
The Book Review Column1

by William Gasarch
Department of Computer Science

University of Maryland at College Park
College Park, MD, 20742

email: gasarch@cs.umd.edu

In this column we review the following books.

1. Concurrent and Real-time Systems: The CSP Approach by Steve Schneider. Re-
viewed by Sabina Petride. This book is about Communicating Sequential Processes (CSP)
which is a model of concurrent processes. It is used to verify protocols. and mode

2. Introduction to Languages, Machines and Logic: Computable Languages, Ab-
stract Machines and Formal Logic by Alan P. Parkes. Reviewed by Robert McNaughton.
This is a textbook for a course on Automata theory and related topics.

3. Algorithm Design: Foundations, Analysis and Internet Examples by Michael T.
Goodrich and Roberto Tamassia. Reviewed by Pavol Navrat. This is a texbook for a course
in algorithms.

4. Theory of Semi-Feasible Algorithms by Lane Hemaspaandra and Leen Torenvliet. Re-
view by Lance Fortnow. This is a monograph on the topic of P-selective sets.

Books I want Reviewed
If you want a FREE copy of one of these books in exchange for a review, then email me at

gasarchcs.umd.edu Reviews need to be in LaTeX, LaTeX2e, or Plaintext.
Books on Algorithms

1. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica
by Pemmaraju and Skiena.

2. Algorithms: Design Techniques and Analysis by Alsuwaiyel.

3. Foundations of Algorithms Using Java Psudeocode by Neapolitan and Naimipour.

4. Computational Techniques of the Simplex Method by Maros.

5. Immunocomputing: Principles and Appliations by Tarakanov, Skormin, Sokolova.

6. Data Structures, Near Neighbor Searches, and Methodoolgy: Fifth and Sixth DIMACS Imple-
mentation Challenges Edited by Michael Goldwasser, David Johnson, Catherine McGeoch.

Books on Cryptography

1. Data Privacy and Security by David Salomon.

2. Elliptic Curves: Number Theory and Cryptography by Larry Washington.

3. Block Error-Correcting Codes: A Computational Primer by Xambo-Descamps.
1 c© William Gasarch, 2004.

1

Misc Books

1. Turing (A novel about computation) by Christos Papadimitriou. (This is really a novel!)

2. Dynamic Reconfiguration: Architectures and Algorithms by Vaidyanathan and Trahan.

3. Semantic integration of heterogeneous software specifications by Groβe-Rhode.

4. Finite Automata by Lawson.

5. Ordered Sets: An Introduction by Schroder.

6. Combinatorial Designs: Constructions and Analysis by Stinson.

Review2 of
Concurrent and Real-time Systems: The CSP Approach

Authur: Steve Schneider
526 pages, $70.00, 1999, Paperback

Publisher: Wiley

Review by Sabina Petride

1 Overview

1.1 Sequential processes

Much has been done to formally talk about processes in the last decades, especially in the field of
process algebras. In [Hoa85] A. Hoare laid the foundations of Communicating Sequential Processes
(CSP) formalism, while in [Mil89] Milner proposed the slightly different approach of Calculus of
Communicating Systems (CCS). Both process algebras have been extensively used to model and
verify concurrent systems, and recent publications prove the richness of the formalisms ([Ros97],
[Mil99], [Fok00]). Concurrent and Real-time Systems. The CSP Approach was published in 1999
and since then has been one of the most referenced books on CSP.

Let us start with the basics. CSP provides a language for writing processes that perform local
or external events and communicate with each other. It is very important to understand from the
very beginning the view that CSP has on events/actions: there are external events from a set Σ
and only one internal event named τ , which means that CSP focuses on the external behavior of
processes and regards all possible internal events as identical.

For the beginning, we consider the language for sequential processes, without taking communi-
cation into account.

The simplest process is STOP : it does not perform any action; the next simplest process is
SKIP , which can do nothing except performing the special termination event

√
.3 a −→ P (a then

P) performs event a and then behaves as the process P . A process that can engage in any of the
events in set A and, after choosing some a ∈ A, behaves as P (a) is called menu (prefix) choice and
is written as x : A −→ P (x).

The CSP language explictly uses channels and associates to each channel c a type T of values
that can be sent or received along c; c.T

def
= {c.t | t ∈ T} represents the set of events associated

with c. The process c!v −→ P outputs value v on channel c and then behaves as P , while process
2 c©2004 Sabina Petride
3If A is a set of events, then A

√
= A ∪ {

√
}.

2

c?x −→ P (x) is waiting for some value v of type T to be sent on channel c and then behaves as
P (v).

