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1 Introduction

Shannon defined the entropy of a random variable M with k values m1, . . . ,mk having probabilities
p1, . . . , pk as

H(M) =
∑
i

pi log
1

pi

This formula can be informally read as follows: the ith messagemi brings us log(1/pi) “bits of information”
(whatever this means), and appears with frequency pi, so H is the expected amount of information provided
by one random message (one sample of the random variable). Moreover, we can construct an optimal
uniquely decodable code that requires aboutH (at mostH+1, to be exact) bits per message on average, and
it encodes ith message by approximately log(1/pi) bits, following the natural idea to use short codewords
for frequent messages. This fits well the informal reading of the formula given above, and it is tempting
to say that the ith message “contains log(1/pi) bits of information.” Shannon himself succumbed to this
temptation [46, p. 399] when he wrote about entropy estimates and considers Basic English and James
Joyces’s book “Finnegan’s Wake” as two extreme examples of high and low redundancy in English texts.
But, strictly speaking, one can speak only of entropies of random variables, not of their individual values, and
“Finnegan’s Wake” is not a random variable, just a specific string. Can we define the amount of information
in individual objects?

The algorithmic information theory (AIT) (developed in the 1960s by Kolmogorov and others) tries to
go in this direction. A program p (identified with some canonical encoding of it as a string) for a string x
is a program that on empty input prints x. AIT defines the amount of information in a finite object (say,
a bit string) x as the minimal length of a program for x. This quantity depends on the programming lan-
guage used, but as Solomonoff, Kolmogorov and Chaitin noted, there exist optimal programming languages
(sometimes called universal machines, though this name can be used for many different notions) that make
the complexity function minimal up to O(1) additive terms. One then fixes some optimal programming
language and uses it to define the Kolmogorov complexity C(x) of a bit string x.

Shannon defined also the conditional entropy H(X |Y ) of a random variable X relative to some other
random variable Y . Here we assume that X and Y are defined on the same probability space; Shannon’s
definition can be equivalently rewritten as H(X,Y )−H(Y ). In algorithmic information theory it is natural
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to define the conditional complexity C(x |y) for bit strings x and y as the minimal length of a program that
transforms input y to output x (again we have to consider the optimal programming language).1

The equation C(x |y) = C(x, y)− C(y) now can be proven (with O(log n) precision2 for n-bit strings
x, y); this proof was found by Levin and Kolmogorov around 1967 [26] and was one of the first results es-
tablishing the connection between Shannon’s and algorithmic information theory. The parallelism between
Shannon’s and algorithmic information theory was already noted in the first publication of Kolmogorov [25]
whose title was “Three approaches to the quantitative definition of information”, and the approaches were
combinatorial, probabilistic (Shannon’s entropy) and algorithmic. This parallelism was developed in many
different aspects since then (see [47]), but many questions remain open.

One of the main motivations for Kolmogorov and other inventors of algorithmic information theory
was to use the notion of complexity to define individual random objects (and therefore provide foundations
for statistics). Martin-Löf defined randomness in 1966 for infinite sequences; in 1970s Schnorr and Levin
established connections between randomness and complexity and now the theory of algorithmic randomness
is a well developed theory closely related to algorithmic information theory (see [38, 17]). Following the
tradition of general computability theory, algorithmic randomness deals mostly with infinite objects and
qualitative questions (and has obtained very impressive results). This area is mostly out of our scope.
Another interesting topic that is not covered is the time-bounded Kolmogorov complexity and its relation to
computational complexity. For this area, see [27, Chapter 7] and [3] for an overview of recent developments
related to the Minimum Circuit Size Problem.

We survey here several topics in classical Kolmogorov complexity theory centered primarily on finite
strings and quantitative aspects, and bring up a number of open questions. We believe that a better un-
derstanding of classical Kolmogorov complexity theory may be useful for the two very active subfields
mentioned above. And also for Information Theory in general.

