hajek and Pudlak.

3. Algorithmic and Computational Robotics: New Directions Edited by Donald, Lynch, and Rus.

4. Computational Commutative Algebra by Kreuzer and Robbiano.

5. Computational and Geometric Aspects of Modern Algebra Edited by Atkinson, Gilbert, Howie,
Linton, and Robertson. (Proceedings of a workshop)

6. The Clausal Theory of Types by Wolfram.

7. Learning Automata: Theory and Applications by Najim and Poznyak. Learning Automata:
Theory and Applications by Najim and Poznyak.

1 c© William Gasarch, 2001.

1

8. Algorithmic Geometry by Boissonnat and Yvinec.

9. Parallel Processing and Parallel Algorithms: Theory and Computation by Roosta.

10. Mathematical Theory of Domains by Stoltenberg-Hansen, Lindstrom, and Griffor.

11. Derivation and Computation by Simmons.

12. Domains and Lambada-Calculi by Amadio and Curien.

The following are DIMACS workshop books which are collections of articles on the topic in the
title.

1. Constraint Programming and Large Scale Discrete Optimization.

2. Discrete Mathematical Problems with Medical Applications.

3. Discrete Mathematical Chemistry.

4. Randomization Methods in Algorithm Design.

5. Multichannel Optical Networks: Theory and Practice.

6. Advances in Switching Networks.

7. Mobile Networks and Computing.

8. Robust Communication Networks: Interconnection and Survivability.

Review of2

Automata and Languages: Theory and Applications
Author: Alexander Meduna

Published by Springer-Verlag, 2000
$149.00, 916 pages

Review by James Rauff, Millikin University, Decataur, Illinois

1 Overview

Automata and Languages is a large work (915 pages) intended for use in a first course in the theory
of computation. The topics in this book are developed in a strictly formal manner with a minimum
of side commentary. Meduna adheres to a consistent format in his presentation. First, concepts
are presented in the traditional definition-theorem-proof pattern, modified when necessary by the
presentation of an algorithm. For example, in the sections discussing the various simplifications and
normal forms of context-free grammars, we are first given a definition (e.g. Greibach normal form),
then an algorithm for achieving the defined form. Next it is proved that the algorithm terminates
and is correct. Finally, an example is presented which implements the algorithm or illustrates
a theorem. The proofs are detailed and the algorithms fully specified. A unique feature of the
book is a detailed development of a compiler for a new computer language, COLA. Automata and
Languages contains numerous exercises ranging widely in difficulty, but no solutions are provided to
any of them. Each chapter also poses a variety of programming projects building upon the theory
presented. These include realizations of the algorithms given in the text.

2James Rauff Copyright 2001

2

2 Contents

The size of Automata and Languages results from the detail of Meduna’s exposition rather than
breadth of material. The book has five parts.

1. Part I Basic mathematical concepts.

Chapter 0 Sets, relations, graphs and proofs. The proof section offers a very cursory discussion
of three proof techniques (contraposition, contradiction, and induction). In light of the
careful detail in the rest the book, this section seems to be no more than a token addition.

Chapter 1 Basic notions of formal languages and grammars. Includes formal specification of COLA.

Chapter 2 Basic notions of automata, transducers and computability.

2. Part II Regular Languages.

Chapter 3 Regular expressions, finite state automata, equivalence of regular expressions and finite
state automata.

Chapter 4 Pumping lemma for regular languages, closure properties, decidable problems.

3. Part III Context-free languages.

Chapter 5 CFGs, Chomsky and Greibach normal forms, pushdown automata.

Chapter 6 Pumping lemma, closure properties, decidable problems. Ogden’s lemma appears in the
exercises.

Chapter 7 Deterministic CFLs, linear and regular grammars. Regular grammars are viewed as
special types of context-free grammars.

4. Part IV Beyond context-free languages.

Chapter 8 Turing machines, two-pushdown automata, linear-bounded automata, unrestricted gram-
mars, context-sensitive grammars.

5. Part V Translations.

Chapter 9 Finite transducers, translation grammars, compilers. This chapter contains the complete
construction of a compiler for COLA including scanner, parser, semantic analyzer, code
generator, and optimizer

Chapter 10 computability, decidability, computational complexity, Church’s thesis, undecidable prob-
lems. The undecidability of Post’s correspondence problem appears here as an exercise,
but is also given as an exercise in Chapter 2.

Automata and Languages also contains an index to the decision problems and the an index to
the algorithms. The decision problem index does not indicate whether or not the listed problem is
decidable.

3

3 Opinion

The strength of Automata and Languages lies, in my opinion, in the detailed specifications of
algorithms and the detailed proofs of theorems. In supplying this level of detail, some hard content
choices needed to be made. Most instructors will find a favorite result either missing (like the
Myhill-Nerode Theorem) or relegated to the exercises (like Ogden’s lemma). Some of the more
popular topics in language theory (like Lindenmayer systems) are also missing from Automata and
Languages. Also, for a book whose subtitle is Theory and Applications, there is precious little in
the way of applications beyond compiler design. Nevertheless, a student who reads Automata and
Languages with care will not fail to come away with a clear understanding of the algorithms or
theorems presented. I stress care because Automata and Languages has a number of typographical
errors that seriously impact upon the content of the text. Here is a sample:

1. p.29: the word ”prefix” is mistakenly written where ”suffix” is wanted.

2. p. 81: the word ”uncountable” is mistakenly written where ”uncomputable” is wanted.

3. p.272: in an example of a derivation, the incorrect string aaaSbbba is written where aaaSbbb
is wanted.

I personally would not adopt this book as a text. The absence of any solutions to the exercises
reduces its value to a student. Missing connections to modern computer science also reduce its
potential interest. Also, I am not confident that one could expect a second- or third-year student
to work carefully through the entire 900+ pages of Automata and Languages in a single term or
semester. Finally, the typographical errors, and other minor lapses of detail (including a reference
to a book which is not listed in the bibliography) would require an instructor using Automata and
Languages to be especially vigilant. I do feel that a student would benefit from working through
the detailed proofs and from the discussion of the COLA compiler, but neither of these positives
would tilt the balance in favor of using the book in a regular theory of computation class. It would
be well-suited , however, for a seminar-type class that was structured along the lines of the Moore
method of mathematics instruction where the students are lead to discover and prove major results.
Here the important results in the exercises could be brought out and proven during the normal flow
of the development of the material

Review of3

Control Flow Semantics
Published by MIT press, 1996

$75.00, 608 pages
Author: J. de Bakker and E. de Vink

Review by Riccardo Pucella Dept. of C.S., Cornell University

I have to admit, I was looking forward to reviewing this book. It answered what was for
me a 6-year old question. Six years ago, I was pursuing a Master’s degree at McGill University.
working on programming language semantics. My training in semantics was rather traditional:
lambda calculus, functional programming languages, denotational semantics based on complete
partial orders, etc. At the time, Franck van Breugel was visiting McGill, and I came across the fact

3copyright Riccardo Pucella 2001

4

that Franck was also working on semantics of programming languages, but on semantics based on
metric spaces. For someone with an undergraduate background in mathematics, this was seriously
intriguing. Unfortunately, I never got around to asking Franck about his work. This book is an
answer to that question that never was.