Similar to the prefix choice construct, there are built in terms to account for choice among
processes. If the choice between processes P1 and P2 is resolved by the performance of the first
event, in favor of the process that performs it, then the choice is called external and the CSP term
is written as P2P . If the choice between P1 and P2 is done internally, and the environment has no
control on it, then the choice is called nondeterministic (internal) and the CSP term is written as
P u P . If we add (mutual) recursion by allowing definitions of the form N = P where P includes
name N , then we have the core CSP language for sequential processes:

P ::= STOP | SKIP | a −→ P | x : A −→ P (x)
c!v −→ P | c?x : T −→ P (x)
P2P | P u P

The above informal explanations of the behavior of CSP sequential processes is made rigorous
by the operational semantics:4

(a−→P)
a−→P (x:A−→P (x))

a−→P (a)
[a ∈ A]

SKIP
√
−→STOP

P
µ−→P ′

N
µ−→P ′

[N = P]

(c!v−→P)
c.v−→P (c?x−→P)

c.v−→P (v)
[v ∈ T]

P1
a−→P ′1

P12P2
a−→P ′1

[a ∈ Σ
√

] P2
a−→P ′2

P12P2
a−→P ′2

[a ∈ Σ
√

]

P1
τ−→P ′1

P12P2
τ−→P ′12P2

P2
τ−→P ′2

P12P2
τ−→P12P ′2

P1uP2
τ−→P1 P1uP2

τ−→P2

Control flow is modeled by sequential composition (P1;P2) and interrupt (P14P2). P1;P2

behaves as P1 followed by P2 if P1 terminates. P14P2 represents a process that mimics P1, but
at any point it can interrupt P1 and behave as P2; once the control has been removed from P1, it
cannot be given back to P1; P2 may perform internal actions while P1 has control. To account for
these behaviors, the operational semantics is extended with the following rules:

P1
µ−→P ′1

P1;P2
µ−→P ′1;P2

P1

√
−→P ′1

P1;P2
τ−→P2

and
4The operational semantics is a set of rules that specify the possible transitions terms can engage in. A rule has a

(possibly empty) set of conditions (written above the horizontal line), and a set of conclusions; additional constraints
on the rule are placed in brackets, at the right side of the line.

3

P1
µ−→P ′1

P14P2
µ−→P ′14P2

[µ 6=
√

] P1

√
−→P ′1

P14P2

√
−→P ′1

P2
τ−→P ′2

P14P2
τ−→P14P ′2

P2
a−→P ′2

P14P2
a−→P ′2

1.2 Communicating Sequential Processes. Concurrency

It is time now to focus on how the CSP language models concurrency and communication. One
additional notion is required: the interface of a process P is defined as all external events that
P may perform. CSP processes can execute concurrently by synchronizing on common events:
any event that appears in the interface of both processes must involve both processes, whenever it
occurs. The synchronization mechanism resembles handshake synchronization, since it occurs only
when all participants engage in it simultaneously.

Consider the case when we want to put two processes P1 and P2 in parallel. If P1’s interface is
A and P2’s interface is B, then P1 in parallel with P2 must synchronize on A ∩ B, while allowing
P1 to execute any event not in B that it can independently perform, and similar for P2. We write
the resulting process P1

A
‖

B
P2 and name it P1 parallel on A, B P2. The operational semantics is

extended with:

P1
µ−→P ′1

P1
A
‖

B
P2

µ−→P ′1 A
‖

B
P2

[µ ∈ (A ∪ {τ})\B] P1
µ−→P ′1

P2
B
‖

A
P1

µ−→P2
B
‖

A
P ′1

[µ ∈ (A ∪ {τ})\B]

P1
a−→P ′1,P2

a−→P ′2
P1

A
‖

B
P2

a−→P ′1 A
‖

B
P ′2

[a ∈ A
√
∩B

√
] P1

a−→P ′1,P2
a−→P ′2

P2
B
‖

A
P1

a−→P ′2 B
‖

A
P ′1

[a ∈ A
√
∩B

√
]

Similarly, P1 interface A parallel P2 is written P1
‖
A
P2 and its operational semantics is simply

P1
a−→P ′1,P2

a−→P ′2
P1
‖
A
P2

a−→P ′1 ‖A
P ′2

[a ∈ A
√

] P1
µ−→P ′1

P1
‖
A
P2

µ−→P ′1 ‖A
P2

[µ 6∈ A
√

] P1
µ−→P ′1

P2
‖
A
P1

µ−→P2
‖
A
P ′1

[µ 6∈ A
√

].

If, given two processes P1 and P2, we want to model their independent execution in parallel,
then we use the CSP term P1 ||| P2 (P1 interleave P2) with the operational semantics

P1
µ−→P ′1

P1|||P2
µ−→P ′1|||P2

[µ 6=
√

] P1
µ−→P ′1

P2|||P1
µ−→P2|||P ′1

[µ 6=
√

] P1

√
−→P ′1,P2

√
−→P ′2

P1|||P2

√
−→P ′1|||P

′
2

.

With communicating processes comes the need to rename some events in a process interface
or to specify events we do not care about. Renaming in CSP is done by using functions of the
form f : Σ

√
−→ Σ

√
with f(a) =

√
⇔ a =

√
and writing f(P) for the process with the following

behavior:

P
a−→P ′

f(P)
f(a)
−→f(P ′)

P
τ−→P ′

f(P)
τ−→f(P ′)

.

