
The Book Review Column1

by William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD, 20742

email: gasarch@cs.umd.edu

In this column we review the following books.

1. Algorithms Sequential & Parallel: A Unified Approach by R. Miller & L. Boxer. Reviewed by by
Anthony Widjaja. This book is a textbook for a senior or grad course in algorithms with an emphasis
on parallel algorithms.

2. Algorithmics for Hard Problems: Introduction to Combinatorial Optimization, Randomization,
Approximation, and Heuristics by Juraj Hromkovič. Reviewed by Hassan Masum. This book
examines a variety of practical ways to solve NP-complete problems in practice.

3. Modal and Temporal Properties of Processes by Colin Stirling. Review by Vicky Weissman. This
book is about modelling a process by modal logics. It is a good introduction to process algebras.

4. Modal Logic by Patrick Blackburn, Maarten de Rijke, and Yde Venema. Reviewd by P. Daniel
Hestand. This book is a comprehensive treatement of Modal logic. It includes Completeness theorems
and also a discussion of the complexity of some of the problems in the field.

Books I want Reviewed
If you want a FREE copy of one of these books in exchange for a review, then email me at gasarchcs.umd.edu
Reviews need to be in LaTeX, LaTeX2e, or Plaintext.

Books on Algorithms, Combinatorics, and Related Fields

1. Genomic Perl: From Bioinformatics Basics to Working Code by Rex Dwyer.

2. Diophantine Equations and Power Integral Bases by Gaal.

3. Solving Polynomial Equation Systems I: The Kronecker-Duval Philosophy by Teo Mora.

4. Computational Line Geometry by Pottmann and Wallner.

5. Linear Optimization and Extensions: Problems and Solutions by Alevras and Padberg.

Books on Cryptography, Complexity, and Learning

1. Cryptanalysis of Number Theoretic Ciphers by Wagstaff.

2. Learning with Kernels (Support Vector Machines, Regularization, Optimization, and Beyond) Bernard
Scholkopf and Alexander Smola.

3. Learning Kernel Classifiers by Herbrich.

4. Boolean Functions and Computation Models by Clote and Kranakis.
1 c
�

William Gasarch, 2003.

1

Review of Algorithms Sequential & Parallel: A Unified Approach 2

Authors of Book: R. Miller & L. Boxer
Prentice Hall 2000, 330 pages, $68.00

Reviewed by Anthony Widjaja <twidjaja@acm.org> Melbourne University

1 Introduction

Nowadays, the study of parallel algorithms has become a mainstream topic in computer science partially
because of the difficult problems in fields such as computational biology and computational geometry, to
name a few. There have been several different approaches to teaching this topic at university level with
which computer science educators around the world have come up. The authors of this book, Miller &
Boxer, took a novel approach to the design and analysis of algorithms by unifying those of sequential and
parallel algorithms. More importantly, the authors suggest that several courses based on this book has been
taught successfully at both undergraduate and graduate levels at the State University of New York at Buffalo.

Prerequisites (suggested by the authors) :

� basic knowledge on data structures (e.g. stacks, queues, lists, trees) with which the reader who has
taken a CS2 course must be familiar.

� fundamental discrete maths and calculus, especially summations, integrals, and limits.

Prerequisites (suggested by the reviewer) :

� knowledge on fundamental algorithms (e.g. sorting and searching algorithms).

2 Summary of Contents

Chapters 1,2 & 3 contain the mathematical preliminaries required in later chapters. In particular, Miller &
Boxer review some fundamentals of asymptotic analysis in chapter 1. Thereafter, in chapter 2, the authors
revisit concepts of mathematical induction and recursion. As an aside, I was quite surprised to see the
proof of the principle of mathematical induction in this chapter as I had initially thought that it was an
axiom, which we cannot prove. In chapter 3, the master method, a cookbook-type of system for evaluating
recurrence relations, is presented. The proof of the master theorem, upon which the master method is based,
is also presented in gory detail.

Chapter 4 concentrates on combinatorial circuits and sorting networks. This chapter is used to motivate
the study of parallel algorithms in later chapters. In particular, the bitonic sort, which is an example of
parallel sorting algorithms, is presented in fair amount of detail. In chapter 5, Miller & Boxer introduce
basic models of sequential and parallel computation. Initially, the authors introduce the RAM (Random
Access Machine) model as a model of sequential computation, and the PRAM (Parallel Random Access
Machine) model as a model of parallel computation. Later in the chapter some other parallel models of
computation including the mesh, tree, pyramid, mesh-of-trees, and hypercube are discussed in a thorough
manner.

One ubiquitous example of parallel algorithms is the operation of matrix multiplication. In chapter 6,
the authors begin to draw the reader’s attention to the field of scientific computing, in which many complex
problems reside. In particular, the reader will see sequential and parallel algorithms for carrying out matrix
multiplication and Gaussian elimination.

2 c
�

To Anthony Widjaja, 2003

2

In chapter 7, the reader will learn the concept of parallel prefix, a powerful operation (especially in
parallel computers), and efficient algorithms for performing this operation. Some basic applications of this
operation are stipulated in this chapter, while some more advanced ones in later chapters.

Chapter 8 presents an implementation of linked lists for parallel architecture, the PRAM in particular.
An interesting feature of this implementation is that it allows the computer to perform a pointer-jumping
algorithm, which can speed up a linked-list traversal from the head to the last item of the list up to �������
	���
 .
After that, the linked-list implementation of parallel prefix, whose array implementation was introduced in
the previous chapter, is presented.

In chapter 9, the reader will explore more into the design and analysis of divide-and-conquer algorithms
using both sequential and parallel approaches. Some algorithms the reader will find are including mergeSort,
quickSort and hyperQuickSort (a parallel implementation of quickSort).