The purpose of the book is to describe an approach to provide semantics to imperative languages
with various types of control flow models, including concurrency. The approach handles both
operational semantics and denotational semantics, all in a topological setting. (We will come back
to this later.) The issue of relating the two semantics for any given language is a central theme of
the approach.

I will provide in the next section an introduction to topological semantics. For now, let me say
a word on the applicability of the approach. As stated, the main interest is in providing semantics
to imperative languages.

Imperative programs can be thought of, for our purposes, as sequences of actions performed on
a state. Typically, states are sets of variables, and actions include modifying the value of a variable
in a state.

An important characteristic of imperative programs is that they embody the notion of a com-
putation step: a program being a sequence of actions, it forces a sequence of intermediates states.
Typically, the intermediate states are observable, meaning that one can observe something about
that intermediate state, either by looking up the value of a variable, by witnessing an output op-
eration, etc. When the intermediate states of a computation are observable, it becomes reasonable
to talk about infinite (nonterminating) computations. (The classical example of this is of course
an operating system, which at least theoretically is an infinite process; the main motivation for the
topological approach, as we shall see, is to make sense of such infinite computations.)

Contrast this with functional languages, which are often used as motivating examples for the
study of semantics. In a pure functional language, all infinite programs are equivalent, and in a
traditional denotational semantics based on partial orders (à la Scott and Strachey [SS71]), every
nonterminating program is mapped to ⊥, the least element of the appropriate partial order. This
is not helpful in a setting where we want to discuss observably different infinite behaviors.

We distinguish two kinds of imperative languages. The distinction between them is akin to the
distinction between propositional and first-order logic.4 Uniform languages are based on a primitive,
abstract notion of action, combined with appropriate operators. For instance, a program may have
the form a; b; c; (d+ a) where ; represents sequential composition and + a nondeterministic choice
operator. The primitive actions a,b,c,d are uninterpreted. The state is implicitly defined by the
actions that have been performed. On the other hand, nonuniform languages have an interpretation
associated with the actions; typically, as we mentioned, the state is a set of variables, and actions
include modifying the value of a variable in a state.

To showcase the versatility of their approach, the authors study different languages. The main
difference between the various languages, aside from the question of uniformity, is the program
composition operators considered. The following groups of related operators are studied:

• The first group consists of operators including sequential composition and choice. The latter
introduces nondeterminism in the framework, with suitable complications. Many versions of
choice are investigated, including backtracking choice.

• The second group of operators consists of recursion and iteration. Such operators are required
to get universality (in the computability theory sense).

4This analogy can be made precise when looking at dynamic logics, a family of logics for reasoning about programs
in such languages [HKT00].

5

• The third group of operators includes parallel composition operators. Modeling such oper-
ators forces one to deal with issues such as deadlock, synchronization and communication.
Languages with such operators include CSP [Hoa85] and CCS [Mil89].

• Related to the last group of operators, one may distinguish between static and dynamic
configuration of processes.

• Finally, we can investigate issues of locality and scope of variables.

All in all, 27 languages are studied in the book, encompassing various features described above
(and others, such as the kernel of a logic programming language). For each language, an opera-
tional semantics is given, along with a denotational semantics based on topological spaces. The
relationship between each semantics is investigated. Here are the chapter titles, to give an idea
of the breakdown of content: 1. Recursion and Iteration, 2. Nondeterminacy, 3. Variations, 4.
Uniform Parallelism, 5. Unbounded Nondeterminism, 6. Locality, 7. Nonuniform parallelism, 8.
Recursion Revisited, 9. Nested Resumptions, 10., Domain Equations and Bisimulation, 11. Branch-
ing Domains at Work, 12. Extensions of Nonuniform Parallelism, 13. Concurrent Object-oriented
Programming, 14. Atomization, Commit, and Action Refinement, 15. The Control Flow Kernel of
Logic Programming, 16. True Concurrency, 17. Full Abstractness, 18. Second-order Assignment.

In the next section, I summarize the first chapter of the book, to give a feel for the approach.

Overview of topological semantics

Given L a collection of programs in a language, a semantics for L is a mappingM : L → P taking
a program p to an elementM(p) from a domain of meanings P . The domain P should have enough
mathematical structure to capture what we want to model. The study of semantics centers around
the development of methods to specify M and associated P for a range of languages L. We can
distinguish essentially two ways of specifying M:

Operational O : L → PO, which captures the operational intuition about programs by using a
transition system (axioms and rules) describing the actions of an abstract machine. This is
the structural approach to operational semantics (SOS) advocated by Plotkin [Plo81].

Denotational D : L → PD, which is compositional ; the meaning of a composite program is
given by the meaning of its parts. This is helpful to derive program logics, to reason about
correctness, termination and equivalence. Also, in general, denotational semantics are less
“sensitive” to changes in the presentation of a language.

Consider the following simple example, to highlight the difference between the two styles of
semantics. Let A be an alphabet, and W the set of structured words over A, given by the following
BNF grammar:

w ::= a | (w1 · w2)

where a is an identifier ranging over the elements of A. If A = {a, b, c}, then (a·(b·a)), ((a·b)·(c·b)),
(((a · b) · a) · b) are structured words over A. We choose to assign, as the meaning of an element
of W , its length. We derive both an operational and a denotational semantics to assign such a
meaning to elements of W . We take PO = PD = N (where N is the set of natural numbers). To
define the operational semantics, we consider the slightly extended language V = W ∪ {E}, where
intuitively E stands for the empty word. We define a transition system with transitions of the form

6

(v, n) −→ (v′, n′) where v, v′ ∈ V and n, n′ ∈ N. (Such a transition “counts” one letter of the word
v.) Let −→ be the least relation satisfying the following inference rules:

(a, n) −→ (E, n+ 1)

(v1, n) −→ (v′1, n
′)

((v1 · v2), n) −→ ((v′1 · v2), n′)

(v1, n) −→ (E, n′)
((v1 · v2), n) −→ (v2, n

′)

We can define the operational semantics O by:

O(w) = n if and only if (w, 0) −→ (v1, 1) −→ · · · −→ (E, n)

The denotational semantics D is much easier to define:

D(a) = 1

D(w1 · w2) = D(w1) +D(w2)

It is straightforward to show, by structural induction, that in this case the operational and deno-
tational semantics agree (that is, they give the same result for every word w ∈ W).

