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In this column we review the following books.

1. Joint review of How to Solve It: A New Aspect of Mathematical Method by Polya and
the new Street-Fighting Mathematics by Mahajan. Review by Mohsen Vakilian. Both
books are about how to solve problems. Polya’s is a classic and stresses rigor, Mahajan’s
book is more concerned with getting the right answer. Not that there’s anything wrong with
that.

2. Grammatical inference: learning automata and grammars by Colin de la Higuera.
Review by Matthias Gallé. How do you build a grammar or an automaton representing a
language of which you only have partial information? This leads to many many question.
This book summarizes much of what is known about this question.

3. Logical Foundation of Proof Complexity by Stephen Cook and Phuong Nguyen. Review
by Arthur MILCHIOR. If A is a decision problem in P, how can you express A as a formula?
How complicated would the formula have to be? How complex would a proof of x ∈ A have
to be? These are examples of questions from Proof Complexity, the topic of this book.

4. Exact Exponential Algorithms by Fedor V. Fomin and Dieter Kratsch. Review by
Michael Lampis. Lets say a problem A is NP-complete and the best algorithm for it runs in
2n time. Oh well. WAIT A MINUTE- maybe we can do better. We can’t do MUCH better
but, hey, perhaps we can do the problem in (1.8)n time! This book is about exponential
algorithms that get the correct answer and looks at how to make them practical by lowering
the exponent.

5. Bioinspired Computation in Combinatorial Optimization by Frank Neumann and
Carsten Witt. Review by Sven Herrmann. There are some algorithms for problems in com-
binatorial optimization that use ideas from biology. They are mostly stochastic search algo-
rithms inspired by evolution, though there are other ways as well. The material on this is
now gathered together in one book!

6. Triangulations: Structure for Algorithms and Applications by Jesús A. De Lorea,
Jörg Rambau, and Francisco Santos. Review by Michael Murphy. The review says that This
book is about triangulations of a fixed point set in Euclidean space of arbitrary dimension.
The authors focus particularly on flip-graph connectivity and regular triangulations, but they
also cover applications to algorithmic and complexity questions, as well as techniques relating
triangulations to convex polytope theory. The many illustrations and nice exposition make
the book a joy to read for people interested in Computational Geometry, Linear Programming,
and Convex Polytopes.
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7. Flows in Networks by L. R. Ford Jr. and D. R. Fulkerson. Review by Yixin Cao. This
is the classic book on Network Flows. The Network flow problem is an important problem
which has been at the heart of algorithms for many years. And here is where it all started!

8. Quantum Computing - A Gentle Introduction by Eleanor Rieffel and Wolfgang Polak.
Review by Kyriakos N. Sgarbas. Many people thing Quantum Computing is a hard and
intimidating subject. This book is an attempt to change their minds and enlighten them.

9. The Art of Computer Programming: Volume 4A by Donald E. Knuth. Review by
John D. Rogers. Say you want to list out all of the elements of {0, 1}n quickly. How would
you do it? How would you measure quickness? Say you wanted to list them out so that every
strings differs from the prior one in only one bit (a Gray Code). Then how would you do it?
This book is about how to quickly list out elements of a set. Given the author it has lots of
historical context and mathematics of interest. Here is hoping we will one day see Volume
4B.

10. Boolean Function Complexity: Advances and Frontiers by Stasys Jukna. Review by
William Gasarch. Given a Boolean function (e.g., Parity) and a model of computation (e.g.,
constant depth circuits) can you compute that function in that model? If so, what size does it
take. For example, as is well known, constant depth circuits for parity require an exponential
number of gates. This book goes through an enormous number of models and for each one
gives upper and lower bounds on several Boolean functions. The book includes both well
known and very little known (but interesting) results.
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BOOKS I NEED REVIEWED FOR SIGACT NEWS COLUMN
Logic and Computability

1. Computability and Complexity Theory (2nd Edition) by Homer and Selman.

2. Proof Analysis: A Contribution to Hilbert’s Last Problem by Negri and Von Plato.

3. Programming with Higher Order Logic by Miller and Nadathur.

4. Graph Structure and Monadic Second-Order Logic: A language -theoretic approach by Cour-
celle and Engelfriet.

5. Software Abstractions: Logic, Language, and Analysis by Daniel Jackson.

Algorithms, Cryptography, and Coding

1. Integrated Methods for Optimization (second edition) by John Hooke

2. Algebraic Shift Register Sequences by Goresky and Klapper.

3. Information Theory and Best Practices in the IT industry by Sanjay Mohapatra.

Misc

1. A Wealth of Numbers: An anthology of 500 years of popular math writings Edited by Benjamin
Wardhaugh.
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Joint Review 2 of
How to Solve It: A New Aspect of Mathematical Method

George Polya
Princeton University Press, 2004

253 pages, Softcover
and

Street-Fighting Mathematics
Sanjoy Mahajan

The MIT Press, 2010
134 pages, Softcover

Review by
Mohsen Vakilian

1 Introduction

Both books teach you some techniques to solve mathematical problems. The book by Polya is a
classic and more general book whose techniques can be applied when solving any mathematical
problem. But, the book by Mahajan presents some specific tricks to get you to the answer quickly.

2 Review of How to Solve It: A New Aspect of Mathematical
Method

This book was printed in 1945 for the first time. It is a seminal book on problem solving techniques
by a famous mathematician, George Polya.

Polya tries to teach teachers how to teach problem solving to students. He breaks down the
steps to solve a problem into four parts: understanding the problem, devising a plan, carrying out
the plan and looking back. Then, he breaks down each step even further by listing questions that
the teacher could ask the student to guide him/her in the process of solving the problem. As
Polya describes it, these questions have two common characteristics: common sense and generality.
Polya’s list of questions help the teacher and student build a constructive dialog.

In part one, Polya briefly describes the four steps of solving a problem and gives a simple
example to present his method. In part two, he gives some suggestions on how to start solving a
problem and how to hunt for helpful ideas. Part three is the main part of the book that shows
how Polya’s list of questions help students solve problem. This part starts by discussing several
heuristics such as analogy and auxiliary elements. It then continues by giving suggestions on how
to check the result and derive it differently. Polya distinguishes devising a plan from carrying
it out by saying that we may use provisional and merely plausible arguments when devising the
plan. But, the result of carrying out the plan should be supported by rigorous arguments. Polya
categorizes problems as “problems to find” and “problems to prove”. Then, he continues by giving
some heuristics specific to each kind of problems. For example, for “problems to find” he suggests

2 c©2013, Mohsen Vakilian
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the problem solver to think about questions such as: “Could you derive something useful from the
data?” and “Could you restate the problem?”.

The book is full of techniques and heuristics such as generalization, induction, signs of progress,
specialization, subconscious work, symmetry, test by dimension, variation of the problem and work-
ing backwards. But, this book is not just a catalog of mathematical techniques for problem solving.
Rather, it also considers the psychology of problem solving. There are lots of examples of dialogs
between the instructor and student, where the instructor asks a sequence of questions from the
student that lead the student to come up with the solution by himself/herself. Polya explicitly
says that problem solving is not a purely “intellectual affair”; determination and emotions play an
important role.

3 Review of Street-Fighting Mathematics

This book presents some informal techniques to solve mathematical problems. These techniques
usually do not lead to rigorous proofs. But, they provide alternative ways to check and generate
answers that are faster and are more intuitive than rigorous arguments. The following is a brief
summary of the techniques presented in each chapter. These techniques might seem familiar to
you. But, you will be amazed to see how far these techniques can go in solving nontrivial examples
of the book.

The first chapter presents dimensional analysis. Dimensional analysis is based on the fact that
only entities with the same dimensions are comparable. This chapter uses dimensional analysis to
solve some nontrivial problems such as finding

∫
dx

x2+a2 .
The second chapter describes how one could guess the form of the solution by computing it in

cases that are easy.
The third chapter discusses techniques to approximate various quantities. This chapter starts

by calculating the number of babies in the US without using the detailed data published by the
US Census Bureau. The rest of the chapter gives example of how to estimate integrals, factorials
and derivatives and wraps up by doing a more practical example, i.e. predicting the period of a
pendulum.

Chapter four presents pictorial proofs as a companion to symbolic proofs. As an example, it
shows why the sum of the first n odd numbers is n2 by putting together the corresponding L-shaped
puzzle pieces into a square.

Chapter five is about successive approximation, i.e. computing expressions by iteratively taking
out the big parts and then considering the correction parts. For example, (3 + 0.15)(7 + 0.21) has
a big part of 3× 7 and a correction part of roughly 5% (from 0.15 relative to 3) plus 3% (from 0.21
relative to 7), making a total correction of 8% of 21, for a total of 22.68 (the exact product is just
over 22.71.)

The sixth chapter introduces analogy, the technique that the author describes as the final street-
fighting tool of reasoning. Analogy is about finding a similar problem that is easier to solve. The
author motivates this technique by a spatial trigonometry example in three dimensions, and solves
the problem using an analogous problem in two dimensions.
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4 Comparison

If you teach a mathematical subject you must read How to Solve It. Also, if you are a student who
wants to improve his/her problem solving skills you will find How to Solve It incredibly useful. It
gives you a list of questions that you can ask yourself while solving a problem on your own.

On the other hand, if you enjoy finding answers quickly without going through the rigorous
proofs, you will find Street-Fighting Mathematics an interesting book. This book will help you
strengthen your intuitive insight in solving problems.

The goal of How to Solve It is to articulate a general process for solving problems. But, Street-
Fighting Mathematics focuses on six tricks that you could use to solve certain problems quickly.
Some of the techniques in Street-Fighting Mathematics are also covered in How to Solve It. But,
Street-Fighting tends to give more examples and show that its simple techniques could be applied
to nontrivial problems. In general, techniques in Street-Fighting Mathematics could be used when
devising a plan to solve a problem based on How to Solve It.
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Review of3

Grammatical inference: learning automata and grammars
by Colin de la Higuera

Cambridge University Press, 2010. ISBN: 9780521763165
485 pages. Hardcover, $85

Review by
Matthias Gallé, matthias.galle@xrce.xerox.com
6 Chemin Maupertuis, 38240 Meylan, France

1 Introduction

Grammatical Inference studies how to learn automata and grammars from a set of observations. It
differentiates from other similar tasks from Machine Learning by the underlying assumption that
the target that generated the observations is some kind of formal grammar, and by its emphasis to
identify exactly the original gold grammar, instead of just finding one that explains well the obser-
vations. It is a research field by its own, with a flagship conference (the International Colloquium
on Grammatical Inference) held since 1994 but until now no book covering the field was available.
Colin de la Higuera fills this gap with this book which will most probably become the book of the
field.