Chapter 10, 11, 12, & 13 are a selection of (more advanced) topics in which the techniques introduced
in previous chapters are extensively used. In specific, chapter 10 concerns with problems and solutions in
the field of computational geometry. In chapter 11, Miller & Boxer delve into the field of image processing.
Chapter 12 & 13 cover, respectively, topics of graph algorithms and numerical problems. All these topics
are presented in .

3 Opinions

First of all, I’m happy to report that the “story” told by this book is easy to follow. In addition, this book
is self-contained in the sense that every theorem presented in this book is proved. Also, a fair number
of examples are worked out in great detail using a variety of different methods. That is, for example,
given a problem, the authors first present a solution with a sequential algorithm and, in turn, introduce
the parallel counterpart which often can solve the problem in a shorter amount of time. Finally, it is
important to note the second printing of the book (which I have) has undergone quite a big change be-
cause of the relatively large number of small (mostly typographyical) errors found in the first printing.
The website which contains errata, corrections, and supplementary materials for this book is available at
<http://www.prenhall.com/millerbox> and updated regularly.

This book can serve as a prescribed textbook for an advanced algorithms course, which focus on the
design and analysis of sequential and parallel algorithms. If this is the case, some suggestions as to the
structure of the course can be found on the companion website. Also, I think this book is suitable to be read
cover-to-cover since almost always the contents of subsequent chapters are based on those of the previous
ones. Some chapters, though, I think are more important than others. For example, chapter 4 to 9 cover the
essence of the design and analysis of sequential & parallel algorithms, while chapter 10 to 13 provide some
applications of them.

However, this book is not about parallel programming such as “cluster computing in Linux”. In fact,
the authors emphasized that most of the parallel models of computation introduced in this book are not yet
physically realizable due to current technological limitations in connecting processors and memory [p.82].
Furthermore, the authors use pseudocodes when presenting algorithms, which make things slightly worse
for those only interested in the practical side of parallel algorithms. Nevertheless, this book should be
appropriate for everyone with a theoretical taste of computer science, who is new to and interested in parallel
algorithms.

3

Review of Algorithmics for Hard Problems: 3

Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics
Juraj Hromkovič

Publisher: Springer, 2001
ISBN: 3-540-66860-8

Review by:
Hassan Masum

Carleton University, Ottawa, Canada
hmasum.com

1 Overview

Algorithmics for Hard Problems is an intriguing new book that attempts to fill an underserved niche: prac-
tical methods for attacking those pesky problems that are NP-hard but must nevertheless be dealt with.

On the whole, the book is well-written and forms a useful introduction to a wide variety of algorithmic
methods. Many readers of this column may find it a handy collection, collecting important ideas that might
otherwise be scattered across a variety of sources. While not an advanced text or comprehensive reference,
it may prove a handy refresher even for those who already know most of the design methods.

2 Book Features and Contents

Since the chapters are relatively self-contained, I will intersperse chapter-specific comments with a chapter-
by-chapter contents listing of the book:
1) Introduction. Setting the stage via previewing the topics covered in the rest of the book and discussing
motivation and aims.

There is an amusing ”input-constraints-cost-objective” formulation of the goals of the book. Most of the
goals are achieved, with some caveats. In the introductory notes, a target audience of senior undergraduate
and graduate students is mentioned for the rough versions of the book; however, the relevance for the
classroom could be improved by including more exercises (and some solutions).
2) Basic Concepts. Fundamentals of math (linear algebra, combinatorics, Boolean functions, number the-
ory, probability) and algorithms (languages, problem specification, complexity theory, design paradigms).

132 of 460 non-index pages are devoted to background mathematics and complexity theory. While
largely superfluous for readers of this column, this could be helpful for students and application-oriented
users without a strong theory background. Although the section is well-written, it does seem like an exces-
sive amount of space to devote to elementary knowledge. I would suggest that the author needs to focus
on his target audience a little better – if it is students, more exercises and a broader selection of proofs are
needed, while if it is practitioners and theorists, the introductory section could be skipped and more material
added on heuristic methods, statistical methods (very important for empirically characterizing truly hard
problems), and so forth.
3) Deterministic Approaches. Pseudo-polynomial-time algorithms, parameterized complexity, branch-
and-bound, reducing exponential constants, local search, and relaxation to linear programming.

A variety of practical methods are concisely explained, with attention in each case to both the fundamen-
tal idea and the potential utility. In section 3.6, it would be nice to see a description of the kinds of spaces

3 c
�

To Hassan Masum, 2003

4

and problems that admit good local search solutions, and more discussion of the connection with matroids
and greedy algorithms. There is perhaps too much focus on the slightly pathological TSP-nonlocality proof
– this proof could have been condensed or simply referenced.

4) Approximation Algorithms. Fundamentals (concepts and classification, stability, dual approximation
algorithms), design methods (applied to several problems including cover problems, max cut, knapsack,
TSP, and bin-packing), and inapproximability.

The author does a good job in covering many different approaches comprehensibly, going far beyond
the classic TSP reduction to Hamiltonian cycle. Section 4.3.5 has an interesting illustrations of TSP-
approximation and stability...the discussion does however seem too TSP-specific, and I would have liked
links to where else these methods have been or could be used.

5) Randomized Algorithms. Fundamentals and classification, design methods, derandomization.
Clear explanation of the basics of randomized algorithms. I particularly liked 5.3.6 on a ”portfolio”

approach combining random sampling and relaxation to linear programming for MAX-SAT; it is a good
example to clarify the basic concepts.