Let us now turn to a somewhat more realistic example. Recall that there are two kinds of
imperative languages we consider, uniform and nonuniform. Let’s define a simple uniform language
with a recursive operator. This example is taken straight from Chapter 1 of the book. The
language, Lrec, is defined over an alphabet A of primitive actions. We assume a set of program
variables PVar .

(Stat) s ::= a | x | (s1; s2)

(GStat) g ::= a | (g; s)

A statement s is simply a sequence of actions; variables are bound to guarded statements g, which
are simply statements that are forced to initially perform an action. When a variable is encountered
during execution, the corresponding guarded statement is executed. A declaration is a binding of
variables to guarded statements, and the space of all declarations is defined as Decl = PVar →
GStat . The language Lrec is defined as Lrec = Decl × Stat . We write an element of Lrec as
(x1 ⇐ g1, . . . , xn ⇐ gn | s), representing the statement s in a context where x1, . . . , xn are bound
to g1, . . . , gn, respectively.

The operational semantics is defined by a transition system over Decl × Res, where Res =
Stat∪{E}; the intuition is that E denotes a statement that has finished executing. We notationally
identify the sequence E; s with the statement s. This will simplify the presentation of the reduction
rules. The transitions of the system take the form s

a−→D r where s ∈ Stat , r ∈ Res, a ∈ A, and
D ∈ Decl ; this transition should be interpreted as the program statement s rewriting into the
statement r, along with a computational effect a. (For simplicity the computational effect is taken
to be the action performed.) Again, the

a−→D relation is the least relation satisfying the following
inference rules:

a
a−→D E

7

g
a−→D r

x
a−→D r

if D(x) = g

s1
a−→D r1

s1; s2
a−→D r1; s2

We take the domain PO of operational meanings to be the set of finite and infinite sequences
of actions, PO = A∞ = A∗ ∪Aω. We define the operational semantics O : Decl × Res → PO as:

O(D | r) =

{
a1a2 · · ·an if r

a1−→D r1
a2−→D · · · an−→D rn = E

a1a2 · · · if r
a1−→D r1

a2−→D · · ·

For instance, we have O(D | a1; (a2; a3)) = a1a2a3, and O(x ⇐ (a; y), y ⇐ (b; x) | x) = (ab)ω.
Deriving a denotational semantics is slightly more complicated. A program in Lrec may describe
infinite computations. To make sense of those, we need the notion of the limit of a computation.
In mathematical analysis, limits are usually studied in the context of metric spaces [Rud76]. This
is the setting in which we will derive our semantics.

A metric space is a pair (M, d) with M a nonempty set and d : M ×M → R≥0 (where R≥0

is the set of nonnegative real numbers) satisfying: d(x, y) = 0 iff x = y, d(x, y) = d(y, x), and
d(x, y) ≤ d(x, z) + d(z, y). A metric space (M, d) is α-bounded (for α <∞) if d(x, y) ≤ α for all x
and y in M . We can define a metric on A∞ as follows. For any w ∈ A∞, let w[n] be the prefix of
w of length at most n. The Baire-distance metric dB : A∞ ×A∞ → R≥0 is defined by

dB =

{
0 if v = w
2−n if v 6= w and n = max{k : v[k] = w[k]}

We say a sequence {xn}∞n=1 is Cauchy if for all ε > 0 there exists an i such that for all j, k ≥ i,
d(xj , xk) ≤ ε. In other words, the elements of a Cauchy sequence get arbitrary close with respect
to the metric. A metric space (M, d) is complete if every Cauchy sequence converges in M . It is
easy to check that the metric space (A∞, dB) is complete.

If (M, d) is α-bounded for some α, and X is any set, let (X → M, dF) be the function space
metric space defined as follows: X → M is the set of all functions from X to M , and dF (f, g) =
sup{d(f(x), g(x)) : x ∈ X} (α-boundedness on M guarantees that this is well-defined).

One can check that if (M, d) is complete, then so is (X → M, dF). A central theorem of
the theory of metric spaces, which is used heavily in the book, is Banach’s fixed point theorem.
Essentially, this theorem says that every function f from a metric space to itself that decreases the
distance between any two points must have a fixed point (a point x such that f(x) = x). We need
more definitions to make this precise. Define a function f : (M1, d1)→ (M2, d2) to be contractive if
there exists an α between 0 and 1 such that d2(f(x), f(y))≤ αd1(x, y). For example, the function
f : (A∞, dB)→ (A∞, dB) defined by f(x) = a · x is 1

2 -contractive.
Theorem (Banach): Let (M, d) be a complete metric space, f : (M, d)→ (M, d) a contractive

function. Then

1. there exists an x in M such that f(x) = x,

2. this x is unique (written fix(f)), and

3. fix(f) = lim fn(x0) for an arbitrary x0 ∈M , where fn+1(x0) = f(fn(x0)).

8

This is the basic metric space machinery needed to get a simple denotational semantics going.
Returning to our sample language Lrec, we take as a target of our denotational semantics the
domain PD = A∞ − {ε}. (We do not allow the empty string for technical reasons. Notice that the
empty string cannot be expressed by the language in any case.) What we want is a function D
defined as follows:

D(D | a) = a

D(D | x) = D(D | D(x))

D(D | s1; s2) = ;(D(D | s1),D(D | s2))

(for some function ; defined over A∞, meant to represent sequential composition, and to be defined
shortly.) Notice that this definition of D is not inductive. We will use Banach’s theorem to define
the function ; over A∞, and to define the function D. Let us concentrate on ;. Intuitively, we want
; to be a function A∞ ×A∞ → A∞ satisfying

;(a, p) = a · p
;(a · p′, p) = a · ;(p′, p)

Note that the above properties do not form an inductive definition of ; due to the presence of
infinite words in A∞. Instead, we will define ; as the fixed point of the appropriate higher-order
operator. Let Op = A∞ × A∞ → A∞ be the complete metric space of functions.5 Define the
following operator Ω; : Op→ Op:

Ω;(φ)(a, p) = a · p
Ω;(φ)(a · p′, p) = a · φ(p′, p)

Note that the above equations do define a function Ω;. One can check that Ω; is in fact a 1
2 -

contractive mapping from Op to Op. Therefore, by Banach’s theorem, there exists a unique fixed
point (call it ;) such that Ω;(;) = ;. It is easy to see that this ; satisfies the original equations we
were aiming for.

