
Review of1

The Joy of Factoring
by Samuel Wagstaff

Publisher: AMS
$35.00 softcover , 293 pages, Year: 2013

Reviewer: William Gasarch gasarch@cs.umd.edu

1 Introduction

This is a book on algorithms for factoring. As you might expect, there is also a lot of number theory
presented. What is more surprising is that there is not much in the way of analyzing algorithms.
This is not a criticism of the book. The field in general seems to not have that much in the way of
rigorous runtimes of algorithms. This is not a criticism of the field.

Reading the book was odd in that there was more concern for algorithms that could actually
be coded up (many actually have been) that would actually run fast, and less concern for rigorous
runtime analysis. This is unusual for computer science algorithms. Some might take that as a
criticism of computer science research in algorithms, but I am not going to go there.

Why is factoring an area where practical algorithms are emphasized and rigorous analysis is not?
I speculate that there are two reasons: (1) people really want algorithms that factor quickly (for
cryptography), and (2) the number theory needed to prove runtimes of algorithms often involves
open problems in umber theory.

Notation: Throughout this review N is the number we want to factor and b =
⌊√

N
⌋
.

2 Summary of Contents

The first five chapters a blend of number theory needed for factoring algorithms, simple factoring
algorithms, and factoring algorithms for numbers of a certain type. We give some examples of each:

1. (r/p) is the Legendre symbol: it is 1 when r is a nonzero square mod p, −1 when r is not
a square mod p, and 0 when r divides p. There is a section on how to compute this easily.
Theorems from number theory are stated but not proven.

2. Trivial Algorithm: If N is small you certainly do not want to use a fancy algorithm on it.
Hence a simple fast algorithm is needed for N small. This book discusses the so-called trivial
algorithm: divide n by 2, 3, . . . , b, in some depth. The key is that this algorithm can be sped
up considerably. The first observation is that you do not need to divide by any even larger
than 2. Hence you need only divide by 2, 3, 5, 7, 9, . . . , b. AH- you need not divide by any
multiple of 3 larger than 3. This leads to only trying numbers that are ≡ 1, 5 (mod 6). If you
avoid all multiples of 2,3, and 5 then you only try numbers that are ≡ 1, 7, 11, 13, 17, 19, 23, 29
(mod 30). The fact that they are all primes is an accident which no longer holes when you
avoid numbers that are a multiple of 1, 3, 5, 7 and use mod 210. One can go further and
further with this but at some points the cost of making sure your numbers are in one of the
congruence classes outweighs the benefits.

1 c©2016 William Gasarch

1

3. Fermat’s difference of squares algorithm: For each of b2 −N , (b+ 1)2 −N , (b+ 2)2 −N , . . .
test if it is a square and stop if it is. If (b + i)2 − N is a square then (b + i)2 − N = y2 so
(b+ i− y)(b+ i+ y) = N . Hence a factor is found (unless b+ i− y = 1 and b+ i+ y = N).
This algorithm is analyzed rigorously and ways to speed it up are given. In the worst case
it works in time O(N2/3) but if one of the factors of N is close to

√
N (which is common

when trying to crack RSA) then this algorithm is very fast. Also, this technique of trying
to find x, y such that x2 − y2 is N (or a multiple of N) is the starting point for many other
algorithms.

4. Let p be the lowest prime factor of N . We do not know p but we do know that p ≤
√
N .

Pollard’s p−1 method begins by noting that 2p−1 ≡ 1 (mod p), hence 2p−1−1 ≡ 0 (mod N).
Let p1, . . . , pm be all primes less than a parameter B. If p− 1 has all of its factors ≤ B then
2p

a1
1 ···pamm − 1 ≡ 0 (mod N) where ai = blogB/ log pic. Hence GCD(2p

a1
1 ···pamm − 1, N) will

likely yield a factor of N .

5. Let F1, F2, . . . be the Fibonacci numbers. If m divides n then Fm divides Fn. Hence, if you
are given n and Fn, to factor it you need only factor n = ab and find Fa.

Chapter 6 presents a sequence of algorithms that use continued fractions to factor. The basic
idea is to find x, y, z such that (x+by)2−Ny2 = z2. From this one easily gets (x+by−z)(x+by−z) =
Ny2 so GCD(x + by − z,N) is a likely factor of N . Such an x, y, z can be found by looking at
convergents of continued fractions. Getting this to actually work takes many more ideas. The

algorithm was first proposed in 1970. A runtime of e
√

2(lnN)(ln lnN) was proven by Pomerance in
1982. Note that, for all ε, this is ≤ O(N ε).

Chapter 7 uses Elliptic curve methods to factor. One of them takes Pollard’s p − 1 method
and instead of using the integers mod p uses a set of elliptic curves of about the right size. This
increases the chance of success.

Chapter 8 is on Sieve methods- both the Quadratic Sieve and the Number Field Sieve. The latter
is the method of choice for large number factorization. Both use ideas from Fermat’s difference
method and the Trivial method but of course use much more sophisticated ideas as well.

Chapter 9 and 10 are a collection of chapters on practical and theoretical factoring, though
mostly practical. There is also a discussion of why there have not been truly new factoring algo-
rithms since 1995.

3 Opinion

This book has lots of information and lots of pointers to more information. The field is vast
and spans both practical and theoretical concerns; hence I suspect anyone who is not an active
researcher in the area will find things in this book of interest. This should certainly be read by
people in cryptography to get a better sense of just how vulnerable their systems might be.

While there are chapters to teach some number theory, the reader really should already know
some number theory. The book could be read by bright undergraduates. Good projects could be
devised by coding up some of these algorithms.

2