2 Summary

The book is divided into three parts. Besides this, there are two introductory chapters which
motivate the field by some toy examples and give an idea of the challenges faced; and a concluding
last chapter highlighting some points which were mentioned during the book.

2.1 Part I

The first part includes four chapters that give separately the basic bricks upon which the rest
of the book is based. It overviews stringology/text algorithms (Ch. 3), formal grammars (Ch.
4), probabilistic distributions over strings defined by formal grammars (Ch. 5) and associated
combinatoric problems (Ch. 5). Chapter 3 covers string order and distances and kernels. Chapter
4 gives the classical definitions of (non-)deterministic finite-state machine, context-free grammars
and some other classes. Chapter 5 treats probabilistic version of these and define several notions of
distances between the resulting distributions. Chapter 6 gives a short overview of VC-dimensions
and defines precisely the typical search space for deterministic finite state automata.

2.2 Part II

This second part deals with different paradigms of learnability. This is, what it means for an
algorithm to learn a grammar and which are the available mechanism it has to do so. It also
covers four chapters. The long Chapter 7 deals with the definition of a classical paradigm called

3 c©2013, Matthias Gallé
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Identification in the Limit. A good part of the chapter deals with the different ways to count in
order to define polynomial time learning (count number of mind changes, number of examples, etc).
The different settings covered are learning from text (positive examples only), from an informant
(positive and negative examples), from queries (active learning) and learning with noisy data.
Chapter 8 presents a series of results concerning learning in the limit from text, and Chapter 9
does the same for learning with queries. Finally, Chapter 10 presents PAC-learning (and variants)
in grammatical inference land.

2.3 Part III

This last part reviews different techniques and presents algorithms to learn some classes of languages
under the settings defined previously. Chapter 11 analyzes existing algorithms for learning in the
limit different languages classes from text only. Chapter 12 reviews two classical algorithm for
learning deterministic finite state automata from an informant. Chapter 13 concerns learning with
queries by analyzing the LSTAR algorithm. Chapter 14 diverges a bit from the schema until
now by presenting different heuristics used in the field, that, while not ensuring necessarily any
theoretical condition of learnability, work good in practice. Chapter 15 concerns the difficult task
of learning context-free languages and grammars, with different approaches. Chapter 16 tackles the
problem of learning probabilistic finite-state automaton (both the structure and the probabilities)
while Chapter 17 presents well known algorithms to learn the probabilities when the structure is
known (the Baum-Welch and Inside-Outside algorithm). Finally, Chapter 18 covers transducer and
learnability issues associated with them.

3 Opinion

In my opinion this book will be fundamental to the field for two reasons: Firstly: it sets a unified
notation and the author has been very careful in defining his concepts in such a way that they can
be reused by several of the algorithms. In a small field like Grammatical Inference this will without
doubt ease the integration of new contributions. Secondly, the book serves as a reference book
for anyone interested in the field. This applies particularly for Part III, where the most classical
algorithms are presented in a unified way, together with their main properties. It is understandable
that many variations of these algorithms, or other secondary ones, did not find their place in the
book (although they may be found in the references). Similarly, applications of these algorithms
are almost not mentioned. On one hand they are out-of-scope of the book, but traditionally the
grammatical inference community is mainly interested in the principles behind the definitions and
algorithms and successful applications find their place in the corresponding community.

Probably the person that will take the most advantage of the book is the graduate student
working in Grammatical Inference; or the researcher that found an interesting result and would
like to put it into perspective, or thinks he has a problem which can be solved by some of these
techniques. It should be noted that the author divided clearly the definitions of the tools (Part
I), definitions of learnability and general results (Part II) and presentation of algorithms (Part
III), so that even the occasional reader will probably have to jump forward and back through the
book. Should you read this book? If you are interested in the field or you think you could do a
contribution, absolutely. If not, you may want to have a look at Part II, some chapters of Part III
and the conclusions to add to your general knowledge.
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Some of the most valuable parts of the book are the last two sections of each chapter, namely
“Alternative lines of research” and “Open problems and possible new lines of research”. Anyone
interested in the field will find here plenty of inspiration to tackle open problems. Each chapter
concludes with a list of exercise of very different degree of difficulty. They are probably not enough
for a course by themselves, but they help to grasp the concepts.
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Review of4

Logical Foundation of Proof Complexity
by Stephen Cook and Phuong Nguyen

ASL PUBLISHER, 2010
479 pages, HARDCOVER, $70.00

Review by
Arthur MILCHIOR (arthur.milchior@ens.fr)

1 Introduction

First we give an informal example. Let A ∈ P (polynomial time). Is there a formula φ (in some
language that we have not specified yet) with one free variable such that

A = {x | φ(x)}.

If x ∈ A we should be able to produce a proof of φ(x). If x /∈ A we should be able to produce
a proof of ¬φ(x). How does the size of the proof vary with |x|?

We now describe a theorem about P that is proven in this book. The logic V 1 (informally) has
the axioms of Peano Arithmetic and a few axioms about strings of bits, plus the comprehension
scheme over existential formulae.
Theorem: For any set A ∈ P there is a first order formula φ(x) such that the following hold.

1. φ begins with an existential quantification of a string of bits.

2. After that first quantifier there are bounded quantifiers over the integers where the bound is
a polynomial in the length of the input.

3. For all x ∈ A the statement φ(x) can be proven in V 1 in a polynomial (in |x|) number of
steps.

4. For all x /∈ A the statement ¬φ(x) can be proven in V 1 in a polynomial (in |x|) number of
steps.

In general, there are two important things to consider when studying expressivity— (1) what
is the set of formulae one wants to prove, and (2) what is the set of axioms you are allowed to use.
For the sake of simplicity in this review I will write “a logic” instead of “a choice of set of formulae
and axioms”.

The proof systems can use either an induction scheme, a minimization scheme, or a comprehen-
sion scheme, or any combination. An induction scheme is the usual one in mathematics: if P (0)
and P (i) ⇒ P (i + 1) then (∀i)[P (i)]. A minimization scheme says that if there exist an integer i
such that φ(i) is true, then there is minimal such i. A comprehension scheme means that, for each
formula φ(x) and integer y, there is a string B of y bits such that the ith bit of B is 1 if and only
if φ(i) is true. By restricting the formulae that can be used in a scheme, for example, by bounding
the number of alternation of quantifiers one can obtain language which is more or less expressive.

4 c©2013, Arthur MILCHIOR
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Proofs can also be propositional. In this case there are no numbers and string of bits, but only
boolean variables. Some proof systems can accept an ad hoc axiom to state that some problem,
complete for some complexity class, has a computable answer.

2 Summary

Chapter I gives a quick introduction to the domain, introducing most of the logics without defining
them. It gives a good idea of what type of results will be proved, but since the vocabulary used is
not yet known, during the first reading of this chapter it is not easy to understand what this really
means.

Chapter II is an introduction to logic with classic definitions and theorems. Here we find the
definition of the syntax and semantic of the propositional and predicate calculus, correctness and
completeness results, the “equality” definition in a first order logic, the existence of a prenex normal
form and the Herbrand theorem. This chapter clarifies the notation and gives examples of theorems.

Chapter III formally defines several notions that are used in the first part of the book:

1. Peano Arithmetic

2. A polynomial-bounded theory, which means functions bounded by a polynomial such that
the formulae to define them use polynomially bounded quantification.

3. A conservative extension, which means that if you can define a function f in a logic, then you
can add f in the vocabulary and add its defining axiom to the theory without changing the
expressivity.

This chapter also gives the first example of relation between a logic and a complexity class.
They prove that the linear time hierarchy is equal to I∆0, the set of functions that one can define
with Peano’s axioms plus induction over bounded formulae.

Up to Chapter III, all quantifications are over integers. Chapter IV introduces quantification
over strings of bits. Often a formula uses both kinds of quantification. Such formulae are called
2-sorted. Two functions exist over strings, the size of the string and the value of one bit. They
explain the reason for the choice of using two sorts, mostly that the length is logarithmic in the
number represented by the string, and so polynomial bounds can be defined to be applied only
to integers, and not to the string of bits seen as a number, which would give exponentially larger
bounds. Then they extend definitions and theorems from single-sorted logic to the two sorted one.

Chapter V and VI do not introduce new fundamental notions, but build on the definitions of
previous chapters to prove (1) the equivalence between the logic V 0 and the complexity classes AC0

which is the smallest interesting class in complexity and (2) the equivalence between V 1 and P.
They also prove the equivalence between a few different definitions of the same logic, and introduce
some new notions, like the “witness”, the fact that if a formula begins with universal quantifiers,
and then existential quantifiers, one can replace the existentially quantified variable by a function
depending on the universally quantified one and the “replacement axiom scheme”.

Chapter VII studies propositional logic, where all the variables are boolean. The interest is now
on families of formulae, the axioms needed to prove them, and the size of the proofs. Predicate
logic’s results are transformed into propositional logic’s results by translating the formulae and the
proofs from one formalism to the other.
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Chapter VIII and IX define a number of important logics and explain how one logic can efficiently
simulate another logic, and how they relate to complexity classes. Chapter VIII is about logics
related to complexity classes that contain P. Chapter IX is about logics related with smaller
complexity classes. Both chapter state some open problems about how new result in complexity
or in logic would affect the other field. For example in chapter VIII, there are results about logics
without strings and Horn logic.

Chapter IX gives more details of what families of formula can and cannot be proved in some
logic. The most used example is the “pigeon hole principle” and some variation of it. In particular,
this chapter discusses the question of finding the smallest axiom set possible to prove some family
of theorems. This chapter represents almost one fourth of the entire book; there is an impressive
amount of theory and result.

Finally Chapter X comes back to quantified propositional logic; in chapter VII first order logic
was translated to propositional Logic. By contrast this time propositional logic is coded into first-
order logic using the “reflection principle”. The truth of a family of propositional formulae and the
correctness of their proof is defined in some first order logic. This second direction increases the
importance of the relation between those two kinds of logic. In particular the translations are as
efficient as possible while respecting soundness.

3 Opinion

This books seems intended for graduate students and researchers in the computational complexity
or logic. It requires a prior familiarity with basic complexity results and logic (both proof theory
and model theory). Even though Chapter II and Appendix A give an introduction to logic and
complexity theory, it is not enough background for the reader to understand the concepts used
throughout the entire book.