For a process P we can take some set of events A from the interface and hide them (i.e. make
them internal); the resulting process is P\A and the operational semantics is extended with

4

P
a−→P ′

P\A τ−→P ′\A
[a ∈ A] P

µ−→P ′

P\A µ−→P ′\A
[µ 6∈ A].

We have now covered the complete untimed CSP language:

P ::= ... | P1
A
‖

B
P2 | P1 ||| P2 | P1

‖
A
P2 | f(P) | P\A.

1.3 Analyzing processes: semantics, specification, and verification

We have all the necessary sophistication to understand the famous problem of dining philosophers
(see page 79).5 There are 5 philosophers numbered from 0 to 4 sitting at a circular table, and in
between each of them there is a chopstick: chopstick i is in between philosophers i and (i−1)mod5.
To each philosopher and chopstick is associated a process expressed in CSP named PHILi, CHOPi
respectively; the following channels are considered: enter, eat, leave, pick,put. To understand the
behavior of each process some events have to be explained:

• enter.i: philosopher i enters the dining room

• eat.i: philosopher i eats

• leave.i: philosopher i leaves the dining room

• pick.i.i philosopher i picks the right-hand chopstick

• pick.i.((i+ 1)mod 5): philosopher i picks the left-hand chopstick

• put.i.i: philosopher i replaces the right-hand chopstick

• put.i.((i+ 1)mod 5): philosopher i replaces left-hand chopstick

Philosopher i repeats the following behavior: enters the room and then either picks the chop-
sticks (right first or left first), eats, replaces the chopsticks in the order he picked them, and finally
leaves. This means that the corresponding CSP process is:

PHILi = enter.i −→
((pick.i.i −→ pick.i.((i+ 1)mod 5) −→ eat.i −→
put.i.i −→ put.i.((i+ 1)mod 5) −→ leave.i −→ PHILi)

2

((pick.i.((i+ 1)mod 5) −→ pick.i.i −→ eat.i −→
−→ put.i.((i+ 1)mod 5) −→ put.i.i −→ leave.i −→ PHILi))

Since philosophers do not synchronize on any events, their combination may be written as

PHILS = PHIL1 ||| PHIL2 ||| PHIL3 ||| PHIL4.

Each chopstick is repeatedly picked and then replaced by some of the two neighboring philoso-
phers:

5an alternative modeling of this problem can be found in [Hoa85] in chapter 2.5

5

CHOPj = pick.j.j −→ put.j.j −→ CHOPj
2

pick.((j − 1)mod 5).j −→ put.((j − 1)mod 5).j −→ CHOPj

The combination of all chopsticks is

CHOPSTICKS = CHOP1 ||| CHOP2 ||| CHOP3 ||| CHOP4.

The system is thus the synchronized combination of philosophers and chopsticks:

SY S = PHILS || CHOPSTICKS.

How can we check that this system allows any philosopher who enters the room to eventually
eat? We can write first a CSP term that accounts for the condition that some philosopher i that
enters the room eventually eats:

SPEC = enter.i −→ eat.i −→ SPEC.

SPEC is called the specification term and now we have to check that each behavior of SY S is a
possible behavior of SPEC.

This is what happens when using CSP to solve problems: first we write a CSP term (SY S)
for the system we want to model and then we write a CSP term (SPEC) that describes the
specification, or the ideal system we have in mind. To check if SY S has the desired property, we
have to check if any possible behavior of SY S is allowed by the specification SPEC. The only
piece missing is what is understood by behavior of a process. This may seem a simple question, but
the range of possible answers is quite large.

The behavior of a process is usually characterized by the sequences of events that the process
performs. Such a sequence is called trace and for each particular CSP process P we can derive its
traces (traces(P)) based on the operational semantics given above. To check that if philosopher i
enters the room, he will eventually eat, we have to verify if

traces(SY S) ⊆ traces(SPEC).

If this is the case, then we say that SPEC is trace-refined by SY S.
If the specification is given as predicate S on traces, then an implementation P is correct exactly

when S(tr) is true for all traces tr of P ; we write this as P sat S(tr). Based on the operational
semantics of CSP processes, we can write a proof system for trace specifications. P sat S(tr) is
proved if it can be derived from the axioms and the rules of the proof system. As an example, a
simple rule states that a process P satisfies the conjunction of two predicates on traces when P
satisfies each of the predicates; this is formally written as

P sat S(tr), P sat T (tr)
P sat (S ∧ T)(tr)

.

Similar techniques are used to study the behavior of a given process when interacting with
specific environments. The desired environment is modeled as a CSP process T that is successful
when performing the success event ω. As an example, in may testing, a process P passes the
test T if, when placed in parallel with T , a success event is eventually performed: P may T ≡
((P ‖

Σ
T)\Σ <ω>=⇒).