1More formally the conditional complexity can be defined as follows. Let I be an arbitrary algorithm that gets two binary
strings p and x and produces (if it terminates) a binary string. This algorithm is intuitively understood as an interpreter of some
programming language: I(p, y) is considered as the result of applying program p to input y. Then, for a given I , we define the
function

CI(x |y) = min{|p| : U(p, y) = x}

Solomonoff and Kolmogorov observed that there exists an optimal I , i.e., an algorithm I such that for every other algorithm I ′ the
inequality

CI(x |y) ≤ CI′(x |y) + c

holds for some c and for all x, y. We fix some optimal I , call CI(x |y) the conditional complexity of x given y, and omit I in the
notation (writing just C(x |y)). The unconditional complexity can be then defined as C(x) = C(x |ε), where ε is the empty string.
Both C(x) and C(x |y) depend on the choice of the optimal I , but different choices lead to functions that differ only by an O(1)
additive term.

In our definition x and y are binary strings, but we may use instead arbitrary constructive objects using some computable
encoding. The choice of encoding may change the complexity only by an O(1) additive term.

There is another version of complexity where the programs should be “self-delimited”; formally speaking, we do not allow
I(p, y) and I(p′, y) to be both defined if p is a proper prefix of p′. In this restricted class there is also an optimal I that leads to
a minimal complexity function; to distinguish it from the function defined above this function is called prefix complexity, while
the previously defined one is sometimes called plain complexity. The difference between plain and prefix complexity is at most
O(logn) for strings of length at most n, but for some of our questions this is important. We use plain complexity except for a few
places where the use of prefix complexity is mentioned explicitly; letter K is used for prefix complexity (and C is reserved for plain
complexity).

2We say that two numbers a and b are equal with precision ∆, if |a − b| ≤ ∆. We also say that a is less than b with precision
∆ if a ≤ b + ∆.
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2 Profiles and inequalities

The general theme of this section is: which tuples of numbers can appear as complexities of strings and
their combinations? For a given tuple of k strings we consider its complexity profile (most of the times we’ll
call it just profile), i.e., 2k − 1 numbers that are complexities of all 2k − 1 non-empty sub-tuples of a given
tuple. For example, for one string its profile is just its complexity; for a pair (x, y) its profile consists of
C(x),C(y),C(x, y); a triple of strings (x, y, z) has profile(

C(x),C(y),C(z),C(x, y),C(x, z),C(y, z),C(x, y, z)
)
,

and so on. Obviously, for k = 1, every non-negative integer is a complexity of some string (with O(1)-
precision), so profiles are just positive integers. For k = 2, there are some restrictions that correspond to
obvious inequalities of monotonicity C(x),C(y) ≤ C(x, y) and subadditivity C(x, y) ≤ C(x) + C(y) that
are true with logarithmic precision; these inequalities provide necessary and sufficient conditions for profiles
(with the same precision). For k = 3, the profile is also described by linear inequalities for complexities;
we need to add the submodularity inequality

C(x) + C(x, y, z) ≤ C(x, y) + C(x, z)

and its variants.
We do not need to include in the profile the values of conditional Kolmogorov complexity since these

values can be computed as a combination of the unconditional complexities (e.g., C(x |y) = C(x, y)−C(y),
see also Fig. 1 and Fig. 2).

C(x) C(y)

C(x |y) C(y |x)I(x :y)

Figure 1: Information quantities for a pair.

C(x) C(y)

C(z)

I(x :y :z)

C(z |x, y)

I(x :y |z)

Figure 2: Information quantities for a triplet. Warn-
ing: the central region can be negative, see the leg-
end.