The main issue with this book is the quantity of notations used, and that most of it is given
without any explanation about the choices. Many articles uses different notations— this is a
standard problem in the field of logic— and many authors give different names for the same theory.
Hence it is great to have everything unified in one book. But the cost is that often a theory’s name
is only one or two letters long, sometime with a number, and no explanation is given for the name.
For example the theory V i or the System G have names that are hard to remember since its hard
to remember what the letters stand for. Also consider that Σb

i and ΣB
i , where i is an integer, are

two different theories whose definitions look alike.
There is an index at the end of the book, but it does not always help as much as one could

hope. For example to find “pBNR” you need to search under “B”, and to find “ΣB
i ” you need to

recall that it is a formula classes. Note that “Σb
i” and “ΣB

j (V i)” are not near each other.

Most of the proofs are technical but there is no really subtle idea that would be hard to grasp.
In each section, the first proofs are done with enough detail to correctly follow them when we
remember the definitions; then the next proof of the same type are shorter or left as exercises,
which avoid useless repetition.

For those two reasons, one often has to trust the authors for the correctness of the demonstra-
tions; checking in details every theorem would take a lot of time or an excellent memory, since
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often, many theorems are not very different, but they have tedious details one has to check. On
the other hand it is an excellent book for someone who wants to learn what equivalences between
logic and small complexity classes are known.
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Review of5

Exact Exponential Algorithms
by Fedor V. Fomin and Dieter Kratsch

Springer, 2010
203 pages, hardcover, $60.00

Review by
Michael Lampis mlampis@kth.se

KTH Royal Institute of Technology, Stockholm, Sweden

1 Introduction

It’s a well known fact of computational complexity theory that the vast majority of interesting
algorithmic problems are, unfortunately, intractable. In other words, thanks to the theory of NP-
completeness, we know that for literally thousands of optimization problems it is impossible to
obtain a polynomial-time algorithm that produces an exact solution (unless P=NP). Still, all these
problems need to be solved, so what are we to do? The approach that has probably been most
favored in the theoretical computer science community is to “approximate”, that is, try to design
an efficient algorithm that gives a solution that is as good as possible. However, in many cases
this is not appropriate, either because any sub-optimal solution is unacceptable or because even
obtaining a decent approximate solution for our problem is hard. This is the motivation of this
book, which deals with algorithms that always produce optimal solutions - exact algorithms.

Of course, assuming standard complexity assumptions, an algorithm that always produces op-
timal solutions for an NP-hard problem requires super-polynomial (usually exponential) time. In
most cases obtaining a brute-force exact algorithm is easy: e.g. it’s trivial to solve n-variable SAT
in time (about) 2n and TSP on n cities in time n!. The important point though is that in most
cases this is far from the best possible (for example TSP is solvable in O(n22n)). How can one
achieve such improvements? This is exactly the topic of this book.

2 Summary

This is a book that presents algorithmic techniques which can be used to obtain improved exponential-
time algorithms for various algorithmic problems. To put it simply, the typical problem this book
tries to attack is the following: for a specific NP-hard problem (often on graphs) we already know a
cn algorithm. Can we get an exponential algorithm with a smaller base? Similarly, can we improve
n! algorithms to cn algorithms? The book is written mainly for graduate students or researchers
interested in an introduction to this research area, which after many years of neglect has seen a
significant amount of growth in the recent past.

The book is divided in chapters that explain different techniques, starting off from the simpler
ones (branching algorithms, dynamic programming) and moving on to more complex tools such as
subset convolution. In every chapter a technique is illustrated with several example applications to
concrete problems.

More specifically the topics covered in each chapter are as follows:
5 c©2013, Michael Lampis

14



• Chapter 1 is a general, gentle introduction to the subject matter. It introduces notation that
will be used throughout the book, such as the O∗ notation, which suppresses polynomial
factors, and is thus appropriate to use in the study of exponential algorithms. There is also
a discussion of a topic that is often glossed over in other fields of algorithms research but
is especially important here: how do we measure the size of the input? For an exponential-
time algorithm it makes a huge difference whether we consider n to be, say, the number of
vertices or the number of edges of the input graph. Though there is no uniform answer to this
question, the approach the authors follow is to use the measure of the size of the input that
is most “natural”, e.g. the number of vertices for graph problems or the number of variables
for satisfiability problems. Finally, two classical results are presented here: the Held-Karp
algorithm that solves TSP in O∗(2n) time and a branching algorithm for independent set
running in O∗(3n/3).

• Chapter 2 talks about branching algorithms. This is the most basic and easy to understand
technique in the book. The basic idea is that the algorithm makes a simple choice at each
step (e.g. whether to select a specific vertex as part of an independent set or not) and based
on it “branches” into several instances of the problem which are solved recursively. Rather
than the algorithms themselves, the devil here is in the details of the analysis, which involves
solving recurrence equations. The topic is treated in detail here and two full examples are
given for SAT and Independent Set.

• Chapter 3 covers dynamic programming, a technique which is often well-known for its ap-
plication to polynomial-time algorithms. The authors discuss (with examples) how it can
be used to obtain cn algorithm for permutation problems, where the brute-force approach
would take n!. Another interesting result here is a 2n algorithm for Set Cover, where n is
the number of elements in the universe (it’s trivial to obtain a 2m algorithm where m is the
number of sets). An important point discussed here, which will be returned to later, is that
dynamic programming algorithms often need exponential space in addition to exponential
time, something which may cause important complications in practice.

• Chapter 4 discusses Inclusion-Exclusion. This is the first technique discussed that is both
non-trivial and unique to exponential-time algorithms. As the name suggests, it is a technique
based on the well-known inclusion-exclusion principle from combinatorics, which is a formula
to calculate the size of the union of a number of sets. Inclusion-exclusion can be used to solve
a number of hard (#P-complete) counting problems, by calculating the answer as the sum
of the (usually 2n) terms of an inclusion-exclusion formula. As a consequence of solving the
counting problem, one also obtains a solution for the decision version, and several examples
are given in this chapter, including the breakthrough results of Björklund and Husfeldt, and
Koivisto for calculating the chromatic number in O∗(2n) time.

• Chapter 5 discusses treewidth, a measure that quantifies how close a graph is to a tree.
Treewidth has played a major role in the area of parameterized complexity, a field that is a
close cousin to the area of exponential algorithms, and the authors discuss here how this tool
can be used to obtain improved exponential-time algorithms using dynamic programming on
tree decompositions. They also discuss the problem of actually computing the treewidth of a
graph, a problem that is itself NP-hard.
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• Chapter 6 returns to the basic idea of branching algorithms but refines the analysis even
further. Normally, we measure the amount of progress that an algorithm makes by the size of
the instance (e.g. the number of vertices of a graph), and this is the variable of the recurrence
relations we solve to get a bound on the running time. The analysis can be refined by using a
more sophisticated measure (e.g. assign weights to the vertices according to their degrees), an
approach called Measure & Conquer. Surprisingly, this more sophisticated analysis can yield
a better running time without actually changing the branching algorithm! Things become
quite involved pretty quickly here, and there’s endless room for the definition of different
measures. It’s telling that there’s also a section on lower bounds: it deals with the problem
of finding families of hard instances that give lower bounds on the running times of specific
algorithms, thus finding limits on how far the measure & conquer approach can improve the
running time of an algorithm.

• Chapter 7 discusses the operation of Subset Convolution. It introduces tools such as the zeta
and Möbius transform to speed up the trivial 3n algorithm for calculating the convolution
of two functions of subsets of an n-element set to 2n. This probably doesn’t sound all too
exciting, but it turns out that it’s actually a pretty big deal, because a lot of standard
problems can be expressed as a convolution of two functions (e.g. calculating the chromatic
polynomial). Thus, this is a nice framework to get 2n algorithm for these problems. The
authors also make the interesting point that a lot of the ideas here are very similar to those
used in Fast Fourier Transform calculations.

• Chapter 8, which is pretty short, deals with local search algorithm, mainly applied to the
satisfiability problem. The idea here is again simple (start with a random assignment and
as long as it’s not satisfying randomly pick an unsatisfied clause and fix it) but the analysis
is more complicated. The authors also spend a little time discussing how to get a non-
randomized version.

• Chapter 9, which is also short, is actually one of my favorites because it takes results that
everyone knows and uses them in an unexpected way to produce something new. It discusses
a technique called Split & List, which basically applies non-trivial polynomial-time algorithms
for simple problems to obtain non-trivial exponential-time algorithms. More specifically, it
makes use of the fact that sorting can be done in time O(n log n) (rather than the trivial
O(n2)) and matrix multiplication in time O(nω) with ω < 2.376 (rather than O(n3)) to
obtain better algorithms for Subset Sum and Max Cut.

• Chapter 10 goes back to the problem of space usage in dynamic programming algorithms.
It discusses ways to make the (exponential-size) dynamic programming table smaller, at the
expense of the running time. The theme here is that we try to come up with algorithms
that work in time T (n) and space S(n) so that T · S is as small as possible, or we can get
good trade-offs. Another extension to this theme is a discussion of how branching algorithms
(which usually only need polynomial space) can be made faster by using memorization, that
is, storing the answer to (an exponential number of) small instances.

• Chapter 11 is a collection of three mostly unrelated topics. First, there is a discussion of
the Bandwidth problem. Second, there is a short discussion of a technique called Branch &
Recharge which extends the ideas of Chapter 6. And finally, there is a discussion on lower
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bounds and the Exponential-Time Hypothesis (ETH), which states that there is no 2o(n)

algorithm for 3-SAT. It is explained how this is equivalent to the hypothesis that there is no
2o(m) algorithm for 3-SAT (where m is the number of clauses), though the technical details of
this major result by Impagliazzo, Paturi and Zane are not given here. From this, the authors
sketch how it is possible to rule out the existence of sub-exponential time algorithms for a
number of problems, assuming the ETH.

• Chapter 12 is a collection of open problems. It contains both broad questions (e.g. how
can we show lower bounds on the base of the best exponential algorithm for a problem) and
a bunch of concrete problems (e.g. can we solve Subgraph Isomorphism in 2O(n)). Many
pointers are given to the literature, even to papers that were published only a few months
before this book.

3 Opinion

Many theoretical computer scientists have been raised with the mantra “Polynomial good, Expo-
nential bad”. As a result, most of our community’s research has focused on trying to design good
(i.e. polynomial) algorithms (or trying to prove that this is impossible). What is the point of trying
to improve a bad 2n algorithm to, say, 1.8n?