6

Two process P1 and P2 are equivalent under may testing (P1≡mayP2) if and only if

∀T.(P1 may T ⇔ P2 may T).

Similarly, P1v may P2 if and only if ∀T.¬(P1 may T) ⇔ ¬(P2 may T). May testing is nicely
connected to trace refinement, since P1≡ may P2 if and only if traces(P2) ⊆ traces(P1).

More refined semantics for processes include stable failures and divergences, and for each possible
model there are known verification techniques (see section 2 for more details).

1.4 Real-time Systems. The timed language

The full power of the CSP language relies in the elegant extension to account for timed processes.
The first step to capture time is made by the evolution relation: we write P d

; Q, with d > 0 to
stand for P becoming Q after d units of time, with no internal or external events performed at any
point during this transition.

The operational semantics is given by:

(a−→Q)
d
;(a−→Q)

...
Q1

d
;Q′1,Q2

d
;Q′2

Q1
A
‖

B
Q2

d
;Q′1 A

‖
B
Q′2

Q1
d
;Q′1,Q2

d
;Q′2

Q1 |||Q2
d
;Q′1 |||Q

′
2

Q1
d
;Q′1,Q2

d
;Q′2

Q1
‖
A
Q2

d
;Q′1

‖
A
Q′2

Q
d
;Q′,∀a∈A.¬(Q

a−→)

Q\A d
;Q′\A

Q
d
;Q′

f(Q)
d
;f(Q′)

Q1
d
;Q′1,¬(Q1

√
−→)

Q1;Q2
d
;Q′1;Q2

Q1
d
;Q′1,Q2

d
;Q′2

Q14Q2
d
;Q′14Q

′
2

.

6

The event prefix process has to incorporate the passing of time; the operational semantics for
timed event prefix is

(a@u−→Q)
a−→Q[0/u] (a@u−→Q)

a
;(a@u−→Q[u+d/u]).

Q1 timeout d Q2 (Q1
d
� Q2) is the process that behaves as Q1 if Q1 performs some external

event before d units of time, or as Q2 otherwise:
Q1

a−→Q′1
Q1

d
�Q2

a−→Q′1

Q1
τ−→Q′1

Q1

d
�Q2

τ−→Q′1
d
�Q2

[d > 0],
Q1

0
�Q2

τ−→Q2

Q1
d′
;Q′1

Q1

d
�Q2

d′
�Q1

d−d′
; Q2

[0 < d′ ≤ d]
Q1

0
�Q2

τ−→Q2

.

As an example, the process that accounts for d units of time delay can be written as WAIT d ≡ STOP
d
� SKIP .

The timed CSP has a special construct for time interrupt: Q14dQ2 allows the execution of Q1

for d units of time, but if by d units of time Q1 did not finish, then Q2 is executed.

Q1
µ−→Q′1

Q14dQ2
µ−→Q′14dQ2

[µ 6=
√

] Q1

√
−→Q′1

Q14dQ2

√
−→Q′1

Q1
d′
;Q′1

Q14dQ2
d′
;Q′14d−d′Q2

[d′ ≤ d]
Q140Q2

τ−→Q2

.

The behavior of a process written in timed CSP can be expressed by timed observations, or
alternatively by timed failures; similar in spirit with the approach for untimed CSP, there are

6The maximal progress requirement imposes that hidden events become urgent; also, evolution cannot occur when
termination is possible.

7

methods for testing, writing timed specifications, doing verification, and characterizing timewise
refinement.

2 Contents

In Chapter 1 the reader is familiarized with the basic notions of process and event. The examples
appeal to our common understanding of the world as a system with interacting components that
evolve in time. Starting with the simplest process of all (STOP) and the a then P process, more
complexity is added by explaining the concepts of internal/external choice and recursion. The
formal notation builds the bridge from pictures and transition diagrams to operational semantics,
with no apparent effort.

Chapter 2 focuses on processes executed concurrently and on the concept of synchronization.
The notions of (indexed) alphabetized parallel combination, interleaving and deadlock are thor-
oughly explained with the aid of real-life (2-pump garage, multiple-line phone service), as well as
more technical examples (chain of buffers passing on an item of data, network for array sorting,
routing messages in a network).

The introductory part of book is completed in chapter 3 with the discussions on abstraction
mechanisms (hiding, event renaming and backward renaming), and control flow descriptions (se-
quential composition and interrupts). Each of these notions is justified by simple examples as print
queues or chaining of multiple instances of the same process; the link with the first two chapters
is strengthened by reinterpretations and extensions of previous examples. At the end of the chap-
ter the reader has a good grasp on the core language of CSP and process execution modeled by
operational semantics.