Now that we have such a function ;, let us turn to the problem of actually defining D. We
proceed similarly, by defining D as the fixed point of the appropriate higher-order operator, through
an application of Banach’s theorem. Consider the metric space SemD = Lrec → A∞, which is
complete since A∞ is complete. Define the following function Ψ : SemD → SemD by:

Ψ(S)(D | a) = a

Ψ(S)(D | x) = Ψ(S)(D | D(x))

Ψ(S)(D | s1; s2) = ;(Ψ(S)(D | s1), S(D | s2))

(There is some subtlety in coming up with the last equation; as you’ll notice from looking at the
righthand side, there is recursion over Ψ in only one of the two cases. The book explains this.)
Once again, we can show that Ψ is a 1

2 -contractive function (in S), and thus by Banach’s theorem
there is a unique fixed point of Ψ (call if D) such that Ψ(D) = D. It is straightforward to check
that this D satisfies our requirements for the denotational semantics function.

A final result of interest after all of these developments is the relationship between O, the oper-
ational semantics based on an intuitive notion of computation, and D, the denotational semantics
with its compositional properties. It turns out that in this case, O = D, and moreover this result
can be derived from a third application of Banach’s theorem. The details can be found in the book.

5Strictly speaking, we need to consider the space of bounded functions to ensure that the space is complete. This
will be irrelevant at our level of discussion.

9

Opinion

As a technical book, aimed at describing an approach to provide semantics to a wide variety of
imperative language control flow structures, this book is complete. All the examples are worked
out with enough details to grasp the subtleties arising. Let the reader be warned, however, that
the book is dense—both in terms of the technical material, and in terms of the presentation. The
first few chapters should be read slowly and with pencil in hand.

The book does not require as much background knowledge of topology as one may expect.
Prior exposure is of course beneficial, but in fact, only the basics of topology and metric spaces are
actually used, and whatever is needed is presented in the first few chapters. On the other hand,
the presentation does assume what may best be called mathematical maturity.

In the grand scheme of things, a problem with this book is one of motivation and followup.
This is hardly new in the field of semantics. Specifically, the use of denotational semantics is
hardly motivated, considering that most of the machinery in the book is aimed at coming up
with denotational semantics and showing that it agrees with the intuitive operational semantics.
There is a throw-away line about the fact that denotational semantics can help in developing
logics for reasoning about programs, but most of the interesting developments are buried in the
bibliographical notes at the end of the chapters. This will not deter the hardcore semanticist, but
may have other readers go: “so what?”. Sad, since denotational semantics is useful. And for the
curious, Franck’s actual work can be found in [vB98].

References

[HKT00] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, Cambridge, Mas-
sachusetts, 2000.

[Hoa85] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Plo81] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

[Rud76] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, third edition, 1976.

[SS71] D. S. Scott and C. Strachey. Toward a mathematical semantics for computer languages.
In J. Fox, editor, Proceedings of the Symposium on Compute= rs and Automata, New
York, 1971. Polytechnic Institute of Brooklyn Press.

[vB98] F. van Breugel. Comparative Metric Semantics of Programming Languages: Nondeter-
minism and Recursion. Birkhäuser, 1998.

10

Review of 6

External Memory Algorithms (DIMAC Workshop, May 20-22,1998)
Edited by J.M. Abello and J.S. Vitter

Published by American Math Society, 1999, $75.00
Review by Gianluca Della Vedova, Dept. of Statistics, Univ. Milano-Bicocca

1 Overview

This book is a collection of articles presented at the DIMACS Workshop on External Memory
Algorithms and Visualization, held in 1998. All modern computer architectures are based on a
hierarchy of storage devices, usually on at least three layers (cache memory, main memory and
disk). While general-purpose operating systems have introduced the notion of virtual memory in
order to allow the ordinary programmer to avoid dealing with such hierarchy, taking into account
the different characteristics of each kind of memory may help to design faster algorithms.

Nowadays data set in large applications are easily too large to fit completely inside the com-
puter’s internal memory, consequently they must reside on disk, making accesses to data the actual
bottleneck, as a single disk access is often 10000 times slower than a memory access. This gap is
likely to widen, as (according to Moore’s Law) CPUs double their speed every 1.5 years, while in
the same amount of time disks increase their speed at most by 20%.

This situation calls for specific algorithmic solutions for a number of problems; this book presents
a glimpse of the current state of research in that field.

2 Contents

The first Chapter is an extensive (38 pages) introduction to the subject of external memory algo-
rithms, beginning with the parallel disk model, which is a simple and appropriate mathematical
abstraction of an internal vs. disk memory hierarchy. Other alternative abstractions are briefly
presented. Successively a number of problems and algorithms are presented, pointing out that a
problem which can be solved efficiently in main memory can be harder in this new framework. The
first problem examined is sorting, for which two different approaches (sorting by distribution and
sorting by merging) are presented, moreover a lower bound on the number of disk accesses that are
necessary is shown.

The Fast Fourier Transform, and various problems in more specialized frameworks, such as
Computational Geometry, Graph Theory, Spatial Data and String Processing, are presented. The
chapter is completed with the presentation of a free External Memory Programming Environment
(TPIE) and the experimental analysis of a number of External Memory algorithms.

Chapter 2 is devoted to Synopsis Data Structures, that is data structures that use very little
space and provide fast (approximate) answers to queries. A central problem in this chapter is
that of computing the frequency moments of a set of values (e.g. number of distinct elements,
cardinality of the set, maximum element). Hot lists (storing only the best “m” elements) queries
and histograms are also studied in the chapter.

In the one-dimensional case computing the median can be done quite easily, but this is not the
case for higher dimensions. In the third chapter two alternative measures for two-dimensional data
sets (i.e. regression depth and half-space depth) are studied, and fast (that is only a few passes
over the data set are made) approximate algorithms for both measures are proposed.