Of course this point of view, where the land of exponential time is a barren wasteland filled with
worthless algorithms is far from the truth and it’s a fact of life that exponential-time algorithms
will have to be used often in practice. So, it’s high time that we stopped looking down upon
improvements on the constants in the bases of exponentials, as they can have a big effect in
practice. Rather, we need to develop a theory of exponential algorithms that will allows us to make
them as efficient as possible. This is the thesis of this book, and in my opinion it is quite correct.
Furthermore, this book fills up a void in the literature by being (to the best of my knowledge) the
first book devoted entirely to the study of this subject from the theoretical point of view.

I think the book does a good job of introducing the subject and the various techniques that
the authors want to cover. It’s written clearly and concisely and many examples are given. A CS
graduate student should be able to pick up this book and be up to speed with the most important
facts in the theory of exponential-time algorithms in a few weeks. Another major plus is that the
book is very up-to-date, even mentioning results that were published mere months before it was
printed. This makes the open problems chapter a very interesting read.

The book is not too large (around 200 pages) but I don’t blame the authors for not including
more material. I believe they cover all the major techniques and putting more results in would
either make things repetitive or very technical (though more exercises would help). Some sections
do feel like they need a lot more to be said, but I think the problem here is that the results have
not yet been discovered, rather than that the authors left them out! (I’m mostly thinking of the
section on the ETH and lower bounds here). I do look forward to reading the second edition of
this book in 5-10 years, when the area will have matured even more!

This is an interesting and fun book to read. The authors did a good job of dividing the material
into chapters and writing up both good motivating comments and readable proofs. Misprints and
typos are few and far between. The only thing that kind of spoils the fun is that much of the
work is impossible to follow using just pencil and paper: often the authors will derive some funny
constant as the solution to an equation that was (approximately) solved by a computer. Unless
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you are willing to run Mathematica while reading the book this will require you to “just believe”
many of the results presented. Of course, this is just a characteristic of the research presented and
I doubt anyone could have done a better job of writing up these results than the authors did here.

I’m glad this book was written, I think it was very much needed and that the authors managed
to beautifully present a self-contained overview of an important field. I’d recommend this book to
anyone interested in the topic, either to do research or just out of general curiosity.
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1 Introduction

The book discussed in this review deals with algorithms inspired by mechanisms in biology and
their use in combinatorial optimization. Bio-inspired algorithms are (usually stochastic) search
algorithms that are inspired by processes in nature. In particular, this includes evolutionary algo-
rithms, an approach that has become quite popular in the last 40 years. These algorithms try to
solve problems by evolving through the search space until satisfying results are obtained. Another
bio-inspired method is called ant-colony optimization. In this method, solutions are obtained by
random walks on a so-called construction graph, modeling how ant colonies distribute information.

In combinatorial optimization problems, the aim is to minimize (or maximize) a (usually real-
valued) function over a discrete and usually finite search space. In general, this space can be fairly
arbitrary, but it usually consists of certain combinatorial objects, for example subsets of a set of a
certain cardinality or paths in graphs. A lot of these problems can be modeled by weighted graphs,
that is, graphs were each edge is equipped with a real-valued weight. Famous examples include the
computation of minimum spanning trees or shortest paths in such a graph.

Given an algorithm to solve such a problem, one is usually interested in the time the algorithm
needs (measured in the size of the input) to produce a solution. In the case of a stochastic or
random algorithm, one can often not expect that the algorithm is guaranteed to produce a result at
all in finite time, but one is mainly interested in the expected time it takes to arrive at the solution.
The major part of the book is devoted to such runtime analysis.

2 Summary

The book is divided in three parts. In the first part, the basic concepts both from combinatorial
optimization and stochastic search algorithms and their analysis are introduced. In the two sub-
sequent parts, the general algorithms are applied to concrete combinatorial optimization problems
with a single and multiple objectives, respectively.

2.1 Part I Basics

The first part contains a short introduction together with three chapters on basics in combinatorial
optimization and stochastic search algorithms.

6 c©2013, Sven Herrmann
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Chapter 2 Combinatorial Optimization and Computational Complexity

The book starts with a short discussion and definition of basic concepts of combinatorial optimiza-
tion and the main objects: finite graphs. Then basic notions of complexity theory are discussed
briefly, and the problem of data representation is addressed. This also includes a discussion of ap-
proximation algorithms and randomized algorithms. The chapter closes with a brief section about
multi-objective optimization including the introduction of important concepts such as the Pareto
front.

Chapter 3 Stochastic Search Algorithms

This chapter introduces the concepts of the several stochastic search algorithms mainly of the bio-
inspired kind. In particular, evolutionary algorithms and their major approaches, namely evolution
strategies, genetic algorithms, evolutionary programming and genetic programming, are discussed.
Furthermore ant colony optimization and other (non bio-inspired) general stochastic search algo-
rithms are briefly presented. It is pointed out that these algorithms can be easily adapted to
almost any combinatorial optimization problem, although this comes with the drawback of not so
rigorously analyzed runtime and/or approximation quality.

Chapter 4 Analyzing Stochastic Search Algorithms

Here, basic evolutionary algorithms are formally defined. These will be later adapted to concrete
problems and formally analyzed. The algorithms are RLS1

b , RLS1,2
b (randomized local search)

and (1 + 1)EAb (a basic evolutionary algorithm) for single-objective optimization, and SEMO
(simple evolutionary multi-objective optimizer) and GSEMO (global SEMO) for multi-objective
optimization. After that, tools for analyzing the expected optimization time of these algorithms
are given and some general theorems for the runtimes of these algorithms are presented.

2.2 Part II Single-objective Optimization

The second part contains five chapters analyzing the previously-defined algorithms for five concrete
combinatorial optimization problems

Chapter 5 Minimum Spanning Trees

Given a graph G = (V,E) with vertex set V and edge set E and a weight function w : E → R>0,
the aim of the minimum spanning tree problem is to find a subset T of E forming a tree such that
w(T ) =

∑
e∈E w(e) is minimal among all such trees. There are classical (deterministic) algorithms

by Kruskal and Prim to solve this problem efficiently. After an introduction of these concepts,
it is explained how the different stochastical search algorithms introduced in Chapter 4 can be
adopted to solve this problem. Furthermore, some speed-up techniques are discussed and explicit
versions of ant-colony optimization adapted to this problem are given. The expected optimization
times are discussed and it is noted that evolutionary algorithms are not competitive with the
classical algorithms but that several important variants of the problems are difficult to solve and
the stochastic search algorithms are useful in this case.
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Chapter 6 Maximum Matchings

In the maximum matching problem, one searches a matching (that is, a subset E′ ⊂ E where no
two elements of E′ share a vertex) with maximal cardinality of a graph G = (V,E) with maximal
cardinality. This problem can be solved in polynomial time with the concept of so-called augmenting
paths. This concept is discussed briefly, before the expected runtime of the randomized local search
and basic evolutionary algorithm to find approximations to the problem are deduced. A deeper
analysis then also presents expected runtimes for finding an exact solution. In the end, a certain
graph is constructed for which the expected optimization time of these two stochastic algorithms
is particularly bad.

Chapter 7 Makespan Scheduling

Given n jobs with positive processing times p1, . . . , pn and two identical machines to process them,
the aim of the makespan scheduling problem is to distribute these jobs in such a way that the overall
completion time is minimized. This problem is NP-hard in general and its decision variant is NP-
complete. However, there are efficient approximation algorithms. Stochastical search algorithms
for the problem are then introduced and analyzed. In the worst-case model, it is shown that in
polynomial time the approximation ratio cannot be better than 4/3. By using suitable variants of
the algorithms and multistart techniques, these results are enhanced drastically. In addition, two
different average-case models are investigated, and it is shown that with growing problem sizes the
evolutionary algorithms perform quite well.

Chapter 8 Shortest Paths

The shortest path problem for a graph G = (V,E) together with a weight function w : E → R>0

comes in two variants: SSSP (single-source shortest path) were the shortest paths from a given
vertex v ∈ V to all other vertices are to be computed, and APSP (all-pairs shortest paths), where
for each pair v, w ∈ V the shortest path between v and w should be obtained. These problems
are classically solved by the algorithms of Dijkstra and Floyd-Warshall, respectively. For both,
SSSP and APSP evolutionary algorithms are given and the expected optimization times analyzed.
Additionally, ant-colony optimization is applied to the two problems, and a variant using interaction
is given having better runtime bounds.

Chapter 9 Eulerian Cycles

A Eulerian cycle in a graph G = (V,E) is a cycle that uses each e ∈ E exactly once. It is easily
seen that such a cycle exists if and only if all v ∈ V are contained in an even number of edges; such
graphs are called Eulerian. Given the knowledge that a given graph is Eulerian, the task is now
to compute a Eulerian cycle. A simple deterministic algorithm of Hierholzer solves this problem in
time linear in the number of vertices and edges. Although it is stated in advance that stochastic
search algorithms are not expected to perform equally well, different evolutionary algorithms are
developed and investigated, and it is shown how the expected runtime can be improved using
adjacency list matchings.

21



2.3 Part III Multi-objective Optimization

In the third and last part of the book, multi-objective optimization via bio-inspired algorithms
is discussed. This includes genuine multi-objective optimization problems, but also combinatorial
problems that can also be solved with single-objective methods, where the multi-objective ap-
proach leads to improvements. The book closes with a short appendix on probability distributions,
deviation inequalities and other useful formulæ.

Chapter 10 Multi-objective Minimum Spanning Trees

The multi-objective minimum spanning tree problem deals with finding spanning trees of a graph
with respect to not one, but several weight functions on its edges. This problem is NP-hard even
in the case of two weight functions. It is shown that the GSEMO algorithm can be adapted to
this problem to obtain an efficient algorithm that computes a spanning tree for each vector of a
strongly convex Pareto front.

Chapter 11 Minimum Spanning Trees Made Easier

In this chapter, the standard (single-objective) minimum spanning tree problem is analyzed by
multi-objective methods. It is shown that for randomly chosen dense graphs this approach is more
efficient than the direct one, whereas for sparse connected graphs the single-objective variant of
the algorithm performs better. In addition to these theoretical asymptotic results, the authors
also performed experiments to justify that the use of the multi-objective methods for this single-
objective problem makes sense in practice.