The second part of the book is concerned with semantic models for concurrent processes and
techniques for specification and verification. The simplest semantics for concurrent processes is
given by traces, as sequences of events which represent executions. Chapter 4 gives the detailed
definitions of traces for each type of CSP process, with a particular emphasis on recursion and
the underlying fixed point theory. It also introduces a complementary approach to understanding
processes in terms of their responses to other CSP processes (tests): two processes are equivalent
under a certain class of tests if their responses to identical test processes are the same. It is
proved that equivalence under may testing amounts to equality of trace sets; trace-refinement
interpretations and the desired relation between implementation traces and specification traces are
considered.

The importance of the trace model becomes more clear in chapter 5 with the description of
the proof system for trace specifications: requirements are given in terms of predicates on traces
and the compositional nature of trace semantics for CSP is exploited to generate the set of proof
rules with conclusion of the type P sat S(tr) (CSP process P satisfies trace specification S). The
section containing a detailed proof of the distributed sum problem makes clear the use of trace
semantics and its corresponding proof system for verification of safety properties, e.g. properties of
the form ”something bad will not happen”.

However, trace information is not always sufficient for identifying a process’ responses when
placed in different environments; as an example, a −→ STOP2b −→ STOP and a −→ STOP u
b −→ STOP have the same traces, but an environment that communicates on event a succeeds when
running concurrently with the external choice process, and still has an unpredictable behavior while
interacting with the internal choice process. This justifies the need for more detailed observations
of CSP processes. The stable failure semantics is concerned with the possible refusals of a process;
the corresponding property(or process)-oriented specifications and proof systems for verification

8

allow the analysis of nondeterminism and deadlock. The stable failures associated with the CSP
processes make the subject of chapter 6, while the specifications and proof system for verification
are presented in chapter 7. Additionally, if we test the system’s liveness properties (properties
of the type ”something good will happen”), then we have to take into account possible divergent
behaviors of processes; the failure-divergences-infinite traces (FDI) model gives CSP processes a
more refined semantics, and its corresponding proof system for verification successfully addresses
the liveness question. The model is presented in chapter 8. An excellent link with the previous
semantics is established by focusing on the distributed sum example and gradually increasing the
complexity of the model: the trace model for proving correctness (chapter 5), the stable failure
semantics for showing liveness on inputs and outputs and deadlock-freedom for the network (chapter
7), and finally the FDI approach for proving divergence-freedom (chapter 8).

In chapter 9 time is added to the framework. The timed CSP language and the operational
semantics are thoroughly explained with the aid of numerous examples. Evolution transitions
are given for the core CSP language, while the previous untimed transitions are preserved; new
constructs are added to account for timeouts, minimal and maximal delays, timed interrupts, and
timed event prefixes.

When using timed CSP it is of vital importance to fully understand the underlying assumptions
and the corresponding constraints on processes evolutions (chapter 10). It is assumed that

• there is only one possible result that a process can reach simply by allowing time to pass
(time determinism),

• the state a process reaches after a d+ d′ delay is independent whether or not the state after
d units of time has been recorded (time additivity),

• whenever a process may let d units of time to pass, there is an intermediate process for each
d′ ≤ d (time interpolation), and

• any process that can evolve for all durations < d can also evolve for d (time closure).

These evolution assumptions have direct implications on the possible executions of timed CSP
processes; they still allow unrealistic executions, such as timestops or processes that end with an
infinite sequence of events. This explains the focus on well-timed processes, e.g. processes that
have a determined delay between successive calls.

In chapters 11-13 the focus is on the analysis of timed CSP: semantics (chapter 11), speci-
fication and verification (chapter 12), and refinement (chapter 13). Special emphasis is placed
on the timed failures semantics for CSP; for P CSP process, the timed failures of P are denoted
by T F [P]. As we expect, a timed specification is a predicate S(s,ℵ) on timed failures; a process
P meets a specification S(s,ℵ) (P sat S(s,ℵ)) if S holds of every timed failure of P :

∀(s,ℵ) ∈ T F [P]. S(s,ℵ).

Since there are many similar specification patterns for safety, liveness, and common assumptions on
the environment, several macros are constructed and used for exemplifying verification. To make
the point clear, a mutual exclusion algorithm that uses delays is discussed at the end of chapter 12.

Chapter 13 plays the important role of making the picture round by explaining the more
subtle connections between timed and untimed semantic models for CSP. The main idea is that
timed descriptions contain more information than untimed ones, and thus can be considered time-
wise refinements7. We can relate untimed and timed descriptions of processes, translate timed

7these are not refinements in the classical sense

9

specifications into untimed ones, prove refinements in the more simple untimed CSP and map back
the results in the timed framework. The alternative method to add time to the untimed CSP by
introducing an event tock to allow the passing of one unit of time is investigated in appendix A.

Appendix B gives an overview of the FDR (Failures Divergences Refinement) model-checker,
software tool for automatic analysis of untimed CSP. FDR checks if one CSP process refines another,
and analyzes whether a process may deadlock, diverge, or is deterministic.