6copyright Gianluca Della 2001

11

The next chapter deals with a new data structure (i.e. Cross-Trees) for dynamically maintaining
multidimensional data sets in external memory, where the data sets are simultaneously sorted
under various orderings, and the operations allowed are set splits and concatenations (w.r.t. an
ordering) and the insertion/deletion of an element. Moreover the data structure can be exploited
for enquiring about data contained in a given range. Some applications of the results are pointed
out, most notably the implementation of multidimensional priority queues and 2− 3 trees.

Algorithms that scan only once (or at most a small number of times) the input data is the
topic of Chapter 5, most specifically lower and upper bounds on the space used for solving some
fundamental problems in graph theory (such as finding two vertices in the graph which are connected
by the largest number of paths). Computing large cliques in very large graphs is the topic on the
successive chapter.

Chapters 7-8 are focused on Computational Geometry, more precisely on the trapezoidal decom-
position problem, and some fundamental problems in the field, such as computing the convex hull
and the nearest neighbor of all elements (for these fundamental problems they give lower bounds
on the I/O complexity).

The following chapter is a survey of External Memory algorithms for numerical linear algebra,
that is solving linear equations or computing eigenvalues, Fast Fourier Transform and n-body
computations.

Chapters 10-11 present two (freely available) libraries. One is for efficient handling of dynamic
memory (replacement of malloc) and of I/O (replacement of the while stdio.h library). The
second one is for maintaining external dynamic dictionaries with variable length keys, which has
applications in file system implementations.

Adaptive online scheduling is the subject of chapter 12, where an algorithm for prefetching and
I/O scheduling for read-once reference strings is presented. This algorithm needs an number of I/O
operations which is only a small times that of the optimal algorithm.

The problem of distributing data on parallel memory systems is dealt with in the successive
chapter, where fairly simple efficient schemes are presented.

The last two chapters are devoted to scientific visualization; notably the problems of isosurface
extraction and retrieval of unstructured volume data are investigated. Two efficient solutions are
proposed and studied on real-world cases.

3 Opinion

This book gives the current state of research of the field of External Memory algorithms, as such
it is not suitable for teaching and requires a good general-purpose knowledge of algorithms (such
as a one-term course on algorithms and another one on models of computation).

The book is well organized, the first chapters are introductory (especially the first one) and
give all the fundamental notions that are required to be able to fully understand the subsequent
chapters. I have found the problems and the algorithms discussed in chapter two very intriguing.

The core of the book (from chapter 3 to the end of the book) are focused on a specific problem
and present technical results, so I guess that the average reader will not find all the chapters equally
interesting, but the variety of the topics are so large that almost everybody in the algorithms field
should find some chapters very intriguing.

An editing note: I would really like a unified bibliography (or at least a unique bibliography
style). The editors have put a great effort in making an index (which can be very useful), and it is
quite a nuisance to find some citations not up-to-date.

12

Review of
π - Unleashed

Authors: Jörg Arndt and Christoph Haenel
Publisher by Springer, 2001

$29.95, 250 pages
Review by: David J. Marcus, CEO, M5 Consulting, Inc. djmarcus@m5inc.com

1 Overview

The authors combine very effectively the various elements of story telling, mathematical reference
work (equations), and supplemental material (CD, and web). The book is in its second edition (a
translation from German by Catriona and David Lischka). It is accompanied by a CD full of source
code (C/C++), web references, miscellaneous documentation, and tutorials. It even includes the
first 400 million digits of π in 10,000,000-digit chunks (they needed to fill the CD somehow!).

The hardest part of reviewing this book is deciding where to start. The book ’logically’ covers
the history of π, from antiquity, to paper and pencil computations, to the computer age. I might as
well mention the two complaints I have about this book and get them out of the way, so I can laud
the rest. My first (minor) issue is the actual organization of the book. The order of the material is
somewhat jumbled. The authors jump from topic to topic seemingly in a random manner. Perhaps
the randomness of the digits of π affected the authors’ sense of organization! They present a short
history of π then jump to a discussion of its randomness, then to a short cut to the value of π.
This is followed by various computational algorithms, discussions of Gauss, Ramanujan, and the
Browein brothers, only to return to long arithmetic, then jump to a detailed history of π, and so
on. It almost seems as if the book is a collection of previously independent papers. I consider this
a minor issue that is soon forgotten once the reader becomes immersed in the beauty and richness
of the content.

My second but more serious complaint is the lack of derivation for almost all of fascinating
formulas for π presented in the chapters and the exquisite collection of formulas at the end of
the book (Chapter 16, page 223). While the book is brimming with infinite series and continued
fractions which result in some simple equation involving π (such as π/4, 1/π, π/6

√
π, etc), the

reader is left to wonder at the magic spell engulfing the originator of each of these formulas. It
would have made the book immeasurably better to include the derivation of each of the formulas.

Now that the complaints have been dispensed with, lets look the the good stuff. The book starts
with a review of the ”State of Pie Art”. This is really a brief history of the Pied Pipers of history
ranging from the Babylonians and Egyptians (who crudely approximated π), to arctan formulas,
to appearances of infinite series and continued fractions as representations of π, and culminating
with Professor Kamada who announced the calculation of π to over 206 billion digits. It nicely
summarizes the computational triumphs of the various generations (from the traditional 22

7 to the
aforementioned 206+ billion digits) and sets the stage for the rest of the book. As noted above,
the order of the material is somewhat ad hoc. For example, the fascinating detailed history of π is
relegated to the later part of the book (Chapter 13, page 165) when in fact it should have been in
the beginning.

13

The book is sprinkled with many gems. Some are numeric, some are infinite series and continued
fractions, and others are mnemonics for remembering π. Here are some examples. As you read
them, imagine yourself having to derive these from scratch, you will surely be in awe of their
authors:

⇒ By John Wallis (1616 - 1703)

3× 3× 5× 5× 7× 7× · · ·
2× 4× 4× 6× 6× 8× · · · =

4

π

⇒ Due to Leonhard Euler (1707 - 1783)

π = lim
n→∞

4

n2

n∑

k=0

√
n2 − k2

⇒ By François Viète (1540 - 1603)

2

π
=

√
2

2
×
√

2 +
√

2

2
×

√
2 +

√
2 +
√

2

2
× · · ·

⇒ Due to Lord William Brouncker (1620 - 1684)

4

π
= 1 +

12

2 + 32

2+ 52

2+ 72
2+···

⇒ Developed by John Machin (1680 - 1752)

π

4
= arctan

1

5
− arctan

1

239

⇒ Due to Jörg Arndt, a mesmerizing connection between π and the Fibonacci numbers:

π

4
=
∞∑

n=1

arctan
1

F2n+1

⇒ Magically presented by Srinivasa Ramanujan (1877 - 1920). Every term in this series generates
8 accurate digits of π

1

π
=

√
8

9801

∞∑

n=0

(4n)!

