Theory of Computation Swarthmore Honors Exam, Spring 2023 Follow Up Questions

- 1. (20 points—4 points each) Give an example of each of the following. No proof required.
 - (a) Two languages L_1 and L_2 such that the following are all true:
 - L_1 IS NOT a regular language.
 - L_2 IS NOT a regular language.
 - $L_1 \cup L_2$ IS a regular language.
 - (b) Two languages L_1 and L_2 such that the following are all true:
 - L_1 IS a context-free language.
 - L_2 IS a context-free language.
 - $L_1 \cap L_2$ IS NOT a context-free language.

FOLLOWUP:

a) CFL's are not closed under intersection. Other class of sets that is not closed under intersection?

(ANSWERS: infinite sets.)

b) ARE CFL's closed under complement? If not give an example. Other class of sets that is not closed under complement?

- (c) A language that is in P but is not context-free.
- (d) Assume $P \neq NP$. A language that is in NP but not in P that is NOT a set of boolean formulas (so you CANNOT use SAT or 3SAT or anything of that type).
- (e) A language that is not decidable.FOLLOWUP: A language that is not r.e. (acceptable).

- 2. (20 points) Recall that a DFA is a tuple $(Q, \Sigma, \delta, s, F)$ where
 - Q is a set of states.
 - $\delta: Q \times \Sigma \rightarrow Q$.
 - $s \in Q$ is the start state.
 - $F \subseteq Q$ are the final states.

Let L_1 be regular with DFA $(Q_1, \Sigma, \delta_1, s_1, F_1)$. Let L_2 be regular with DFA $(Q_2, \Sigma, \delta_2, s_2, F_2)$. Give a DFA $(Q, \Sigma, \delta, s, F)$ that accepts $L_1 \cap \overline{L_2}$. $(\overline{L_2}$ is the complement of L_2 .) FOLLOWUP: HOW many states in the DFA for $L_1 \cup L_2$? Are there cases where this number of states are NEEDED? Are there cases where this number of states is NOT NEEDED?

3. (20 points). Let $\mathbb{N} = \{0, 1, 2, 3, \ldots\}.$

Let f be a computable function from \mathbb{N} to \mathbb{N} that is onto. Let g be the function that, on input x returns the least y such that f(y) = x. (Such a y must exist since f is onto.) Show that g is computable.

FOLLOWUP: Set of 1-1 functions? set of bijections?

- 4. (20 points) For each statement say if it is TRUE or FALSE and prove your assertion.
 - (a) The language $\{w : \#_a(w) \neq \#_b(w)\}$ is regular.
 - (b) The language $\{w : \#_a(w) \text{ is a square }\}$ is regular

NO FOLLOWUP

5. (20 points) Let

 $SAT_c = \{\phi : \phi \text{ has at least } c \text{ satisfying assignments} \}.$

Note that SAT_1 is the usual problem SAT.

- (a) (5 points) Give an example of a boolean formula on exactly 2 variables that is in SAT_2 but not in SAT_3 .
- (b) (15 points) Show that if SAT_3 is in polynomial time then SAT is in polynomial time.

(If you need more space, use the next page which is blank.)

FOLLOWUP: What if c is a function of n? For example, $\geq n^2$ satisfying assignments? What if $c = 2^{n/2}$?