Opinion

I find the book an excellent material for the reader interested in formal methods and concurrent
systems. Rarely you can find a self-consistent book that builds a complex theory and still abounds
in application-oriented examples; every concept is justified by examples ranging from simple models
of real-life processes to detailed algorithms from concurrency theory. I find the examples even more
useful since they gradually build in complexity, mapping the added functionality of the language.

If you are looking for a detailed exposition on the CSP language, then this is a book you must
read. The book exhaustively covers the formal and less formal aspects of modeling concurrent and
real-time systems using CSP; the presentation is up to date, benefiting from years of experience
since the seminal work of Hoare ([Hoa85]).

However, it is sometimes difficult to focus on the essential points. I see the book as ideal for
a reader with previous knowledge on the subject; the reader interested in the big picture would
probably benefit more from reading [Hoa85], with the warning that it does not cover timed CSP.

References

[Fok00] W. J. Fokkink. Introduction to Process Algebra. Springer, 2000.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil99] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University
Press, 1999.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.

10

Review8 of
Introduction to Languages, Machines and Logic:

Computable Languages, Abstract Machines and Formal Logic.
Author of book: Alan P. Parkes, Lancastar University

Springer-Verlag 2002, xi + 351 pages, $67.75, Paperback

Reviewed by Robert McNaughton (mcnaught@cs.rpi.edu)
Rensselaer Polytechnic Institute

Introduction and summary: Most computer science undergraduate programs have a first
course in theory, for which this book could serve as a text. Whether or not it is chosen depends
on many things; by now there is an abundance of such texts, offering a wide range from which to
choose. Reviews, such as this one, should be an aid to prospective instructors.

This book is divided into three main parts:

Part I: Languages and Machines; 6 chapters; 152 pages. Regular grammars, finite-state
recognizers, context-free grammars, push-down recognisers, ambiguity, determinism and closure
properties.

Part II: Machines and computation; 5 chapters; 113 pages. Finite-state transducers, Turing
machines (including the universal TM, nondeterministic TM’s and multitape TM’s), Turing’s
thesis (usually called “Church’s thesis” in the U.S.A.), the halting problem, and, more generally,
the notions of computability and solvability.

Part III: Computation and logic; 3 chapters; 52 pages. Boolean logic, propositional logic,
truth tables, quantifiers and predicate logic (including semantics) and computation with logical
formulas. I should think that at many places where this book will be used, Part III will be
omitted with logic perhaps covered in another course.

Commentary: Things are very clearly worked out in this book. An extravagant number of
examples accompany the theoretical development, all presented in great detail, often accompanied
by nice illustrative diagrams. For example, the subset algorithm (converting a nondeterministic
finite-state recogniser to a deterministic one) is illustrated by its application to a certain four-state
device; there are seven figures, each clearly and pleasingly drawn (pp. 63–66 in Chapter 4).

The promotional note on the book’s front cover says, “Easy to read, nonmathematical
approach,” which means, I suppose, that every abstract formulation is accompanied by sufficient
concrete exemplification.

Each chapter has from five to ten exercises, almost all of which are “cook-book exercises” in
which the student must simply apply a well described solution recipe a few pages back. I have
two criticisms here. First, I think the book should have about twice as many exercises so that, for
each solution recipe, the instructor has more than one exercise to direct the student towards.
Second, students in a course in theoretical computer science — even in the most elementary of
such courses — should be given some assignments in which they most scratch their heads a bit
before they can begin to work out a solution. Such experience is an important part of what a
computer-science student needs to get out of a course in theory.

8 c©2004 Robert McNaughton

11

I find this text to be acceptable for a theory course in an undergraduate computer-science
curriculum. But the instructor who plans such a course must spend some time preparing suitable
additional exercises.

Review9 of
Algorithm Design: Foundations, Analysis and Internet Examples

by Michael T. Goodrich and Roberto Tamassia
Publisher: John Wiley & Sons, Inc.

720 pages, $74.95 new, $40.00 used, on Amazon
Paperback, 2001

Reviewer: Pavol Navrat, Slovak University of Technology in Bratislava, Slovakia

1 Overview

Design and analysis of computer algorithms and data structures has been a standard theme in
computer science and computer engineering curricula since the very beginnings. It is also one of
the most important ones, and one that has been most frequently elaborated. The book is
intended primarily as a textbook for an Algorithms course.

2 Summary of Contents

The book is divided into four parts, each consisting of several chapters. The parts are titled
Fundamental Tools, Graph Algorithms, Internet Algorithmics and Additional Topics. The authors
do not provide a motivation or rationale for such a division, and vice versa, do not explain or
justify inclusion of the chapters into a particular part, or indeed into the book itself. For most of
the chapters this may seem superfluous or self- evident, also bearing in mind that themes for a
standard course on algorithms (and data structures) have been discussed many times before.
However, some of the choices, as we shall see, the authors made are worth discussing. The first
part consists of five chapters. It starts with algorithm analysis, introducing asymptotic notation
and methods of both asymptotic and experimental analysis of algorithms. Second chapter deals
with basic data structures. Let us take a little closer look at how the topic is presented, since this
may give us an idea about the pedagogic approach taken by the authors of this textbook. It
starts with stacks and queues, introducing them informally as abstract data types. The notion of
abstract data type itself is not defined, nor is explained a difference (if there is any intended)
between the notions of an abstract data type and a data structure. The notion of abstract data
type is used as a synonym for a collection of methods specified informally, for example:

push(o): Insert object o at the top of the stack.