Chapter 12 Covering Problems

In the vertex-cover problem, the task is to find a minimum set V ′ ⊂ V of vertices of a graph
G = (V,E) such that each edge contains at least one vertex from V ′. This is a classical NP-
hard problem. It is shown that it cannot be solved efficiently with evolutionary algorithms when
considered as a single-objective optimization problem. In particular, it may happen that the algo-
rithms get stuck at very bad solutions. However, the multi-objective algorithm GSEMO obtains
good approximation ratios and they can even be enhanced by using a variant of this algorithm
with an asymmetric mutation operator. It is also shown that for more general set-cover problems
multi-objective algorithms likewise perform better than single-objective ones.

Chapter 13 Cutting Problems

The last problem considered in the book is the problem of finding a minimum cut in a given di-
rected graph. Again, it is demonstrated that the single-objective algorithms RLS1

b and (1 + 1)EAb

have exponential expected runtime, whereas GSEMO can solve the problem efficiently and a vari-
ant, DEMO (Diversity Evolutionary Multi-Objective Optimizer), solves the problem in expected
polynomial time. This is even true for the multicut problem, which deals with several sources and
targets.
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3 Opinion

The book is suitable for a course on theoretical aspects of bio-inspired computing. It contains the
needed basics and accessible proofs for almost all results it contains. Furthermore, it might serve
as a useful resource for researches interested to apply bio-inspired algorithms, but also for those
researches that already use bio-inspired algorithms and need tools for analyzing them.

The book is generally well-written and very well readable also for non-experts of the field.
Additionally, (most of) the explanations and proofs are sufficiently detailed and self-contained
enough to make the book well usable as a textbook. It is very nice to have a good summary about
know results for the theoretical background of bio-inspired computations, as those algorithms are
widely applied but there seems to lack an overview on their asymptotic behavior. The book covers
this very well and it does not lack stating when bio-inspired methods are inferior to conventional
algorithms. Particularly interesting is the discussion of multi-objective approaches and the examples
of problems that naturally come with a single objective, but where those algorithms fail and multi-
objective approaches can be used successfully.
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1 Introduction

Triangulations are mathematical objects used daily for piecewise-linear and higher-order approxi-
mation, with applications in computer graphics, tomography, and physical simulations. With no
geometry attached, triangulations are often called “abstract simplicial complexes” and are funda-
mental objects in algebraic topology. Moreover, there is growing branch of physics concerned with
quantum gravitation that employs “Causal Dynamical Triangulations” for its calculations. The
study of these important structures gives rise to many interesting geometric, combinatorial, and
algorithmic questions, which are treated nicely in this book.

2 Summary

The authors’ main focus is on triangulations of a fixed point set living in some Euclidean space.
Among the many triangulations of a point set, the most famous one is the Delaunay Triangulation.
Many of the topics in this book can be easily grasped if one has a basic understanding of Delaunay
Triangulations and two fundamental algorithms for constructing them: Lawson’s flipping algorithm
and the “lifting map.” The Delaunay Triangulation of a set of points S in the plane is the set of
all triangles with vertices in S whose circumcircles8 are empty.

Lawson’s flipping algorithm is one of the earliest and easiest methods to compute a Delaunay
triangulation of a set of points in the plane. Start with any triangulation of S. If there exists a
triangle t with vertices a, b, and c whose circumcircle contains a vertex d of a neighboring triangle
u = (b, c, d), then flip the shared edge (b, c) out, and replace it with the diagonal (a, d). This
destroys t and u and creates new triangles (a, b, d) and (b, c, d), which are Locally Delaunay. We
continue flipping until all triangles are Locally Delaunay, at which point we have arrived at the
true Delaunay triangulation. One consequence of Lawson’s algorithm is that two triangulations of
a point set S can be related by a sequence of flips. Thus, the flip graph whose vertices are the
triangulations of S, with an edge between two triangulations if they can be related by a flip, is
always connected.

While the notions of triangulations and flipping can be generalized to higher dimensions, as is
done carefully in the first few chapters, Lawson’s algorithm does not readily generalize. Attempts
to generalize Lawson’s algorithm have been stymied by the inability to know whether the flip graphs

7 c©2013, Michael Murphy
8The Circumcircle of a triangle is the circle that contains all three vertices.
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of triangulations of point sets in higher dimensions are necessarily connected. The desire to answer
these flip-graph connectivity questions motivates a fair amount of the material in this book.

When working with point sets in 3 and higher dimensions, one typically uses the “lifting map”
method to construct Delaunay Triangulations, since it works in every dimension. This entails
mapping every point in a given point set S in Rd onto a paraboloid in Rd+1 taking the convex hull,
and projecting the lower envelope of the hull back into Rd. Note that other triangulations of S can
be obtained by lifting S to another convex surface, not just the paraboloid. If a triangulation of S
can be obtained in such a way, it is called a regular triangulation.

With the machinery of higher-dimensional flipping and regular triangulations defined and illus-
trated in the first 4 chapters, the authors are ready to describe a stunning construction by Gelfand,
Kapranov, and Zelevinski known as the “Secondary Polytope.” For every triangulation T of a set
of n points S = x1, . . . , xn in Rd, a point in Rn is calculated. The ith coordinate is computed by
summing the total volume of all simplices incident upon xi in T . The Secondary Polytope of S
is the convex hull of this new point set. Amazingly, the vertices of the secondary polytopes are
the regular triangulations of S. And the edges of this polytope connect regular triangulations that
differ by a flip. Secondary Polytopes have many other beautiful properties that the authors clearly
describe.

It is easy to see by using Secondary Polytopes that the flip graph of a point set’s regular
triangulations is connected. However, it is the case that “many” triangulations of a point set in Rd

are not regular, as seen in Chapter 6. Chapter 7 is devoted to interesting examples concocted by the
authors that show that the flip graph of point sets in 4 dimensions and higher can be disconnected.
They also give examples of “flip-deficient” point sets that suggest that there might exist point
sets in R3 with disconnected flip graphs. However, flip-graph connectivity for triangulations of
three-dimensional point sets remains an outstanding open question in Discrete and Computational
Geometry.

Although flip-graph connectivity and regular triangulations are a major focus of the book, there
are quite a few more topics that are covered. Chapter 8 focuses on algorithmic and complexity
questions related to triangulations, including enumeration, NP-completeness of Minimum Weight
Triangulation, and linear programming. Chapter 9 describes constructs and techniques further
relating triangulations to convex polytopes, including hints at the methods used by one of the
authors (Santos) to disprove the famous Hirsch conjecture.

3 Opinion

This book is not for everyone who might be interested in triangulations. Someone looking for algo-
rithms to make unstructured three-dimensional meshes of complicated domains for finite-element
computations will be disappointed, as will topologists interested in homology and homotopy cal-
culations of large simplicial complexes. Physicists working on Monte Carlo Quantum Gravity
simulations with Dynamical Triangulations should take careful note of the results concerning flip-
graph connectivity, however, since they often incorrectly assume that flip graphs are connected.
People interested in Computational Geometry, Linear Programming, and Convex Polytopes should
find the many illustrations and nice exposition make the book a joy to read.
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1 Introduction

Since their inception, the cut and flow problems, as well as their extensions and generalizations,
have been at the heart of algorithmic research on (di)graphs for over 50 years. There is a rich
literature on this topic that abounds in all major conference proceedings and journals of theoretical
computer science. Their applications are ubiquitous and some of them are greatly important, e.g.
the only mathematicians who have ever been awarded Nobel Prizes, on market equilibria in 1994
and on stable market allocations in 2012, are recognized for their work on applying linear program
duality and bipartite matching in economics, both are essentially related to network flows and
studied in the book under review.

“Flows in Networks” was written by the co-inventors of this theory exactly half a century
ago. With a new foreword by Robert G. Bland and James B. Orlin, Princeton University Press
resurrected it as a volume of its series “Princeton Landmarks in Mathematics and Physics ”. This
presents us a chance to trace back to the origin and elements of this powerful theory. A similar
act was performed by AMS Chelsea Publishing, who republished in 2009 “Matching Theory” by
László Lovász and Michael D. Plummer (originally appeared in 1986).

2 Summary

It might help to point out that in the new foreword Bland and Orlin have made a very detailed
explanation on the material.

Chapter 1 founds the base of the whole book. The famous max-flow min-cut theorem, was
established as soon as the required notations were defined. It is followed by a labeling based
algorithm that computes maximal flows efficiently. The second part of this chapter extends and
amplifies this theorem from several aspects, e.g. allowing multiple sources and sinks; and imposing
capacities on nodes instead of arcs. Also briefly discussed is the correlation between max-flow
min-cut theorem and linear program duality (this book is biased on “combinatorial methods”).
Here we would like to point out two interesting but most neglected parts, namely Theorem 5.5 and
Section 1.6 (say “Opinion” section). Theorem 5.5, rediscovered several times later, specifies that
the existence of a special minimal s-t cut (X, X) such that X ⊆ Y for each minimal s-t cut (Y, Y ).

Chapter 2 derives a sequence of equivalent results of the max-flow min-cut theorem, including
bipartite matching, node-disjoint paths (Menger Theorem), set representatives, and partially or-
dered sets. All of them are very elegant and useful combinatorial results (e.g. behind the Nobel

9 c©2013, Yixin Cao
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Prizes), and its presentation in this systematic way definitely reveals their deep insight (followed
by Lovász and Plummer in “Matching Theory”). For the reader, the most helpful way to follow
this chapter should be trying to derive these equivalent theorems from each other by herself.

Chapter 3 exhibits the power of max-flow min-cut theorem with real applications. Originally
motivated from transportation problems, the authors found a large amount of applications of the
network flow model in other areas. Several problems here “might not appear to be” a flow problem
at the first sight, but the authors managed to formulate them into one and dispose of as such.
This chapter contains the largest number of references, more than the total number of references
of the other three chapters combined. Since the focus is laid on the formulations, and the no
significantly extra computational effort is required, this chapter might of the least interest for
computer scientists.

Chapter 4 is a paraphrase of the (now also classic) Gomory-Hu tree, which is a compact rep-
resentation of all pairs min s-t cut in the graph. In essence, it studies such a simple question set
in undirected graphs: How many invocations of minimal cut algorithms are required to compute
the minimal cut of every pair of vertices. The trivial answer is n(n − 1)/2, but Gomory and Hu
observed that (n− 1) will suffice.