6) Heuristics. Simulated annealing and genetic algorithms.
It is nice to see this section included with the other methods, and the author made the right choice in

sticking to theoretical results (since an empirical study would have been much too long). However, the
section is very small relative to the importance of heuristic methods – especially considering that section 7.2
mentions that heuristics are often the most practical solution method. Also, the Schema Theorem result in
6.3 has been extensively criticized, and I would suggest the author look at more recent theoretical work on
evolutionary computation (and update some references).

Perhaps this section could be expanded to include other theoretical results on these and other heuristic
methods, along with more discussion of where they are useful. Two specific methods to discuss would
be i) support vector machines and related heuristics, which are intuitive, mathematically sophisticated, and
powerful in practice; ii) simulation in combination with statistical analysis, since it’s a key method for really
complex problems (and since we almost always get intuition about a problem from ”trying it out”). Both
have a solid body of theory to draw from.

7) A Guide to Solving Hard Problems. Economics, combining and comparing approaches, parallelization,
future technologies, glossary.

Section 7.2 is a humorous yet accurate page-and-a-half on the cost equation for actually using algorith-
mics, noting that the simple and easily applicable methods are most often used due to lower economic and
cognitive costs. I’d like to see this expanded as it’s extremely important in practice. It’s nice to get a brief
description in 7.6 of DNA and quantum computing, that accurately states their potential and limitations. In
7.6.3, perhaps the author meant ”quantum interference” instead of ”quantum inference”.

References
There is an extensive set of references to most of the material, including many recent important books

and papers. However, I noted that the references are too old in some fast-moving fields like molecular
biology; some also have incorrect years, e.g. 1979 instead of 1997.

3 Opinion

Some pros and cons that I came away with after finishing the book:
Pros: The introductory material is well written and gives a good sense of what is in the book. Similarly,

each chapter has an introduction which accurately presages the material in the rest of the chapter. — Each
section has a short review at the end which briefly describes the main concepts introduced in the section.
Terms introduced are also reviewed. — A reader new to the material but with some perseverance would

5

come away well-equipped to delve further into many different areas of algorithmics (which sometimes seem
to be a little scattered in practice). — At the end of each chapter is a historical and bibliographical discussion.
The glossary (with links to the section where each term is discussed) is also a useful touch.

Cons: The selection of some of the proofs seems slightly unbalanced, with many pages sometimes
devoted to a perhaps not entirely central result (although this choice is partly a matter of personal taste). For
some of the more specialized proofs, a condensed version could be given. (On the positive side, the author
does often have some informal discussion of the goal behind a proof.) — A summary chart of complexity
classes and solution methods would be useful. — The English is sometimes a little idiomatically unusual;
while this usually just makes for an occasionally offbeat and perhaps interesting writing style, there were a
couple of spots where the intent of a statement was not entirely clear.

This book is a worthwhile first step for those interested in ”the theory of practical algorithms”. To
really get into depth, a reader would need to add supplementary reading, perhaps one text per chapter (e.g.
Complexity and Approximation for Chapter 4, How to Solve It: Modern Heuristics for Chapter 6). However,
this is a good book for a first look at several areas.

Algorithmics for Hard Problems will be valuable to many learners. I look forward to seeing more books
that give a balanced overview of ”algorithms for hard problems”!

Review of Modal and Temporal Properties of Processes4

Author of Book: Colin Stirling
Springer Verlag, Hardcover, 250 pages, 2001

Review by Vicky Weissman, Dept of CS, Cornell University

Overview

At a very high level, this book presents languages for describing processes and properties of processes. It
then discusses techniques for checking if a process, or family of processes, has a given property.

What is a process? In essence, a process is something that can perform actions. By doing actions, pro-
cesses may change. Examples of processes include a clock that can tick and a counter with value zero that
can do an increment action to become a counter with value one. The following syntax is used to describe
processes where � , possibly subscripted, is a process, both � and � are actions, and � is an indexing set.

����������������� � �"!
�$#%��& ')(+*�� '
A process of the form �,��� can do action � to become process � . A process of the form � � �"!
�$# is identical
to the process � , except that every occurrence of action � is replaced by action � . A process of the form- ')(.* � ' refers to some process �0/ where 1�23� .

We would like to extend the language to describe interactions between processes, but first we need to
explain what we mean by process interaction. Two processes interact when one sends information and the
other receives it. We formalize this notion, by creating pairs of actions. Each pair consists of two actions
with the same name, except that one has an overhead bar and is associated with out-going communication,
while the other does not have a bar and is associated with in-coming communication. For example, a process�54 may tell a process �76 that it’s idle by doing an action � . �86 receives this information by doing the action� . We say that � is the co-action of 9� and vice-versa.

To capture interactions between processes, we add the syntax �:4+� �;6 and �=<?> to the language where�54 , �;6 , and � are processes and > is a set of actions. A process of the form �:4+� �;6 is the concurrent
4 c
�

To Vicky Weissman, 2003

6

composition of processes �@4 and �A6 . In other words, if �B4 can do an action � to become �=C4 and �A6 can do
the co-action 9� to become � C6 , then �D4
� �;6 can do � to become � C4 � �;6 , can do 9� to become �B4+� � C6 , and can
do the internal action E to become �FC4 � �DC6 . (We always use the symbol E to refer to an internal action, which
is one process doing an action and another process doing the co-action. The set of actions may not include9E .) The restriction operator < is used to synchronize processes, by forbidding actions to be performed unless
the co-action is also done. More specifically, a process of the form �F<?> is identical to the process � except
that it cannot do any action that is in > and it cannot do any action whose co-action is in > . For example,���54
� �A6G
H<.� synchronizes processes �@4 and �A6 with respect to action � , by forbidding the processes to do �
or 9� . If one of the processes does � (or 9�), then it cannot do another action until the other process has done9� (or �) and, thus, ��� 4 � � 6
H<.� has done E instead of � or 9� .