(n!)4

(1103 + 26390n)

3964n

⇒ My personal favorite by Euler (it incorporates the 5 fundamental constants)

eiπ + 1 = 0

⇒ Also due to Euler (relationship between e and π which does not use i)

e+ 1

e− 1
= 2 + 4

∞∑

r=1

1

(2πr)2 + 1

14

⇒ BBP formula (David Bailey, Peter Borwein, Simon Plouffe, 1995) It remarkably generates the
individual digits of π in hex.

π =
∞∑

n=0

1

16n

(4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)

⇒ By Collin Percival (1981 -) Incredibly, used 700 years of computer time via the screen-saver
deadtime on 1,700 computers on the Internet, to conclude that: The quadrillionth bit of π is
0.

⇒ By Scottish mathematician Alexander Aitken (1895 - 1967) who showed that the following is
within 10−2 of being an integer.

eπ
√

163 = 262, 537, 412, 640, 768, 743.9999999999992 · · ·

⇒ An extension of the above shows that the following is within 10−24 of being an integer.

3

√
eπ
√

163 − 744 = 640319.9999999999999999999999993 · · ·

⇒ Small C program (133 characters) to calculate π to 15,000 decimal places:

a[52514],b,c=52514,d,e,f=1e4,g,h;
main(){for(;b=c-=14;h=printf(”%04d”,e+d/f))
for(e=d%=f;g=–b*2;d/=g)
d=d*b+f*(h?a[b]:f/5),a[b]=d%–g;}

⇒ A poem by English astrophysicist Sir James Jeans (1877 - 1946) where the count of letters in
each word follows the digits of π:

How I want a drink, alcoholic of course, after the heavy chapters involving quantum
mechanics. All of thy geometry, Herr Planck, is fairly hard...

Similarly, from Michael Keith, a Cadaeic cadenza which produces an awe-inspiring 740 decimal
places for π. The first of 18 stanzas:

Poe, E. Near A Raven

Midnights so dreary, tired and weary. Silently pondering volumes extolling all by-now
obsolete lore. During my rather long nap - the weirdest tap! An ominous vibrating sound

disturbing my chamber’s antedoor. ”This”. I whispered quietly, ”I ignore”.

⇒ Since 1995, the world record holder in recitation of the digits of π has been Hiryuku Goto
(then aged 21) of Japan who recited an incredible 42,000 digits of π in 9 hours.

⇒ Using the estimated diameter of our Universe, one would need only the leading 39 digits of π
to calculate the circumference of the universe to within the radius of a proton!

⇒ Proof that π = 2. Start with a semi-circle with diameter as 1. Divide diameter into two and
replace the semi-circle with 2 semi-circles (in an S-shape) each with the radius of 1

2 . Repeat
this process ad infinitum. In the limit, the wavy S-shape curves become indistinguishable

15

from the original diameter (a straight line). The combined length of the semi-circles, after k
divisions of the diameter is:

lim
k→∞

2k
π

2k+1
=
π

2

But the original diameter was 1, therefore:

π

2
= 1⇒ π = 2

These ”diamonds” are everywhere in the book. As I mentioned above, I could only wish for the
authors to have included the derivations of each and every one of these (sigh). However, moving on,
the book covers in details several algorithms for π and related optimization of arithmetic operations.
We will visit these briefly.

2 A Detailed Look

2.1 Spigot Algorithm

Developed by Stanley Rabinowitz and Stanley Wagon (1995), this algorithm has the remarkable
property of churning out the digits of π as the algorithm is executed. This is in sharp contrast
to earlier algorithms that generated the results once the algorithm was complete. This makes the
algorithm ideal for running on a personal computer. It is surprisingly fast, though the dependency
on time is quadratic which means it is not suited for the really ”monster” calculations of billions
of digits. The mathematics behind it are fairly simple. This algorithm can be written in just a few
lines of code (evidence the short C program above).

The starting point is the series:

π = 2 +
1

3
(2 +

2

5
(2 +

3

7
(2 + · · ·)))

The Spigot algorithm is based on a radix conversion to the equivalent ”base 10” series:

π = 3.1415 · · ·= 3 +
1

10
(1 +

1

10
(4 +

1

10
(1 +

1

10
(5 + · · ·))))

The first series can be considered a fraction using a mixed-radix representation where the bases are:
3
1 , 5

2 , 7
3 , 2i+1

i , · · ·. The second series is clearly in base-10. The computation essentially generates 1
digit per calculation (ignoring the rare case where an overflow of 1 into a range of consecutive 9’s
converts them to 0’s). The repeated steps consist of mainly dividing (from the right) by the mixed
radix base, 2i+1

i . On every division, the remainder is retained and the integer quotient is carried
over to the next decimal place. The most recently calculated carry-over is the new decimal place
of π.

This elegant method can be further improved by calculating 1000π starting from the series
(multiplied by 1000):

1000π = 2000 +
1

3
(20000 +

2

5
(2000 +

3

7
(2000 + · · ·)))

16

This allows for conversion to be performed in base 10,000 rather than base 10. This means that 4
digits are generated at every iteration rather than just 1. Interestingly, this spigot algorithm can
be applied to the transcendental number e:

e = 1 +
1

1
(1 +

1

2
(1 +

1

3
(1 + · · ·)))

2.2 Gauss, π, and the AGM formula

One of the fastest method of calculating π was invented by Carl Friedrich Gauss around 1809.
It was subsequently forgotten and only resurrected 25 years ago and transformed into the basis of
super fast π calculations. The arithmetic geometric mean (AGM) formula discovered by Gauss:

π =
2AGM2(1, 1√

2
)

1
2 −

∑∞
k=1 2kc2

k

where the AGM(a, b) is the arithmetic-geometric mean of its two operands. The ck constants are
directly linked with the AGM. The AGM rule iterates the arithmetic and geometric means until
they ”converge”. In particular:

a0 = a, b0 = b

ak+1 =
ak + bk

2

bk+1 =
√
ak · bk

ck+1 =
1

2
(ak − bk)

The power of this algorithm is due to the rapid (quadratic) convergence of the AGM function. In
essence each iteration generates twice as many digits as the previous iteration. Thus with relatively
few iterations, incredible precision can be achieved.