3 Opinion

This book is for people who are interested in the elements of the theory of network flows. All
the materials remain definitive, and their exposition is easy to follow; we inherit most of our
terminologies from this book (an exception instead of a rule).

To show how forward-looking the authors were when deciding the terminologies, let us have
one more thought about the definition of “cuts”, the most important concept of this book. The
authors explained in Section 1.6 the reason of formulating the cut as a partition, instead of a
disconnecting set. With the benefit of hindsight, we now can see the great advantage of the partition
based definition: it easily extends to vertex cuts (also called separators), and more importantly,
generalizes to submodular functions.

But the readers must be warned on the efficiency of algorithms, which come without time
analysis, and the most important algorithm (for constructing max-flow) is later shown to be not
polynomial bounded (in the worst case). This is kind of ironic since the authors emphasize “con-
structive procedures” that are “computationally effective”. This is perfectly understandable since,
at the time, complexity was not yet fully defined. The notion of worst case we use to argue its
“inefficiency” is too bizarre to occur to the authors who were dealing with real applications. More-
over, the algorithm found in most algorithm books is only slightly adjusted from the one presented
here.

For a more comprehensive and (not that much) updated knowledge of the theory of network
flows, especially its interaction with linear programming, we would like to recommend Ahuja et al.
[1], which is now widely used as a textbook in operations research. For extensions and generaliza-
tions of cuts, e.g. vertex cuts, minimum cuts among all pairs, and submodular functions, especially
from the algorithmic aspect, the best reference should be the new monograph of Nagamochi and
Ibaraki [2].

We would like to close this review with the exciting news on algorithmic aspect of flows:
Orlin’s recently announced algorithm (http://jorlin.scripts.mit.edu/Max_flows_in_O(nm)
_time.html).
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1 Overview

This is an introductory book on quantum computation. Since many books on quantum computation have
already been reviewed and presented in this column (e.g. issues 34-3, 36-3, 38-1, 40-4, 41-3), I presume that
most readers already know what a quantum computer is, or what Grover’s algorithm is famous for, so I shall
try not to repeat statements of common knowledge. Let me just say that this book addresses the circuit model
of quantum computation, where computation is preformed by quantum gates (a.k.a. unitary transformations)
and algorithmic processes are usually expressed as circuits built using such gates. Also, the content focuses
on quantum algorithmic processes, i.e. it does not contain details on hardware implementations of quantum
computers.

2 Summary of Contents

The book begins with a 6-page Table of Contents and a 3-page Preface where the authors define the subject
and the scope of the book. The main content is organized in 3 Parts, 13 Chapters and 2 Appendices as
follows:

Chapter 1 “Introduction”
The introduction defines the scientific area of quantum information processing tracing its origins to

the merging of information theory and quantum mechanics. It also defines its main sub-fields: quantum
computing, quantum cryptography, quantum communications, and quantum games. It presents a brief
history of the area since the early 1980s mentioning the most influential researchers and their findings. (5
pages)

Part I - “Quantum Building Blocks”
Part I of the book includes chapters 2-6 and discusses the main building blocks of quantum informa-

tion processing, i.e. qubits and quantum gates. Along the theoretical notions of quantum measurement and
entanglement, some applications are introduced early on, including quantum key distribution, quantum tele-
portation and superdense coding. Chapter 6 concerns algorithms, but since they are actually classical ones,
this chapter was left in Part I.

Chapter 2 “Single-Qubit Quantum Systems”
This chapter illustrates an experiment with polarized photons and describes their properties in order

to define what qubits are and explain how they behave under measurement. Dirac’s bra/ket notation for
quantum states is introduced. The first application is presented here, quite early in the book, and it’s the
quantum cryptographic BB84 [2] key distribution protocol. The chapter closes with three representation
methods for the state-space of a single-qubit system, namely, algebraic notation, the extended complex plane,
and Bloch sphere. (22 pages)

Chapter 3 “Multi-Qubit Systems”

10 c©2013, KYRIAKOS N. SGARBAS
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The state-space representation extends to multiple qubit systems in this chapter, after a brief explanation
of direct sums and tensor products of vector spaces. The definition and properties of entangled states are
discussed along with the basics of multi-qubit measurement. The chapter concludes with another quantum
cryptography example, the Ekert-91 protocol [6] for quantum key distribution with entangled states. (16
pages)

Chapter 4 “Measurement of Multi-Qubit States”
This chapter extends the Dirac bra/ket notation introduced in Chapter 2 to linear transformations and

uses it to define projection operators for measurement of multi-qubit systems. Moreover, Hermitian operators
are introduced and their eigenspace decomposition is described. Their use in measurement is explained with
several examples. The chapter concludes with a description of the EPR paradox and Bell’s theorem. (24
pages)

Chapter 5 “Quantum State Transformations”
This chapter considers what happens in a quantum state when it is not measured, i.e. the transformations

of a closed quantum system. It introduces the notion of a unitary transformation (in other words a quantum
gate) and the corresponding matrix. After a brief presentation of the no-cloning principle, it introduces some
simple quantum gates (Pauli I, X, Y, Z, Hadamard, and CNOT) combined in a few simple circuits. Two
applications are described here: (super)dense coding, and quantum teleportation. The chapter explains how
quantum gates can be decomposed into circuits made from primitive gates, and concludes with a discussion
on the standard circuit model for quantum computation. (27 pages)

Chapter 6 “Quantum Versions of Classical Computations”
Every operation performed by a classical computational system can also be performed by a quantum

computational system. This chapter describes how to implement such quantum versions of classical compu-
tations. It introduces the notion of reversible classical gates, shows their analogy to quantum gates and then
proves that all classical boolean logic gates can be represented as classical reversible gates, and therefore also
as quantum ones. Furthermore, it defines a formal language for the description of quantum circuits and uses
this language to express some example quantum circuits performing basic arithmetic operations. (23 pages)

Part II - “Quantum Algorithms”
Including Chapters 7-9, Part II is devoted to the basic quantum algorithms. Starting from the simpler

ones (Deutsch’s, Simon’s) and gradually building up to quantum Fourier transform, Shor’s factorization
algorithm and Grover’s search algorithm.

Chapter 7 “Introduction to Quantum Algorithms”
This chapter starts with a general discussion on computing with superpositions and introduces the notion

of quantum parallelism. Afterwards, it defines various notions of complexity, including circuit complexity,
query complexity and communication complexity. Then it presents Deutsch’s algorithm, Deutsch-Jozsa,
Bernstein-Vazirani, and Simon’s algorithms, and (in a special section) quantum Fourier transform (QFT).
Finally, based on the definition of quantum complexity it describes relations between quantum complexity
classes and classic complexity classes. (37 pages)

Chapter 8 “Shor’s Algorithm”
After a very brief explanation on how the problem of factorization relates to the problem of finding the

period of a periodic function, the chapter presents Shor’s algorithm, gives an example of its operation and
analyzes its efficiency. It also presents a variation of Shor’s algorithm, where the measurement of the second
quantum register can be omitted. The chapter concludes with the presentation of the discrete logarithm
problem and the hidden subgroup problem (including Abelian groups). (14 pages)

Chapter 9 “Grover’s Algorithms and Generalizations”
This chapter presents a detailed explanation of Grover’s algorithm, including an outline, its setup,

determination of the iteration step, and calculation of the number of iterations. It proves that its performance
is indeed optimal (i.e. it is as good as any possible quantum algorithm for the same task). Moreover, it
regards amplitude amplification as a generalization of Grover’s algorithm and uses geometric interpretation
to further explain its function. Two methods for “de-randomizing” Grover’s algorithm while retaining its
efficiency are presented. Both are based on the modification of the rotation angle of the basic algorithm.
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Finally, two more variations are discussed, when the number of solutions is unknown: one based on the
repeated use of the main algorithm, and the well-known QFT-based quantum counting [9]. (26 pages)

Part III - “Entangled Subsystems and Robust Quantum Computation”
Part III includes the final Chapters 10-13 on entangled subsystems, quantum error correction and fault

tolerance. Chapter 13 does not fit well in this part since it functions as a binder for several short articles on
various topics of quantum computation.

Chapter 10 “Quantum Subsystems and Properties of Entangled States”
This chapter defines density operators and explains how they are used to model mixed states of quantum

subsystems (exhibiting bipartite and multipartite entanglement) and how they are used to model measure-
ments in such systems. It also explains the notion of superoperators (the most general class of operators)
and how they can be used to express the dynamics of quantum subsystems. The chapter concludes with a
discussion of decoherence. (40 pages)

Chapter 11 “Quantum Error Correction”
The chapter begins with three lengthy examples, each one exhibiting a different simple error correcting

code for single-qubit errors: one for bit-flip errors, one for phase-flip errors and one for any type of errors.
Then it introduces a general framework for linear quantum error correcting codes, specifying the properties
that all such codes should satisfy, and provides some examples including the [3, 1] repetition code, the [7, 4]
Hamming code, and the Shor code. Two special sections are devoted to CSS codes [11] and stabilizer codes
[7] respectively. (48 pages)

Chapter 12 “Fault Tolerance and Robust Quantum Computing”
This chapter extends quantum error correction with fault-tolerant procedures that enable the error

correction to work even when carried out imperfectly. In a lengthy example it demonstrates how Steane’s
7-qubit code [11] can become fault-tolerant. It then describes concatenated coding, a process where a circuit
is iteratively replaced by a larger and more robust one. This way a polynomial increase in resources achieves
an exponential increase in accuracy, thus leading to a threshold result. The chapter concludes with a
threshold theorem ensuring that while the error is below some threshold, arbitrarily long computations can
be performed to obtain arbitrarily high accuracy. (18 pages)

Chapter 13 “Further Topics in Quantum Information Processing”
This chapter is a collection of ten very brief sections on miscellaneous topics. They mention some more

recent quantum algorithms (including quantum random walks [4] and quantum learning theory [10]), a few
more techniques for robust quantum computation, the alternatives to the circuit model of quantum computa-
tion (i.e. measurement-based cluster state, adiabatic, holonomic, and topological quantum computation), more
protocols for quantum cryptography, and some implementation approaches (after presenting DiVincezzo’s
criteria [5]). They also discuss the limitations of quantum computing, some classical algorithmic results
obtained from a quantum information processing viewpoint, the simulation of quantum systems, and some
more philosophical aspects like the origin of quantum computation power, and what if quantum mechanics
is not quite correct. This chapter does not have separate sections with references or exercises, but several
references are mentioned throughout the text. (18 pages)

Appendix A “Some Relations Between Quantum Mechanics and Probability Theory”
This appendix provides an alternative view of quantum mechanics as a generalization of probability

theory. It explains how tensor products can be used for the calculation of probability distributions, how the
latter can be expressed with matrices, and how pure and mixed quantum states generalize the classical notion
of pure and mixed probability distributions. It concludes with a nice table of analogs and key differences
between classical probability and quantum mechanics and an interesting paragraph with references to the
bibliography. (10 pages)

Appendix B “Solving the Abelian Hidden Subgroup Problem”
The Abelian hidden subgroup problem (previously referenced in Chapter 8 with Shor’s algorithm) is

defined here explicitly and a complete solution is presented using a generalization of Shor’s algorithm. In the
process, Schur’s lemma and quantum Fourier transforms over finite Abelian groups are explained. Finally,
Simon’s and Shor’s algorithms are presented as instances of the Abelian hidden subgroup problem. (12
pages)
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Every chapter (except 1 and 13) has a section with references to bibliography and a section with exercises
(appendices too!). The book concludes with a 11-page bibliography (295 references) and two indices: a
Notation Index (3 pages) and a Subject Index (4 pages).

