How big \& how small can the set of all subset-sums be for a set of size n.

1. $\left\{2^{0}, 2^{1}, \ldots, 2^{n-1}\right\}$ has all 2^{n} subset-sums. This is of course max.
2. $\{1, \ldots, n\}$ has $\frac{n(n+1)}{2}+1$ subset-sums. Lance proved that this is min.

Are there any other subsets of $\{1, \ldots, n\}$ that have $\frac{n(n+1)}{2}+1$ subset-sums?
Stupid Answer Yes, take $\{x, 2 x, \ldots, n x\}$.
$(\exists A)[A \neq\{x, \ldots, n x\}]$ that has $\frac{n(n+1}{2}$ subset-sums?
$n=3:\{a, b, a+b\}$. sums $\{0, a, b, a+b, 2 a+b, a+2 b, 2 a+2 b\}$. 7 of them. For $n \geq 4$ we will show that the answer is NO.
Suppose a set $A=\left\{a_{1}<\cdots<a_{n}\right\}$ has $\frac{n(n+1)}{2}+1$ subsetsums. Now add a larger number b to the set. Suppose the new set has $\frac{(n+1)(n+2)}{2}+1$ subsetsums.
$\frac{n(n+1)}{2}+1$ of them are all the subsetsums of the A with b added to them. So, we can have at most $n+1$ other subsetsums that do not contain b. Since the subsets $\emptyset\left\{a_{1}\right\},\left\{a_{2}\right\},\left\{a_{3}\right\}, \ldots\left\{a_{n}\right\}$ are $n+1$ subsetsums which are less than b, there must be no other subsetsums. This implies that b is the smallest number greater than a_{n} which is a subsetsum of A. This also implies that if $A \cup\{b\}$ has minimal subsetsums, then so does A. So, we only need to find all the 4 -element sets that have 11 subsetsums.

We know that any candidate set will look like $\{a, b, a+b, 2 a+b\}$ where $a<b$

That set will have the following 11 subsetsums:
0
a
b
$a+b$
$2 a+b$
$3 a+b$
$2 a+2 b$
$3 a+2 b$
$4 a+2 b$
$3 a+3 b$
$4 a+3 b$
as well as $a+2 b$
So, $a+2 b$ must equal one of the above numbers. The only possibility is $3 a+b$. So, $a+2 b=3 a+b$, which implies $b=2 a$. So, our set had to be $\{a, 2 a, 3 a, 4 a\}$.