We write �D4JIK �A6 to say that process �B4 can do action � to become process �86 . For example, �,��� IK �
is always true and

- ')(.* � ' IKML is true if there is some 1N2J� such that � /OIKML . We use the symbol P
to discuss observable actions where an observable action is any action other than E . If � is an observable
action, then �B4QIP �A6 means that process �B4 can become process �76 by doing a sequence of actions in
which the only observable action is � . The notation can be extended in a straightforward way to allow
an action sequence in place of a single action. For example, if � and � are actions, then �,���R��� I$SK � is
always true and, if T is the empty sequence, then �F4VUPW�;6 is true if �D4 can become �A6 without doing any
observable actions.

Given a process, we would like to know if it has certain properties. For example, we may want to know
if the process is deadlocked or if it could become deadlocked without doing any observable action. To
discover if a property holds for a process, we need a language for properties and we need a formal definition
of what it means for a process to have a property. The syntax for a simple property language is given below
where X , possibly with a subscript, is a property and Y is a set of actions. As an aside, we refer to the set
of all actions except those in an action set Y as the set Z;Y . Similarly, the set of all actions is Z (for ZA[).

X������]\ \0�G^�^_�GXA4%`NX06D�aXA4%bNXc65�d� Y_#eXf�?g)YihHX
\ \ stands for true; it is the property that every process has. Similarly, ^�^ stands for false; it is the property that
no process has. Conjunction and disjunction have their standard meanings. A process has the property � Y_#eX
if, after doing any action in Y , it becomes a process that has the property X . A process has the propertyg)YihHX if, after doing some action in Y , it can become a process that has the property X . Formally, we
define the following satisfiability relation where �j��fX means that process � has (satisfies) property X and�lk� �fX means that it does not.

� �j��m\n\ and �lk� �f^o^
� �j��fXA4%`NXc6 iff �p��VXA4 and �q��VX06
� �j��fXA4%bNXc6 iff �p��VXA4 or �j��fX06
� �j���� Yr#eX iff s L 2ita� C �
�uIK � C and �v2_Yxwy� L � �fX
� �j��Qg)YihHX iff z L 2ita�BCo�y�{IK �DC and ��2_Yxwy� L � �fX
In this language, a process � is deadlocked if it has the property �|Z}#e^�^ . Unfortunately, it may not

be clear if � has this property when � contains the restriction operator < , the concurrency operator � , or
renaming. To simplify our analysis, we note that formulas written in our language (properties) adhere to the
following:� If �~!23Y then �����j���� Yr#eX and �,���lk� �Qg)YihHX .

7

� If �v23Y then �����j���� Yr#eX iff �����p���g)Y~hHX iff �j��fX .

��� ta� ' �
��23��w:���� ��#eX iff for all 1�23�,����/:���� ��#eX .

��� ta� ' �
��23��w:��Qg��"hHX iff for some 1�2N������/���Qg��"hHX .

These facts can be used to show that �=<?>����X iff �����X;<?> where X}<?> is obtained easily from X . The
concurrency operator and renaming can be handled similarly, although the solution for concurrency is not
entirely satisfactory.

While the above property language is sufficiently expressive for the first deadlock example, it cannot
capture the second one, namely a process may become deadlocked after some sequence of unobservable
actions. To write such properties, we extend the logic to include the syntax � � # #eX and g�g�h�hHX where X is a
property. If a process has the property � � # #eX , then doing any internal action sequence results in a process that
has the property X . (Formally, ������ � # #eX iff s L 2�ta� C �"� UP�� C wy� L � �QX .) If a process has the propertyg�g�h�hHX , then doing some internal action sequence, possibly the empty sequence, results in a process that has
the property X . (Formally, �����g�g�h�hHX iff z L 2]ta� C �o� UP�� C wy� L � �qX .) Using the extended logic, the
ability to evolve silently into a deadlocked process can be written as g�g�h�hG�|Z}#e^�^ .

We may want to extend the logic further to handle convergence and divergence. A process converges
(�) if it cannot perform internal actions indefinitely, otherwise it diverges (�). We write � �|��# #eX to say that
the process converges and has the property � � # #eX . We write g�g��Rh�hHX to say that the process either diverges or
has the property g�g�h�hHX . For example, the property that an action � must (and will) happen next is written as� �|��# #�g�g�Z7h�h�\ \�`�� �|Z;�?# #e^�^ where � � # #�� Yr#�� � # #eX is abbreviated as � � Yr# #eX and g�g�h�h�g)Yih�g�g�h�hHX is abbreviated as g�g)Y~h�hHX for
any action set Y .

In the text, the simplest language consisting of \ \��$^�^��$`0�$b0�.� Yr#eX8� and g)Y~hHX is called � for modal logic.
The language consisting of \ \��$^�^��$`c�$b0�.� � Yr# #eX8�.� � # #eX8�Gg�g)Yih�hHX8� and g�g�h�hHX is called �Q� for observable modal
logic. Finally, � � with � �|��# #eX and g�g��Rh�hHX is the language � ��� .

When should we consider two processes to be equivalent? A popular definition is to say that two
processes � and L are equivalent if for any action � ,
� if � IK � C , then L IK�L C for some L C such that � C and L C are equivalent.

� if L IK�L C , then � IK �BC for some �BC such that �BC and L C are equivalent.

Two processes that meet the above criteria are said to be bisimilar. A binary relation � is a bisimulation if
for any process pair ���v� L
 in � , the processes � and L are bisimilar.