Legend for Fig. 1: The area of the left circle is a symbolic representation of C(x); the area of the
right circle is a symbolic representation of C(y). The total area of the union of two circles is the symbolic
representation of C(x, y), and C(x |y) = C(x, y)− C(y) and C(y |x) = C(x, y)− C(y) with logarithmic
precision. Note that we do not claim that the parts can be represented by some strings (see below about the
mutual and common information); they just represent some numerical quantities. The middle part has area
I(x :y) that is (by definition) equal to C(x) + C(y)− C(x, y), or C(x)− C(x |y), or C(y)− C(y |x) (all
three quantities are the same with logarithmic precision). This quantity measures how much the complexity
of x decreases when we get to know y, or vice versa; it is called the amount of mutual information between
x and y.
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Legend for Fig. 2: Three circles correspond to x, y, and z; the unions of two circles correspond to
C(x, y), C(x, z) and C(y, z); the union of all three circles correspond to C(x, y, z). This picture has 7
parts (not counting the infinite surrounding), and we can write 7 equations for them. One of the equations
says that C(x) is the sum to four parts inside x-circle, two other ones say the same for y and z. Then we
write an equation saying that C(x, y) is the sum of six parts inside x- and y-circles, and two symmetric
equations. The seventh equation says that the sum of all 7 parts is equal to C(x, y, z). It is easy to see
that these equations have unique solution, and in this way we introduce new coordinates in the linear space
of profiles. Most of the new variables have an intuitive meaning. For example, the bottom part is the
conditional complexity of z given x and y. The same interpretation works for two other symmetric parts.
Three other parts can be interpreted as conditional mutual information; for example, I(x :y |z) is the mutual
information in x and y if z is known, and can be rewritten, e.g., as C(x |z)− C(x |y, z). The interpretation
of the central part is more problematic. We can call it the mutual information in x, y, z, but should always
remember that it could be (unlike the other six parts) negative. For example, this happens if x, y, z are
pairwise independent but not independent: one may take two random independently generated strings for x
and y and let z be the bitwise xor of x and y.

For k ≥ 4, the set of all profiles remains unknown. Even the dual question “which linear inequalities
are true for complexity of tuples with logarithmic precision” (that, roughly speaking, asks only about the
convex cone generated by profiles, not about the original set of profiles) is widely open. It is known that the
same linear inequalities are true for entropies of tuples of random variables and for complexities of tuples
of strings (with logarithmic precision), and this dual question can be reformulated in terms of Shannon
entropies [23], or subgroup sizes [15], or projection of multi-dimensional sets [15]; see [47, Chapter 10] for
details.

For k ≥ 4, the general structure of the set of all linear inequalities for Kolmogorov complexity within
logarithmic precision (or, equivalently, for Shannon’s entropy) is not well understood. It is known that these
sets of inequalities are not finitely generated (which means that there are infinitely many independent linear
information inequalities) [30]. However, it remains unknown, for example, whether these sets are semi-
algebraic (which would imply that there are finitely many “primary” uniform polynomial inequalities for
Kolmogorov complexity and Shannon’s entropy, and all other inequalities are corollaries of these “axioms”).
These questions are extensively studied in information theory, typically in the context of Shannon’s entropy
and its applications, see the surveys [54, 16].

Thus, the question about profiles goes far beyond the algorithmic information theory. Still there are
more specific questions about Kolmogorov complexities related to profiles, and we list some of them in this
section. We start with a question that looks very basic but nevertheless is open.

Q1 Let a1, . . . , ak be some strings of length at most n. Is it possible to halve all complexities of ai and
their tuples, i.e., do there exist strings a′1, . . . , a

′
k such that C(a′i) = 0.5 C(ai) + O(log n) for all i,

and C(a′i, a
′
j) = 0.5 C(ai, aj) + O(log n) for all i and j, and so on for all sub-tuples? (Here k is

assumed to be fixed, and we consider asymptotic results when n→∞.)

A similar result for Shannon entropies is known (and rather easy): if ξ1, . . . , ξk is a tuple of random
variables, for every ε > 0 there exists another tuple ξ′1, . . . , ξ

′
k such that H(ξ′i) ≈ 0.5H(ξ), H(ξ′i, ξ

′
j) ≈

0.5H(ξi, ξj),. . . ,with error at most ε, see [53]. But the proof of this result looks specific to Shannon en-
tropies.