3 Opinion

As its sub-title clearly states, this book aims to be introductory. Moreover, the authors explicitly mention
in the Preface that: “The intent of this book is to make quantum computing accessible to a wide audience of
computer scientists, engineers, mathematicians, and anyone with a general interest in the subject who knows
sufficient mathematics.” So, when I started reading it, I was somewhat prejudged; I expected to read an
introductory book, and I had to review it as an introductory book. So my opinion might be biased in this
sense.

From this perspective, the book succeeds in many ways:
It builds up the reader’s interest from the beginning by introducing very early some attractive applications

(quantum key distribution and quantum teleportation) that traditionally (i.e. in other books) are discussed
much later, after many theoretic topics.

It does not use more mathematics than necessary. Of course it needs a good background in linear algebra,
and some familiarity with group theory in certain sections that the authors clearly mention in the Preface,
but nothing more. For instance, it does not feed the reader with all the details of Hilbert spaces and their
properties, just to explain how quantum circuits operate. And I think this is good. Also, no quantum physics
background is required. And I think this is even better.

Moreover, throughout the book the authors make a good effort to explain issues and when possible to
give insights on how things work instead of just providing lengthy mathematical proofs. The language used
is very approachable, simple and direct. In my opinion this book is much easier to read (and much more
enjoyable) than the classic Nielsen & Chuang [9] book, but the comparison might not be fair since the latter
cannot be considered an introductory book.

From the same perspective, the book seems to miss some details, since it deviates from the standard
norm of an introductory quantum computing book in a few unexpected ways. This is not necessarily bad,
but a reader who will use it for a first contact with quantum computation will not be able to realize these
minor deviations until he reads other books on the same subject and these issues start to rise one by one as
small sources of confusion. I shall give a couple of examples:

The most obvious one is the non-standard notation for the CNOT gates in the diagrams. As far as I
know there is no ISO/ANSI standard for quantum gate notation, but most contemporary books use the
notation developed by Barenco et al. [1], and an introductory book should take this into account. Otherwise
its readers might get confused when reading their second book.

The second example concerns amplitude amplification. I believe that most books regard it as a process
that some quantum algorithms employ. A more philosophical point of view could even regard it as an
inherent property of quantum systems (e.g. like quantum parallelism or entanglement) that a family of
quantum algorithms exploit. Presenting it as a generalization of Grover’s algorithm is another point of view,
which I found strange for an introductory book.

Finally, in some cases introductory and advanced sections seem to mix in the same chapters. This is more
evident in the chapters of quantum algorithms and error correction. It might be better in terms of content
organization, if all the variations and the modifications of the basic algorithms and codes were explained
later in the book, maybe in some appendices. Or at least their sections should be marked as advanced or
optional.

Having said that, I believe that the book succeeds its aim to a great extend and provides an overall
interesting, frequently fruitful and occasionally enjoyable reading experience for everyone interested in the
subject. It contains all the main topics that one would expect to find in a quantum computation book
(and some more), and the sections with the references in each chapter serve as invaluable guides for further
reading. Also, the sections of Chapter 13 are very interesting and they could even stand out as stand-alone
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articles (if only they were a little bit lengthier). The exercises in each chapter are a big plus if one tries
to use it as a textbook. But for use in class, since it lacks of many example solutions, I would recommend
combining it with a book with a more systematic solution of exercises, like McMahon’s “Quantum Computing
Explained” [8].
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1 Introduction

Early in my days as a graduate student, I had to jump through a set of hoops known as “qualifying exams.”
These were written tests covering various areas of Computer Science and administered on a Saturday in
one of the department’s classrooms. On the warm day I took them the classroom happened to face a small
quadrangle also bordered by a building with a set of bells. At 9am two dozen keyed-up graduate students
began taking the exam. At 9:05 a series of peals rang out across the quad. We all looked up, out the
windows, and then at our proctor. Knowing that he was powerless to stop this clangor he looked at us for
a moment and then returned to reading his book.

Now it’s certainly annoying enough to have bells ringing while one is trying to recall the definition of
“Bélády’s anomaly” but that wasn’t the worst part. As the bells rang I realized that each sequence was a
subtle variation on the one before. Wasn’t the one just rung identical to the previous one but with a single
swap? In fact, hasn’t the same bell figured in the last three swaps? Then the real danger struck me. I
needed all of my intellectual energy and focus to pass this exam. With difficulty I ignored the bells and their
elusive but definite patterns. Amazingly I did so and forged ahead, passing the exam (which put me in place
to jump through the next set of hoops, the “oral exams”, as in “oral surgery” but a lot less fun).

I soon discovered that we had been the unwilling audience of a performance known as a change ringing.
But it wasn’t until I read Knuth’s latest volume in his series on “The Art of Computer Programming”
(TAOCP) that I learned how much more that ringing had to do with the Computer Science I enjoy than
Bélády and his anomaly.

Change ringing sequences are an example of combinatorial generation: an algorithmic way of listing, one
by one and without repetition, each object from a set of combinatorially defined objects. This raises many
questions, among them:

• In what order are the objects listed?

• Are there some requirements we want to impose in the transition from one object to the next?

• Is the listing meant to be exhaustive?

• If not exhaustive, is there an ordering that allows the algorithm to skip efficiently over the objects we
don’t want listed?

A very simple example is listing all bit strings of length n. There is the usual way of listing them
lexicographically, starting with all zeroes and ending with all ones, in which case there are transitions from
one value to the next requiring the flipping of many bits. If we apply the requirement of flipping exactly one
bit for each transition we come to the well-known Gray code ordering. For the change ringing mentioned
above, the ringers need to generate all permutations on the values 1 through n. Using the plain changes
sequence requires that each transition swap exactly one pair of adjacent values.

11 c©2013, John D. Rogers
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2 Summary

”Combinatorics is the study of the ways in which discrete objects can be arranged into various kinds of
patterns.” So begins the introduction of this volume’s first chapter. Knuth continues with more precise
versions of the questions I asked above:

1. Are there any arrangements that conform to a given pattern?

2. Can such an arrangement be found quickly?

3. How many such arrangements are there?

4. Can all such arrangements be visited systematically?

5. Which arrangements optimize the value of some objective function?

This volume proceeds to answer these questions about several kinds of combinatorial objects, including
bit strings, boolean expressions, mixed radix numerals, combinations, permutations, and trees.

Continuing the chapter numbering from the first three volumes, this one contains only Chapter 7 (Com-
binatorial Searching) which, in turn, contains two sections: 7.1 “Zeros and Ones” and 7.2 “Generating All
Possibilities”. Section 7.1 is now complete but 7.2 currently only contains the sub-section “Generating Basic
Combinatorial Patterns”; two sub-sections, one on basic backtracking and one on efficient backtracking, are
yet to appear, as are sections 7.3 to 7.10 ([Knu11]).

Most of sub-section 7.2.1 appeared in the fascicles numbers 2, 3, and 4 ([Knu07]) issued a few years ago
and reviewed here previously ([Rog08]). It contains:

• 7.2.1.1: Generating all n-tuples

• 7.2.1.2: Generating all permutations

• 7.2.1.3: Generating all combinations

• 7.2.1.4: Generating all partitions

• 7.2.1.5: Generating all set partitions

• 7.2.1.6: Generating all trees

• 7.2.1.7: History and further references

As the titles of the sub-sub-sections indicate Knuth’s emphasis is on generating sequences instead of
enumerating them. The difference is that, to him, enumeration implies creating a list of all of the objects
of a certain size. Instead, his algorithms focus on the transitions: Given a combinatorial object, here is a
way to generate the next one. Some of the algorithms take into account an objective function that indicates
which objects not to generate.

These algorithms are expressed in pseudo-code and sometimes implemented in the assembly language
for Knuth’s MMIX machine ([Knu05]).

In each sub-section Knuth provides a thorough treatment of that kind of combinatorial generation.
He includes not only the technical and mathematical aspects but also sometimes surprising cultural and
historical references. From the history of our own discipline we learn that using a Gray code provided a way
to address disk sectors so that at sector boundaries the next sector address is only one bit different than the
previous address. Generating all permutations arose in determining the change ringing sequences mentioned
above, something a number of writers from the past struggled with. Listing classical Hindi and Greek poetic
meters and enumerating the hexagrams of the I Ching relied on generating bit sequences. Many puzzles
require the solver to determine the right way to traverse a sequence of combinatorial representations of the
state of the puzzle.

True to the spirit of puzzle and problem solving, every sub-section ends with many exercises, ranging
in difficulty from questions requiring a few seconds reflection to open problems requiring extensive research.
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And true to the spirit that these should support and extend the material in the main body of the text there
are 300 pages of solutions. Knuth cares passionately about well-crafted exercises and their value in extending
and reinforcing the main presentation.

3 Opinion

For readers of this review, there are three ways to view this book. With its extensive development of each
topic and the extraordinary number of exercises and their solutions it could certainly serve as a textbook,
both in computer science and mathematics. Its list price is $74.99 but less expensive copies can be found.

A second way is to use it as a reference for developing algorithms and code. With the computing power
now available it is not unreasonable to attack combinatorial problems by generating and understanding
“small” instances, in the hope that this leads to a deeper understanding of the unbounded problem.