If � and L are bisimilar processes, then for any process � , for any set of actions Y , for any action� , and for any renaming function , the following hold where ¡£¢¥¤ means that processes ¡ and ¤ are
bisimilar.

1. �����O¢]�,� L
2. �]¦��f¢ L ¦��
3. �N� ��¢ L � �
4. �N� R#§¢ L � .#
5. �F<.Y¨¢ L <.Y

Because of this, bisimilar processes can replace one another in process descriptions. Furthermore, bisimilar
processes either both have or both fail to have any property that is expressible in � ��� .

8

Two processes that share the same �Q��� properties may or may not be bisimilar. To characterize the
class that are, let a process � be immediately image-finite if for all actions � the set ta� C �
�uIK � C w is finite.
A process is image-finite if it can only become an immediately image-finite process, regardless of which
action sequence it does. Two image-finite processes that have the same � ��� properties are bisimilar.

We can demonstrate that two processes are bisimilar by constructing a bisimulation that contains them.
Alternatively, we can write a proof that uses algebraic and semi-algebraic theorems (such as ���,��©§
H<.Y{¢���ª��©�
H<.Y if ta����9�,w0«¬Y­��[) to show the equivalence.

The definitions for bisimulation and image-finite processes can be modified in a straightforward way
to handle observable actions. The relationship between bisimulations and � ��� occurs between observable
bisimulations and � � . Many other properties hold for both bisimulations and observable bisimulations.

The property language � ��� is sufficiently expressive to distinguish one image-finite process from an-
other, provided that the two processes are not bisimilar. This does not mean, however, that all interesting
properties can be written in �®�§� . An example of an inexpressible property is ‘the process can never become
deadlocked’. More generally, � ��� lacks the expressive power to state long term properties, such as safety
properties (something never happens), liveness properties (something eventually happens), and repeating
properties (something happens again and again, forever).

We can discuss these events, by adding propositional variables to � . (As we shall see, � ��� is equiv-
alent to a fragment of this logic.) To complement the new syntax, valuations are added to the semantics.
The valuation ¯ assigns each variable ° to a set of processes ¯v��°?
 . If a process is in ¯���°�
 , then it is said to
satisfy the formula ° relative to the valuation ¯ .

We use formulas in the extended logic to assign variables to sets of processes. More specifically, we
write °±�­X if the variable ° is assigned to the set of processes that satisfy formula X . For example, if° �­�|Z}#e^�^ , then ° is the set of processes that are deadlocked. If the variable is assigned to a formula that
contains it (e.g. °¬�l�|Z;#²°), then there may be a number of process sets that satisfy the equation. Roughly
speaking, the smallest set is the least fixed point, written ³´°µ��X , and the largest is the greatest fixed point,¶ °"��X .

Least and greatest fixed points are found through an iterative process. The number of iterations needed,
in general, is an open problem. However, if the variables do not occur under an alternation of fixed points,
then the number of iterations is, at most, �5·¸� where � is the number of fixed points and � is the number of
processes.

The extended logic is called Modal Mu-Calculus (or ³´�) and its syntax is:

X�������\ \0�G^�^r�GXA4%`NX068�GXA4�bNXc68��� Yr#eXf�?g)Y~hHXf��³´°"��X]� ¶ °µ��X
where X , X74 , and Xc6 are formulas, Y is a set of actions, and ° is a variable. The meanings of \ \ , ^�^ ,XA4�`xX06 , XA4�b±Xc6 , � Yr#eX , and g)YihHX are similar to the ones for the modal logic � ; the only difference
is that the valuation must be considered. For example, a process has the ³´� property X=4�`¹X06 relative to
a valuation ¯ , if it has the property XD4 relative to ¯ and the property X;6 relative to ¯ . The meaning of
fixed points is given below where the notation ¯¬� º�!+°+# refers to the valuation that is identical to ¯ , except
that variable ° is assigned to the process set º . (Formally, ¯N� º´!+°+#»��°?
v��º and for all variables ¼�k��° ,¯ � º´!+°+#»��¼"
¸�f¯v��¼½
 .)� �¾��5¿À³´°"��X iff for all sets of processes º , if �Mk2Vº then there exists a process L k2Vº such thatL � � ¿ÂÁ Ã.Ä�Å�Æ X� �j��5¿ ¶ °"��X iff there exists a set of processes º that contains � and for all L 2¹ºÂ� L � � ¿ÂÁ Ã.Ä�Å�Æ X .

³´� is very expressive. It can capture any �Q��� formula. In particular, assuming the variable ° is not
in X , g�g�h�hHX��q³´°"��X�b�geE,h�° , � � # #eX�� ¶ °µ��X�`�� E"#²° , g�g��Rh�hHX�� ¶ °"��X�b�geE,h�° , and � �|��# #eX���³´°"��X�`Ç� E"#²° . Also,

9

many safety, liveness, and repeating properties that are inexpressible in ����� can be written in ³´� . For
example, ¶ °"�)� Yr#e^�^:`È�|Z}#²° says that no action in Y ever happens, ³´°"�²g�Z7h�\ \�`J�|Z;Yr#²° says that some action
in Y eventually happens, and ¶ °"�²g)Yih�° says that actions in Y can be done over-and-over again, forever.

Despite the greater expressive power, the relationship between ³´� and bisimulation is similar to that
between � and bisimulation. Specifically, two bisimilar processes share the same ³´� properties and a
weakened version of image-finiteness is needed for processes that share the same ³´� properties to be
bisimilar.