It is not clear why an axiomatic specification was not considered. Immediately after such a
specification, a simple array- based implementation follows. What remains unexplained, however,
is the very concept of implementation of an abstract data type, the need of having some

9 c©2004 Pavol Navrat

12

implementing data type, and the necessity of choosing it. Of course, having once chosen the array
as an implementing data type, the authors cannot skip over the assumption of a fixed upper
bound on the ultimate size of the stack. They do elaborate that this implementation may be
either wasteful or ”crashing”, but they choose not to go deep enough in the discussion to explain
that it actually is not a correct implementation of the stack at all, since the operation push is not
specified with an upper bound limiting it but is implemented so. For the time being, they make a
forward reference to other ways of implementing stacks. Queues are treated similarly, since there
are no other candidate implementing data types available at this point. Quite naturally, vectors,
lists, and sequences are presented now, followed by trees, priority queues, heaps, dictionaries and
hash tables. Third chapter is devoted to search trees and skip lists. Again, just to give an idea, it
starts with ordered dictionaries and binary search trees. Binary search algorithm over an ordered
vector is presented as well as tree search algorithm. The authors use a specific algorithmic
language for describing the algorithms in the book. It is a pseudo-code, which is more compact
than a corresponding fragment in a typical programming language would be. It is also easier to
read and understand. Another regular feature of their approach is that the algorithm’s
presentation is followed by their analysis. The analysis is fairly detailed and formal, but explained
in a very understandable way. Fourth chapter is devoted to sorting, sets, and selection. The
reader finds here merge-sort, quick-sort, bucket-sort and radix sort. Fifth chapter presents some
fundamental techniques: the greedy method, divide and conquer, and dynamic programming.
That completes the first part. Second part is devoted to graph algorithms. In chapter 6, the
graph abstract data type is introduced, and followed by data structures for graphs, algorithms for
graph traversal, and directed graphs. Chapter 7 is devoted to weighted graphs, including the
usual algorithms for single-source shortest paths, all-pairs shortest paths, and minimum spanning
trees. The last chapter in this part is titled Network Flow and Matching. It presents an important
problem involving weighted graphs called the maximum flow problem. Its inclusion is motivated
by an example of a computer network. Third part is called Internet algorithmics. What is it? Let
us look at the contents. It includes strings and pattern matching algorithms in chapter 9. More
specifically, the Boyer-Moore and the Knuth-Morris-Pratt algorithms are studied, both published
first in 1977. Then, tries are introduced. The Huffman coding algorithm used in text compression
is presented. Chapter 10 is devoted to number theory and cryptography, or more accurately, to
some schemes and algorithms for cryptographic computations, secure electronic transaction
protocol and the fast Fourier transform. Chapter 11 deals with network algorithms: fundamental
distributed algorithms, algorithms for broadcast, unicast and multicast routing. The book
contains one more part devoted to additional topics. The authors have chosen three such ones:
computational geometry, NP-completeness, and algorithmic frameworks. There are three different
frameworks introduced: external memory algorithms, parallel algorithms, and online algorithms.

3 Opinion

The book is intended as a textbook for a standard course on algorithms (and data structures).
There have been published many textbooks for this course. Anyone entering this arena is well
aware of the difficulties arising from this fact. It is indeed very difficult to come with some novel
approach. But only a strong argument along these lines can justify the project and keep it in a

13

safe distance from becoming yet-another-data-structures- textbook. The authors have found a
very good balance between formal treatment and readability. The choice of a pseudo-code as a
presentation language for algorithms can be considered a positive (although definitely not a novel)
feature. A consequent coupling of algorithm presentation with its analysis is also a very good
thing. However, a better thing would be if an algorithm was not only analysed afterwards, but if
complexity considerations were used beforehand to motivate the design of it (remember, the
book’s title is Algorithm design). In seeking the right amount of formality, the authors decided to
work with abstract data types in an informal way. To some extent, this is a matter of taste. To
some extent, this is a matter of consideration what can be gained by using e.g., the apparatus of
axioms. For example, if analysis of algorithms was concerned also with their correctness, formal
specifications would probably play a bigger role. Among other positive features, extensive
exercises in each chapter should be mentioned. They are of three kinds: reinforcement, creativity,
and projects. Moreover, there are included several Java implementation examples in the book.
The scope of topics included is another positive feature (again, it is definitely a novel one). Text
processing algorithms, network algorithms, some number theory and cryptography algorithms
have been around in this kind of books for some time. To call them all Internet Algorithmics is an
attempt, which may need some additional, perhaps deeper justification. On the other hand, some
standard topics are treated in a less comprehensive way than one might expect: for example, the
variety of sorting algorithms is quite narrow. In conclusion, the book provides a very well
elaborated source to study algorithm design from.