2.3 The BBP Algorithm

One of the more remarkable achievements of modern times is the discovery by Bailey, Borwein,
and Plouffe of an algorithm for generating any middle digit of π (albeit in hexadecimal) without
first generating all the previous digits. Furthermore, this algorithm scales almost linearly with
the order of the digit desired. Even more remarkable is that the underlying equation was derived
serendipitously by a computer. The formula:

π =
∞∑

n=0

1

16n

(4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)

Its distinctive power arises from the 16n term in the denominator.

2.4 Karatsuba and FFT Multiplication

The principal obstacle to computation of π is simple arithmetic operations on multiple-precision
numbers. Multiplication time, for example, grows quadratically as the number of digits increase. To
multiply two 2-digit numbers requires just 4 multiplies and 3 additions. However, when multiplying
two 1,000-digit numbers, the number of multiplications skyrocket to 1,000,000. The Karatsuba

17

multiplication method, is named after the Russian scientist Anatolli Karatsuba, though the true
author is unknown. In its simplest form, consider the multiplication of two numbers u and v, each
a N = 2k digit number. Then let u = 10N/2u1 + u0, and v = 10N/2v1 + v0. Then their product
becomes:

u · v = 10Nu1v1 + 10N/2(u0v1 + u1v0) + u0v0

This makes it clear that there are 4 partial multiplies (the multiplications by a power of 10 can
be ignored since they are ”just” a shift in the decimal point, that is, actual multiplication is not
required). The Karatsuba method rearranges the terms differently to get the equivalent product:

u · v = (10N + 10N/2)u1v1 + 10N/2(u1 − u0)(v0 − v1) + (10N/2 + 1)u0v0

By inspection, we can see that we have only 3 partial multiplications, though we incur 3 additional
additions. This saving of a partial product becomes more significant when it is applied recursively to
the partial products. Thus multiplying two N = 2k digit numbers using traditional multiplication
requires 4k multiplications. The Karatsuba method reduces the number to just 3k (and some
additions). As a result, the total time is reduced from a quadratic order N 2 to order N log2 3. To
put this advantage into perspective, where multiplying two 1-million digit numbers may take a
day’s worth of computing time, the Karatsuba method reduces the time to a mere 5 minutes.

The next significant advance is the FFT multiplication. This is based on the Fast Fourier
Transforms methods. Prior to multiplication, the multiplicands are first transformed. Then, an
operation which is equivalent to normal multiplication but runs much more quickly is performed
on the transformed multiplicands. The results are subsequently transformed back, producing the
desired product. The classic example of such transformations is adding logarithms in lieu of normal
multiplications and converting the resultant logarithm back after the addition. The FFT reduces
the computational time to order N log2(N). This is indeed dramatic when N is large compared to
normal multiplication (orderN 2), and even when compared with the Karatsuba method. In the case
of 1-million digit numbers, the number of individual multiplications is reduced from 1 billion (normal
multiplication) to approximately 20 million (= N log2N), and reduces the computational time from
roughly a day down to 3 seconds. It improves over the Karatsuba method by a factor of around 100.
This makes it easy to see why it is the backbone of modern large-precision implementations. Note,
by the way, that division can be treated as multiplication by the reciprocal. This allows FFT to be
used in wide ranging large-precision numerical applications. While the book does not dwell on this,
the next barrier to calculations with ever larger precision of π is storage (RAM and disk). For the
current record of 206+ billion digits, the result no longer fits in the computer’s memory. Modern
algorithms have to account for spooling data to disk. This means that the fastest algorithms are
no longer necessarily the ones who reduce the number of multiplications to a minimum but rather
ones that manage CPU and RAM and disk most efficiently.

3 Conclusion

The book is a treasure of information and is fun to read. It includes a chapter on π formulas,
continued fractions, products, iterative algorithms, etc. It even includes tables of various constants
to 100 digits of precision. Of course, since this is a book about π, the book also includes tables
of π to 5,000 digits, in base 10 and base 16. To top it off, a table of the first 2,000 terms of the
continued fractions representation of π is also included. There is also extensive list of references
(including web URL’s where available). The code on the CD-ROM is not as well documented as I

18

would have liked but it is in ready-to-run format (you can start using it right out of the box). Its
inclusion alone is worth much more than the price of the book.

In short, I loved this book. In fact, I’ve pretty much run out of superlatives. I only wish the
derivations of all these wonderful formulas was included. I would recommend it to anyone who is
just curious about pi, or about large-precision arithmetic in general, as well as to the professional
who is looking to break the next N -digit barrier. Who knows, perhaps a reader will be inspired to
invent a faster yet method for such algorithms.

Review of 7

Chaotic Elections! A mathematician looks at Voting
Author: Donald Saari
Publisher: AMS, 2001

$23.00, 159 pages

and
Mathematics and Politics

Author: Alan Taylor
Publisher: Springer-Verlag, 1995

$39.95, 284 pages
Reviewed by William Gasarch, Univ. of MD, Dept of CS, gasarch@cs.umd.edu

“... we mathematicians have tended to make two errors in teaching nonscience students: we
have overestimated their comfort with computational methods, and we have underestimated their
ability to handle conceptual material.”

from “Mathematics and Politics”

1 Review of “Chaotic Elections”

1.1 Overview

If two people are running for office then a straightforward vote suffices to determine who the voters
want. If three (or more) people run for office then many problems arise.

1. If A gets 40%, B gets 30%, C gets 30%, and all the people who voted for B or C detest A (so
60% of the voters detest A) then does A reflect the peoples choice?

2. If people know that C cannot win so they vote for second choice B instead, and B wins for
that reason, does B reflect the peoples choice?

The book under review (1) gives concrete examples (some real, some fictional) of these and
other problems that arise with voting, and (2) gives several voting schemes that attempt to solve
these problems. No scheme avoids all the problems; however, the Borda-count (described below)
seems to avoid many of them.