The third way is the one I favor most and that I articulated in my earlier review of the fascicles that
contained some of this work. This is science writing for computer scientists. There is enough mathematical
treatment to stimulate the theoretical parts of our brains and there is enough practical detail to keep our
coding neurons firing. But it is the history and references that lift it to being a classic text, one that can
send the reader off on a merry chase through time and technique.

The many algorithms presented in the book are (for the most part) written in a way to make it easier
to see why the algorithm works. Quite often this means that they are not written to be easy to code. But
that really isn’t much of an impediment. With a little practice one will find it straightforward to translate
his pseudo-code into a working program. In fact, I’ve found that they work well as coding exercises for CS
students learning data structures.

I also enjoy the way puzzles have been worked into the narrative. Knuth has a number of quotes
pointing out the importance of puzzle-solving in understanding mathematical principles. In a number of
cases combinatorial problems were derived from analyzing a well-known puzzle, such as Ozanam’s card
arrangement puzzle mentioned on page 3 or the tiring irons or Chinese ring puzzle on page 285.

Knuth rewards a careful reader’s attention in other ways as well. Sprinkled throughout the text are
pertinent quotes that mostly amuse. For example the last printed page of the section containing exercise
answers has this gem: “I may,” said Poirot in a completely unconvinced tone, “be wrong” ([Chr53]). This is
followed on the next page by two quotes, one from the Marx brothers, and how often does that happen in
an algorithms text?

This short review cannot even touch on the vast majority of the topics presented in this book. Section
7.1, with the simple title “Zeros and Ones”, could be a book on its own, reminding us of the richness of
boolean logic and algebra. Section 7.2 has already appeared as a collection of three short books. What’s
astonishing is that this is the work of a single author...and he’s not done yet. As with Agatha Christie’s
skeptical detective, Knuth might be wrong here and there but his careful scholarship, attention to detail,
and obvious love of the subject matter make for a very engaging read.

With respect to this volume’s relationship to the first three volumes, it stands for the most part inde-
pendently. One might argue that volumes 1 through 3 are more fundamental to our discipline but for some,
myself included, while I might employ those earlier algorithms more often the ones in this book are the
kind I enjoy more. I think the author agrees. In the preface Knuth mentions his inclination to subtitle the
volume The Kind of Programming I Like Best. His enthusiasm for this material comes through very clearly.
It makes one hope that the waiting time to volume 4B is far less than the gap between volumes 3 and 4A.
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1 Introduction

(Disclaimer: I was one of the proofreaders for two chapters of this book.)
In 1986 David S. Johnson published a survey in his NP-Completeness Column called Computing with

One Hand Tied Behind Your Back. To quote it
. . . in the circuit complexity model the best lower bound known for a problem in NP has only increased

from 2.5n to 3n since [G&J] (Garey and Johnson) was published seven years ago. Many researchers have
thus turned their attention to machine models whose computational power is sufficiently limited that super-
polynomial lower bounds may be easier to prove. Such a lower bound would imply only that the problem at
hand is hard when your machine has one hand tied behind its back, but the techniques and insights developed
might eventually be of use in attacking more general models. In any case the mathematics involved offers its
own challenges and rewards. This column will cover three popular ways of restricting general Boolean circuit
models and the surprising developments that have recently occurred relating to each.

The three restrictions he is referring to are monotone circuits, bounded depth circuits, and bounded
width branching programs.

This line of research has produced many many results since 1986. So many that its hard (at least for
me) to keep track of what lower bounds are known in which models. Fortunately it is not hard for Stasys
Jukna! He has written a book that explains (with proofs) most of the progress made in this area.

The book is well written. This is partially because he put the book out on the web asking people to read
some of the chapters ahead of time. Hence the final product is very polished. Note also that many of the
results he is proving were only in conference form with incomplete proofs, or in journals that were behind
paywalls, or in Russian. Hence his book does a great service.

Putting that aside, has the program of proving lower bounds on weak models been a success? There are
two answers: YES and NO. This depends on what the goals are. There are many results where we have
fairly close upper and lower bounds on concrete problems in a simple model of computation. For example,
the upper and lower bounds on how many gates you need to compute PARITY with depth k (a constant)
match (up to certain factors). We have pinned down the complexity of PARITY in that model! If that is
an end in itself then the answer is YES. If it was meant to be a stepping stone to resolving P vs NP then
the answer is (so far) NO.

The mathematics used in the book is mostly combinatorics, though clever combinatorics. There are
some Fourier transforms and some Linear Algebra; however, there are large parts that can be read without
too much background. And the background you do need for the rest isn’t that hard to pick up.

The field of Boolean Function Complexity is still quite active. Hence there is a website associated to the
book that reports when open problems in the book are solved. It is at

http://www.thi.informatik.uni-frankfurt.de/~jukna/boolean/index.html.

12 c©2013, William Gasarch
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2 Summary

The book is in six Parts: The Basics (2 chapters), Communication Complexity (3 chapters), Circuit Com-
plexity (6 chapters), Bounded Depth Circuits (3 chapters), Branching Programs (4 chapters), and Fragments
of Proof Complexity (2 chapters). There is also an Epilogue13 and an Appendix that includes some of the
Mathematical background needed.

2.1 Part 1: The Basics

This chapter has a few theorems of interest but is mostly setting up theorems about Boolean Functions to
be used later. Here is a theorem of interest that is proven:
(Schnorr 1974) The minimal number of AND and OR gates in an AND-OR-NOT circuit for computing
PARITY of n variables is at least 3n− 3.

Is this still the best known? No. There is a table of many known lower bounds at the end of Chapter 1
and it states that the PARITY of n variables is known to take exactly 4n− 4 gates- upper and lower bound,
due to Redkin. Johnson’s comment above about 3n being the best known lower bounds for general circuits
is no longer true! Its now 4n. I do not know whether to be happy or sad.

The theorems stated here to be used later have to do with approximating circuits by polynomials. Most
of the theorems are rather technical to state; however, here is one:
(Nisan and Szegedy, 1994) Let f be a Boolean function on n variables. Let degε(f) be the lowest degree of a
polynomial p : Rn → R such that, for all x ∈ {0, 1}n, |f(x)− p(x)| ≤ ε. Then deg1/k(ORn) = O(

√
n ln k).

2.2 Part 2: Communication Complexity

There are two ways to view Communication Complexity. Its original motivation was for lower bounds on
a certain model for VLSI. It was later used to obtain lower bounds on circuits, branching programs, data
structures, and other models. This is all well and good. But questions about communication complexity
can also be studied in their own right, without relation to other models. For example, the fact that the
communication complexity of equality is exactly n + 1 is interesting even if it has no application14 to lower
bounds in other models.

This book mostly, but not strictly, takes the view of using Communication Complexity in the service of
other models. As such this Part has chapters on Games on Relations (used for lower bounds on monotone
circuits), Games on 0-1 Matrices (large lower bounds on these yield large lower bounds for other models),
Multi-Party Games (used for lower bounds on streaming algorithms and for Branching programs).

2.3 Part 3: Circuit Complexity

I was surprised to find one of the Parts labeled Circuit Complexity since not much is known about lower
bounds on general circuits. In fact, this Part has chapters on Formulas (circuits of fan-in 2), Monotone
Formulas (no NOT gates), Span Programs, Monotone Circuits, and a more speculative chapter entitled The
Mystery of Negation. And note that Part 4 is on Bounded Depth Circuits.

We state some theorems of interest.
Let EDn be the function on n = 2m log m variables that views the variables as m blocks of 2 log m each,
and outputs YES iff all of the blocks are distinct. The number of gates needed in a formula for EDn is
Θ(n2/ log n). (In this theorem formulas are fan-out-1 circuits with arbitrary gates. That is, the gates can
be any Boolean function of the input).
(Raz and Wigderson 1992) Every monotone circuit for determining if a graph (encoded as

(
n
2

)
boolean

variables) has a matching with n/3 vertices has depth at least Ω(n).

13the Epilogue looks like its part of the Proof Complexity Chapter, but it is not
14My students find this an odd use of the word “application”
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2.4 Part 4: Bounded Depth Circuits

The first chapter of this section, Chapter 11, is entirely on depth-3 circuits. This reminds me of the quote
that Getting a PhD means learning more and more about less and less until you’ve written 400 pages on
depth 3 circuits. To be fair, the book only has around 40 pages on depth 3 circuits. Why are depth 3
circuits interesting? The cynical answer is that we prove things about depth 3 circuits because we can.
(Depth 4 seems much harder.) Less cynically, depth 3 is the first interesting level and some of the theorems
that were first proven for depth 3 were later proven for general bounded depth circuits. Also, in Section
11.1 the authors notes that high lower bounds for depth three circuits imply superlinear lower bounds for
non-monotone log-depth circuits.

As an example of the non-cynical attitude, this book has Hastad’s proof that any depth 3 circuit for
MAJORITY requires 2Ω(

√
n) gates. It is now known that any depth d circuit for MAJORITY requires

2Ω(1/d). However, the earlier result is interesting for two reasons (1) (minor) for the case of d = 3 the earlier
results is better, and (2) the proof for just the d = 3 case uses no machinery. No Hastad Switching Lemma.
It can be taught to High School Student (I’ve done this.) The proof is very enlightening.

The other chapters are about depth d circuits for constant d. The chapter contains the cornerstone result
of the field: PARITY not in constant depth, and also not in constant depth with MOD n gates for n a power
of a prime. These were well presented. There are also less well known about circuits with arbitrary gates.

2.5 Part 5: Branching Programs

The first chapter on this section is on Decision Trees which are a special case of branching programs. When
I hear Decision Trees I think Sorting requires Ω(n log n) comparisons and ith largest requires n+(i− 1) log n
comparisons. Those results are not here. However, the book is on Boolean Function Complexity (Element
Distinctness IS discussed) and, once again, if he included everything that people wanted him to include it
would double its weight.

This part also has chapters on General Branching Programs, Bounded Replication BP’s (e.g., read-once),
and Bounded Time. Barrington’s theorem is included.

2.6 Fragments of Proof Complexity

This was my personal favorite chapter. It was perfect in terms of material I wanted to learn and had
enough background to learn. I learned about Prover-Delayer games and Tree-resolution, regular resolution,
(ordinary) resolution, Cutting plane proofs. I have used this material directly in my research. I can’t give it
a higher compliment than that.

3 Opinion

This book contains everything YOU want to know about Boolean Function Complexity and, at 600 pages,
more. Of more importance, its well written and the topics are well considered. It should not just be on the
bookshelf of every complexity theorist— it should be on their desk, open to their favorite section.
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