A disadvantage of using ³´� is that the satisfiability problem for it is undecidable. In general, we cannot
determine if a process satisfies a ³´� formula relative to a valuation. For the other modal logics (� , � � ,
and � �§�), we can grind through the satisfiability definition in a straightforward manner, but handling fixed
points in ³´� is more challenging. One approach is to view answering a satisfiability question in terms of
playing a game.

We want to play a game whose outcome will tell us if a process � satisfies a ³´� formula X rela-
tive to a valuation ¯ . The game has two players, a verifier ¯ who wants to show that the formula is
satisfied and a refuter É who wants to show that it is not. A play of the game is a sequence of the form���;Ê
�$XcÊ�
������.��� ' �$X '
������ where each subscripted � is a process and each subscripted X is a formula in ³´� .
The rules of the game are:

� assuming we want to know if � satisfies X , �5Ê is � and XcÊ is X .

� if X ' �pX / `~X0Ë then player É chooses one of the conjuncts to be the formula in the next pair. In
other words, � 'ªÌ 4 is � and É decides if X 'ªÌ 4 is XÍ/ or X0Ë .

� if X ' �fXÍ/�bNX0Ë then � 'ªÌ 4 is � and ¯ decides if X 'ªÌ 4 is XÍ/ or XcË .
� if X ' ��� ��#eÎ , then player É chooses a transition � ' IK ��/ where �32È� . The next process, � 'ªÌ 4 , is��/ and the next formula, X 'ªÌ 4 , is Î .

� if X ' �jg �HhHÎ , then player ¯ chooses a transition � ' IK ��/ where �r2J� . The next process, � 'ªÌ 4 , is��/ and the next formula, X 'ªÌ 4 , is Î .

� if X ' �®Ï´°µ��Î where ÏÇ2Ðta³Í� ¶ w , then � 'ªÌ 4 is � ' and X 'ªÌ 4 is Î . Whenever ° is encountered in the
future, it will be replaced by Î . For example, if X ' �j³´°"�²g \n��Ñ��Hh�° then X 'ªÌ 4 �Òg \n�»Ñ��Hh�° , X '�Ì 6 �j° ,
and X '�Ì§Ó �¨g \��»Ñ��Hh�° . (For simplicity, we’re assuming that each fixed point in X ' bounds a different
variable and none of the bound variables are free elsewhere in the formula.)

Player É wins the game if the play contains a pair ��� ' �$X '
 such that � ' � �5¿�X ' is clearly false. Similarly,
player ¯ wins the game if the play contains a pair ��� ' �$X '
 such that � ' � �5¿qX ' is clearly true. If the
play doesn’t contain such a pair, then there must be some variables that are replaced according to the last
rule infinitely often. If the outermost variable is bound to a least fixed point operator, then player É wins.
Otherwise, player ¯ wins.

If player É can always win the game, regardless of player ¯ ’s moves, then � does not satisfy X relative
to ¯ . Otherwise, player ¯ must be able to win the game, regardless of player É ’s moves, and � satisfies X
relative to ¯ .

Variations of this game have been developed to improve efficiency, particularly for fragments of ³´� . To
prove that every process in a set satisfies some formula, we can play one of these games multiple (possibly
infinitely-many) times. Alternatively, we can construct a proof tree, according to rules that are based on the
satisfiability relation.

10

Contents

The book has seven chapters and is 181 pages. The chapter summaries are given below:
Chapter 1, Processes, introduces the notion of processes and gives a language in which to describe them.
Chapter 2, Modalities and Capabilities, presents the modal logics � , � � , and � ��� for discussing

the properties of processes.
Chapter 3, Bisimulations, gives a formal definition for when two processes should be considered equiv-

alent, argues that this choice matches our intuition, and examines the relationship between equivalent pro-
cesses and those that are indistinguishable using the modal logics presented in Chapter 2.

Chapter 4, Temporal Properties, shows that the modal logics cannot be used to write safety and liveness
properties. A variant of CTL is proposed as a more expressive logic. Fixed points are then introduced.

Chapter 5, Modal Mu-Calculus, defines the Modal Mu-Calculus (³´�) and gives algorithms for finding
fixed points using iterative methods.

Chapter 6, Verifying Temporal Properties, uses game theory to address the satisfiability problem for³´� and the variant of CTL given in Chapter 4.
Chapter 7, Exposing Structure, uses proof trees to address the satisfiability problem for sets of pro-

cesses.

Opinion

I recommend this book as a good introduction to process algebra, although an additional text will be needed
for a solid understanding. Many examples are given throughout the text and exercises are provided at the
end of each section. The examples complement the text very well and the exercises are given in increasing
difficulty. This allows readers to test their general understanding first and then try to challenge themselves.
The book also uses game theory as a way of presenting the same material from different perspectives without
being overly redundant. I found this approach to be both effective and fun. Finally, the book does not assume
much (if any) prior knowledge of the field.

I have only two negative comments. First, Chapters 4 and 5, while still good, are not as well written
as the rest of the book. Second, the author occasionally refers to examples and definitions without telling
the reader where the ideas are introduced. As a result, I had to flip through the book looking for text that I
remembered reading, but whose details I couldn’t recall. This situation may be helped by adding a glossary
to future editions.