7William Gasarch Copyright 2001

19

1.2 Chapter one: A mess of an election

Chapter one discusses the 2000 US presidential election, the electoral college, several voting schemes,
and Arrows Theorem. Power indices, which measure how influential your vote is, are defined and
discussed. The following voting schemes are defined.

1. Positional Schemes: A voter ranks all n candidates and then points are allocated to the
candidates using weights. For example, the Borda-count allocates n points to the first choice,
n− 1 to the second choice, etc. The candidate with the most points wins. Different weights
give rise to different schemes. It is a (non-rigorous) question of some interest to determine
the weights that are the best in terms of discerning the people’s choice.

2. Condorcet Method: A voter compares each pair of candidates. The candidate that wins the
most pair-wise contests wins. If a candidate beats all other candidates in pair-wise contests,
then she is called the Condorcet Winner.

3. Approval voting: A voter submits an unranked list of candidates she finds acceptable. Who-
ever gets the most approval wins.

The chapter ends with a discussion of Arrows theorem which says that, under some reason-
able assumptions, it is impossible to design a perfect voting system. The author challenges the
reasonableness of one of the assumptions.

1.3 Chapter two: Voter preference, or the procedure

1.4 Chapter three: Chaotic election outcomes

Chapters two and three discuss scenarios where, given how the voters voted, you can derive (non-
contrived) voting scheme that could make any of the candidates win. A lengthy discussion of
the 1860 US presidential election (Lincoln, Douglas, Bell, Breckinridge) describes (non-contrived)
schemes under which Douglas or Bell could have won. No such scheme yields victory for Breckin-
ridge. A nice geometric way of representing voter preference is introduced and used throughout the
book. A theorem is stated which indicates that the Borda-count avoids many of these problems.

1.5 Chapter four: How to be strategic

Chapter four discusses voting strategically (e.g., voting for Bush instead of your first choice Liber-
tarian Browne). Given a voting scheme and how the votes went, the book determines if a single
voter (or bloc of voters) change their minds (in a rational way) so that someone else wins. This is
close to what really does happen since, although voters do not know the outcome ahead of time,
polls can give the voters a very good idea.

1.6 Chapter five: What do voters want?

Chapter five discusses scenarios where the Condorcet winner might not be the people’s real choice.
The author also reveals the method by which he has come up with the examples in the book.

1.7 Chapter six: Other procedures; other assumptions

Chapter six is a collection of related topics. Included are apportionment (what do do with the
fractions?), non-parametric statistics (ranking machines based on measuring performance is similar
to voting), non-transitive dice, and others.

20

1.8 Opinion

Because of the chaos that marked the 2000 US presidential election this is a good time to offer a
course on the mathematics of voting. This book has nothing on dangled chads or butterfly ballots;
however, it has a great deal about the problems of having three people in a race, such as strategic
voting. These problems are clearly relevant.

This book is well written and would be suitable for such a course. The book does not have that
much math in it, so students with a weak math background could take such a course. Students
with a strong math background could be referred to Basic Geometry of Voting by Donald Saari
(this book will be reviewed in a later column).

The book does not contain a discussion of the Hare voting scheme which is somewhat surprising
as it seems to be a good one. It is discussed in “Mathematics and Politics” which is reviewed later
in this column.

I suspect that this branch of math could inspire research in theoretical computer science. A cur-
sory glance of the theory database (at http://ls2-www.informatik.uni-dortmund.de/cgi-bin/Paper)
lists around 20 papers with the word “Election” in them that that seem relevant.

2 Review of “Mathematics and Politics”

2.1 Overview

As we have seen in the above review, elections can lead to mathematics of interest. However,
other political issues also lead to mathematics of interest. The book “Mathematics and Politics”
investigates a wide range of such issues.

The first five chapters of the book introduce some political issues, introduces some mathematics
to explain it, and states some theorems. The next five chapters revisit these issues and proves these
theorems. For readers of this column this will involve flipping back and forth many times; however,
for a student this may be fine.

2.2 Chapters 1 and 6: Escalation

If one country manufactures 10 bombs then typically its enemy will then manufacture 11 bombs.
And then the first country This is called an arms race. This can be modeled by an unusual
auction. The prize is (say) one dollar. The two players bid back and forth or pass (and hence lose).
The winner gets the dollar for his bid. However, the loser also has to forfeit his last bid. It is easy
to see that the players may end up bidding more than one dollar.

What is the best strategy for the players to play? How does this kind of auction compare to
other auctions? These and other questions are addressed.

2.3 Chapters 2 and 7: Conflict

Country A has the option of obeying its peace treaty with country B or attacking. Country B has
the option of obeying its peace treaty with country A or attacking. If both obey the treaty then
both are better off. But if one attacks and one does not, the attacker is better off. Should a country
obey or attack? This leads to a discussion of game theory and the prisoners dilemma.

21

2.4 Chapters 3 and 8: Yes-No voting

There are many settings which do not follow the one-person one-vote system. For example, in the
UN any member of the security council has veto power. These chapters discuss voting rules that
exist and how they compare to each other. Even though there are only two options, YES and NO,
there is still interest here. This did not come up in the book “Chaotic Elections!” because in that
book one-person one-vote was assumed.

2.5 Chapters 4 and 8: Political Power

Who has more power, a voter in a small state that usually votes democrat, or a voter in a large
state that is borderline? How to measure? These chapters introduce several ways to measure how
influential a vote is, and compare them to each other.

2.6 Chapters 5 and 10: Social Choice

This is essentially the topic of chapters 2 and 3 of “Chaotic Elections.”

2.7 Opinion

This book is well written and has much math of interest. While it is pitched at a non-math audience
there is material here that will be new and interesting to the readers of this column.

The models are simplistic. For example, their is some question as to how well auctions model
escalation. The examples seem out of date. Even though the book was written in 1995 most of the
examples seem to be from the Cold War. These two points do not distract from the interest of the
math; however, if teaching a course to non-math people these points might need to be addressed.

3 Comparing the two books

Both books requires little math background. Both could be used in a freshman interdisciplinary
course addressed to both math-types and political-types.

Chaotic Elections is either only deals with elections that are one-person one-vote and involve
three or more candidates. However, it covers this domain quite well. Plus it is very much up-to-date
and seems to actually have things to say about the last election. Math and Politics has a much
wider scope and has more math of interest.

The books (surprisingly) do not overlap that much. Chapters 5 and 10 of “Math and Politics”
cover much the same material as chapters 2 and 3 of “Chaotic Elections” but aside from that there
is very little overlap.

22