Review10 of
Theory of Semi-Feasible Algorithms

Authors of Book: Lane Hemaspaandra and Leen Torenvliet
Publisher: Springer, 148 pages, $54.95, Hardcover

Author of Review: Lance Fortnow

1 Overview

A set A is feasible if we have an efficient algorithm testing membership in A. What if we have
something close, say an algorithm that given two strings will tell us which is more “likely” to be
in A.

P-selective sets capture this notion first defined by Alan Selman based on the notion of
semi-recursive sets from computability theory. Formally A is P-selective if there is some
polynomial-time computable function f such that for all x and y, f(x, y) ∈ {x, y} and if x or y is
in A then f(x, y) is in A.

Not all P-selective sets are feasible or even computable. Let u be a real number between 0
and 1 and let Bu be the set of strings x such that 0.x < u. The set Bu is P-selective by
f(x, y) = x if 0.x < 0.y and y otherwise. For different reals Bu and Bv we have Bu 6= Bv. Since

10 c©2004 Lance Fortnow

14

there are an uncountable number of reals and only a countable number of computable languages,
there are non-computable P-selective sets.

P-selective sets are well-studied in structural complexity theory. Every P-selective set is in
P/poly, i.e., computable in non-uniform polynomial time. In a weak converse every P/poly set is
Turing-reducible to a P-selective set, though there are P/poly sets that are not themselves
P-selective. If SAT, or any other NP-complete problem, is P-selective then P = NP.

This book focuses mainly on the complexity of P-selective sets and variations where the
selector can be nondeterministic.

2 Summary of Contents

The first chapter introduces P-selective sets and various versions of NP-selectivity. They discuss
the important results for these sets giving some proofs of the basic results and leaving some other
proofs for later in the book.

The second chapter gives the connections between semi-feasible sets and advice. Advice is
extra information provided to the machine that depends only on the input length. For example a
language A is in P/poly if there exists strings a0, a1, . . . with |an| bounded by a polynomial in n
and a language B in P such that x is in A if and only if (x, a|x|) is in B. This chapter presents
results how, in many cases, the weakness of allowing selectivity can be replaced by advice. The
book gives many refinements, limiting the kinds of reductions and amount of advice used. The
chapter ends with the following pretty theorem: If SAT is NPSV-selective then PH = Σ2.
Informally that means that bad things happen if there was an efficient algorithm to take a
formula φ on n variables to a formula ψ on m ≥ n variables such that if φ is satisfiable then every
satisfying assignment for ψ sets its first n variables the same and those variables give an
assignment for φ.

The third chapter describes lowness, a concept stolen from computability theory that
describes that set of oracles a class could have without increasing its power. For example
Low(NP) = NP∩co-NP since NPNP∩co−NP = NP. They generalize the notion of lowness to
extended lowness to capture nonuniform sets. They show that several of the semi-feasible sets sit
inside some extended low classes.

The fourth chapter asks whether semi-feasible sets can be hard for various complexity
classes. The answer is almost always no unless some bad thing happens. What bad thing happens
depends on the semi-feasible notion, the class it is hard for (usually NP) and the hardness
reduction.

The fifth chapter is entitled simply “Closures.” For example P-selective sets are closed under
complementation but not intersection. Only for some weak reductions are P-selective sets closed
downwards. This chapter also discusses the relationship between self-reducible sets and
semi-feasible sets, and the structure of the classes of languages either reducible to or equivalent to
P-selective sets under various notions of reductions.

15

The final chapter talks briefly about related notions such as the membership comparable
sets, multiselectivity and others.

3 Opinion

This book does a decent job in covering a limited topic: P-selective sets and nondeterministic
versions of those. Nearly all the known results of these classes are covered in depth. I would have
liked to see more depth on broader notions like membership-comparable than say a result that
there is a set 2-tt reducible to a P-selective set that is not Turing-equivalent to a P-selective set,
but that’s just my taste.

A considerable background in computational complexity is needed to read this book. A
single chapter added to this short book could have made the book stand alone to give an
alternate introduction to complexity.

The book is heavy on notation though the authors make up for it somewhat by an appendix
defining the terms used. I found the diagrams a bit confusing and in at least one case inaccurate.

The level of detail of the proofs is uneven. Some proofs are given in far too low level such as
the three page proof of Karp-Lipton. Other times nontrivial results are left to the reader.

This book does give some nice introduction to some topics in complexity like the low and
extended low hierarchies, nonuniform computation and of course the P-selective sets. To teach a
course from this text would require a highly-motivated instructor who can give the intuitive ideas
leaving the details to the book. The book would also serve as a reasonable reference for those
doing research in this area.

16