Review of
Modal Logic 5

Cambridge Tracts in Theoretical Computer Science #53
Patrick Blackburn, Maarten de Rijke, and Yde Venema

Cambridge University Press, 2001

Reviewer: P. Daniel Hestand

1 Overview

Most people, upon hearing the phrase “modal logic,” envision the logic of possibilities or contingent truth.
The phrase also brings to mind the notion of truth in all “possible worlds” and even the typical modal
operators, Ô and Õ . These views, while correct, are somewhat limited in scope. This book attempts (and

5 c
�

IONA Technologies, PLC, 2003

11

succeeds, in my opinion) to update that view. The topic of the book, while obvious from the title, goes far
beyond merely talking about “possibility” and “necessity.” Instead, the authors present us with the notion
that modal logics are tools for exploring and exploiting relational structures in ways that provide insight
into areas other than logic. Frames and models are distinguished as differing structures upon which we
can investigate various aspects of truth. Methods for extending the modal languages also give us insight
into the limits of these structures and possible ways to circumvent some of these limitations. In the end,
we are left with the impression that modal logic used as an analysis tool provides rich results beyond mere
contingencies. This is the subject of the book, “Modal Logic.”

2 Summary of Contents

The book is organized very nicely. Each chapter starts with a short transition section connecting the previous
chapter with the current, followed by a chapter guide which indicates which sections of the chapter are on a
basic track and which are on an advanced track. Presumably the concepts in the basic track are indispensable
for an understanding of modal logic while those on the advanced track are for gaining a deeper understanding
of those concepts introduced in the advanced track. Following the chapter guide, the chapter contents are
launched into. Each section is ended by a set of exercises and the end of each chapter concludes with notes
that generally contain historical perspective as well as names of note in the field. The notes are extremely
useful because they are linked to the bibliography and provide a nice jumping off place for reading further
work on a particular aspect of the concepts in the chapter. What follows is a summing up of each of the
chapters.� Preface — the preface is important because it lays out very explicitly, the assumptions used by the

authors in preparing the text. Three “slogans” are introduced that are to be used as guiding principles
in understanding modal logic. They are (directly from the book)

– Modal languages are simple yet expressive languages for talking about relational structures.

– Modal languages provide an internal, local perspective on relational structures.

– Modal languages are not isolated formal systems.

� Basic Concepts — this chapter introduces those tools and techniques that are to be used in subsequent
chapters. In particular, since modal languages can be used for discussing relational structures, those
structures are introduced along with the notion of modal language. To connect the two, models and
frames are introduced as different levels for understanding relational structures and the concepts of
satisfaction and validity are introduced with respect to models and frames. Following this discussion,
the authors introduce general frames which provide an intermediate level for understanding relational
structures. After we understand the structures, languages, and interpretations that we can use, the
authors then raise and answer the question of what consequence relations are important for modal
languages. Up to this point, the discussion has been semantic, but now the authors intend to demon-
strate that there are syntactic definitions that are useful since with them we can discuss proof theory
and reasoning in modal logic. The chapter closes with a lengthy historical review of modal logic with
respect to the topics covered in the chapter.

� Models — this chapter opens with a discussion of three ways of constructing new models from old
ones: disjoint unions, generated submodels, and bounded morphisms. All of these are important
because the new models they generate preserve theories associated with states in the old models.
The next section then discusses bisimulation and shows that the three model construction methods
previously introduced are only special cases of bisimulation. The next section shows how modal

12

languages have the finite model property, that is, if we can satisfy a formula on an arbitrary model,
then we can also satisfy it on a finite model. However, we must be able to choose the “correct” finite
model and this section also presents methods for doing so in the form of a selection method and
a filtration method. The next section introduces the standard translation which is the link between
modal languages and first-order languages. Two questions are raised here that show the limitations of
the standard translation:

1. What part of first-order logic does modal logic correspond to?

2. Which properties of models are definable by modal means?

The next section then introduces ultrafilter extensions as a means of not only constructing new models,
but also as a part of the answer to the two questions above. The next section is an in-depth look at
the two major results of the whole chapter, namely van Benthem’s Correspondence Theorem and the
connection between modally definable classes of models and bisimulation and ultraproducts. The final
section is an advanced track section discussing invariance under simulation and first-order definable
operations respecting bisimilarity.

� Frames — the chapter opens with a discussion of frame definability, frames having already been
introduced in chapter one. To aid in illustrating definability, several examples are provided. The next
section discusses frame definability and its connection to second-order logic and in particular answers
the question of why frame definability must be second-order. Following the format in chapter two on
models, the authors proceed to demonstrate construction techniques on frames that preserve validity
(namely disjoint unions, generated subframes, and bound morphic images) and show further that
under ultrafilter extension validity is not preserved. The major result of this section if the Goldblatt-
Thomason Theorem which defines the conditions under which a class of frames is modally definable.
The next section then introduces finite frames and discusses a finite frame property connecting it to
the finit model property through normal modal logic. The next section then discusses the first-order
correspondence theorem applicable to frames — the Sahlqvist Correspondence Theorem and how it
is possible to eliminate second-order quantifiers from a formula via the use of positive and negative
formulae. The next section then proceeds to prove the Sahlqvist Correspondence Theorem (basic
track) and the following section explores the limitations of the Sahlqvist Correspondence Theorem
and introduces Kracht’s Theorem. The final section provides a proof of the Goldblatt-Thomason
Theorem.

� Completeness — this chapter is completely devoted to developing techniques for proving complete-
ness and soundness (to a lesser degree). The opening section defines soundness and completeness
in the context of normal modal logics. The next section introduces canonical models and frames,
that is models that are built from a maximal consistent set of formulae with a canonical binary re-
lation É7Ö§×;Ø defined such that if ÙÇ2_Ø then Ú?ÙÇ23× and a natural or canonical valuation defined
by ¯ Ö �ÜÛ§
��Àta×�2rÝ Ö �ÞÛN2_×Dw . The major result of this section is the Canonical Model Theorem
which relates completeness of a normal modal logic and its canonical model. The next section ex-
plores canonicity and makes use of the implications of the Canonical Model Theorem to prove com-
pleteness results for several modal and temporal logics. The next section then discusses limitations
to the use of canonical models by showing that there are normal logics that are not canonical and
that some normal logics cannot be characterized by a class of frames. The next two sections deal with
what to do when there exist properties for which no canonical formula exists. The methods introduced
allow us to transform the canonical model with the failure into one without a failure by transforming
the model or by inductively building up a model with very specific properties. The next section then

13

shows how certain proof rules allow us to construct canonical models containing submodels that ex-
press undefinable properties. The final two sections deal with finitary models (finite canonical models)
and filtrations and how they can be used to prove weak completeness results for non-compact logics
(for example, propositional dynamic logic).

� Algebras and General Frames — this chapter deals with how to express modal logics with algrebras
versus using the models and frames of the previous chapters. The basic tenet here is that algebras pro-
vide a richer set of tools for dealing with modal logic problems. The first section introduces algebraic
logic by exploring how propositional logic and boolean algebras are related. The next section then
uses this foundation to begin to algebraize modal logic. This is done by introducing boolean algebras
with operators. The boolean algebras will capture the underlying propositional logic and the opera-
tors will be used to capture the modalities. Two approaches are used: a semantic approach in which
complex algebras are used and a syntactic approach in which Lindenbaum-Tarski algebras are used
to obtain BAOs from normal modal logics. The next section provides a proof of the Jónsson-Tarski
Theorem which is the basis for approaching modal completeness theory algebraically. The next two
sections proceed to duality theory where the connection between the frame construction methods is
made to construction methods in algebras, namely homomorphisms, subalgebras, and direct products.
A major result in the first of the two sections is an algebraic proof of the Goldblatt-Thomason Theo-
rem. The second of the two focuses on the use of general frames. The final section introduces a notion
called persistence which is generalization of the canonicity concept and the uses this notion to prove
the Sahlqvist Completeness Theorem.

� Computability and Complexity — this next chapter provides a connection of modal logic to the field
of computer science by examining the computability and complexity issues surrounding satisfiability
and validity problems in normal modal logics. The first section introduces satisfiability and validity
problems in modal logic and how to express their computation using Turing machines. The next
section then looks at decidability and shows how decidability may be proved using finite models.
Three theorems are given and proven that related decidability to the finite model property and these
results are then used to show that most of the logics introduced as examples in chapter 4 are actually
decidable. The next section introduces interpretation in other decidable theories as a means of showing
decidability for logics without the finite model property. The next section discusses how to arrive at
decidability using quasi-models (a frame with distinguished points and a labeling function mapping
states in the frame to subsets of the closure of the modal formula under discussion) and mosaics (a
collection of pairs of Hintikka sets that can be used in a step-wise fashion to construct a satisfiable
model). The next section detours into a discussion of undecidability results and shows how easy it
is to create undecidable modal logics. The major result of this section is the introduction of tiling
arguments as a proof method for determining undecidability. The remaining sections discuss the
various types of complexity classes to which modal languages belong. The first of these sections
discusses NP, the second shows that PSPACE is a key complexity class and shows that a group of
normal logics between K and S4 are PSPACE-hard, and the final section shows that the satisfiability
problem for propositional dynamic logic is EXPTIME-complete.

� Extended Modal Logic — this chapter shows how modal logics may be extended. The authors in-
dicate that the topics discussed in the chapter constitute six of their favorite topics. The first section
introduces logical modalities, in particular the global modality (remember that modal languages are
inherently local, so we need a way to step back and look at the bigger picture) and the difference
operator (an operator that scans the whole model looking for different states to satisfy a particular
formula). The next section then introduces the since and until operators that are used in temporal

14

logic. These operators are then used to arrive at expressive completeness and then finally to deductive
completeness. The next section discusses hybrid logic which have terms that can be used to refer to
worlds. The basic hybrid language is given and the hybrid logic completeness theory is discussed. The
next section explores further the concept of the guarded fragment which is the result of generalizing
the notion that modal operators are a form of guarded quantification over states in first-order logic.
The next section discusses multi-dimensional modal logic which treats assignments as possible worlds
and quantifiers as diamond operators. The beauty of this extension is that we can now approach first-
order logic as a modal language. The final section introduces a Lindström Theorem for Modal Logic.
The section shows that there is a modal logic equivalent to Lindström’s Theorem which states that
first-order logic is the strongest logic possessing compactness and Löwenheim-Skolem properties.

� Appendices — — the appendices provide “toolkits” to assist the reader in understanding the founda-
tional concepts applied to the study of modal logic.

– Appendix A — this appendix is concerned with logical concepts including first-order logic,
model-theoretic approaches, ultraproducts, and first-order logic extensions. An important result
of this appendix is Łös’s Theorem.

– Appendix B — this appendix deals with algebraic concepts such as universal algebra, homo-
morphisms, congruences, algebraic model theory, and equational logic.

– Appendix C — this appendix deals with computability notions such as Turing machines, Church’s
thesis, complexity theory (the complexity classes), and big-O notation.

3 Opinion

This book has found a permanent home in my library. I find myself repeatedly going back to a section here or
there and rereading. The authors have made a fantastic effort at exploring modal logic in all of its aspects and
make it interesting with detailed discussion of results, numerous simple examples, and numerous extended
examples. The book is well-organized and clearly distinguishes between those sections that a newcomer to
the topic should explore and those sections which will provide a little more meat for the more experienced
reader to explore. As a textbook, it would be difficult to cover all of the material in a single semester, but
a survey course could hit the high points using the basic track material and follow up in a second semester
with a more advanced approach. I recommend this book for anyone who has any interest at all in modal
logic. It certainly expanded my view of just what modal logic can be.

15