Of course, there is nothing special in the constant 0.5, and a similar question can be asked for any other
positive factor. We only know that Q1 has positive answer if we replace 0.5 by 2 or any other integer factor
(the proof uses the same technique of “typization” from [23] that was used to prove that the same linear
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inequalities are true for complexities and entropies), and the question is open for all positive non-integer
factors.

In the question Q1 the strings a′i may have no relation with original strings ai. One can additionally
require that C(a′i |ai) = O(log n) for all i; one can say then that a′i are obtained from ai by deleting half of
the information. On the other hand, one can let ai unchanged but ask for an oracle x (a string or an infinite
sequence) that halves the complexity of all ai, i.e., Cx(ai, aj , . . .) = 0.5 C(ai, aj , . . .) for all i, j, . . .. Both
claims imply the original one. For the first claim this is obvious; for the second one we may note that the set
of possible profiles does not change if we relativize complexity function to an arbitrary oracle; this can be
proven using the “typization technique” from [23] (see also [47, Chapter 10] for details).

We now move to questions related to the fact, already mentioned above, that exactly the same classes of
linear inequalities are valid for Kolmogorov complexity (with a logarithmic precision) and for Shannon’s
entropy. However, for entropies we may also consider constraint inequalities that say that if some equation
for entropies is true (e.g., if I(X :Y |Z) = 0), then some inequality A(X,Y, Z, . . .) ≤ 0 is true (where A
is some linear combination of entropies of X,Y, Z, . . . and their tuples). Some of these inequalities have
“non constraint versions”: for example, if we manage to prove (unconditionally) that A(X,Y, Z, . . .) ≤
cI(X :Y |Z) for some constant c, then the conditional inequality is guaranteed to be true. However, it is
known that for some conditional inequalities this is not the case [24], and it is not clear what could be
the combinatorial translation of those conditional inequalities. (It seems that there might be even subtler
differences between different constraint inequalities, see a classification of the known constraint inequalities
for Shannon entropy and for Kolmogorov complexity in [24].)

The equivalence result says that if some linear inequality is true for Shannon entropies, it is also true
for Kolmogorov complexities with logarithmic precision (up to O(log n) additive term for strings of length
at most n). However, in many cases the inequality for complexities becomes true with maximal possible
precision O(1) if we switch to prefix complexities. The prefix complexity K(x) is a special version of
complexity that is defined using prefix-free machines and self-delimited programs, see, e.g., [17, 47]. We do
not go into details of its definition, noting only that K(x) coincides with C(x) with O(log n) precision for
strings of length at most n. If we replace C by K, the submodularity inequalities become valid with O(1)-
precision. Therefore, the same happens for all their linear combinations (the so-called Shannon inequalities).

Q2 Do all linear inequalities for entropies (or complexities, since they are the same), or at least the known
non-Shannon inequalities, hold with precision O(1) for the case of prefix complexity?

Q3 The combinatorial translations of inequalities for entropies and complexities [42, 47] also include
some additional factors (polynomial in the cardinalities) that correspond to logarithmic additive terms
for the complexity inequalities. Again, for many examples (including the subadditivity and submod-
ularity) these polynomial factors are unnecessary. Can we get rid of these polynomial factors in the
general case?

The next question is about relativization. There are two types of relativization that are possible for Kol-
mogorov complexity. We can fix some infinite sequence of zeros and ones (or a set of natural numbers) and
add it as an oracle in all definitions of algorithmic information theory. Or we can take some finite string and
add it as a condition everywhere. The first approach seems more general (any finite string may be converted
to an equivalent oracle), but how much more general is it? This question can be formalized as follow. Fix
some infinite sequence X . Then, for every n, we may consider the complexities of all strings of length at
most n with oracle X .
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Q4 Does there exist a finite string x0 such that the conditional complexities of all strings (of length at
most n) with condition x0 will coincide with O(log n) precision with X-relativized complexities? If
yes, how long does this string x0 need to be? Can we, for example, always find such a string X0 of
length poly(n)?

One may ask the same question not for all strings of length at most n, but for polynomially many of
them: Is it true that for any oracle X , for any n and for any set S that contains polynomially (in n) many
strings of size at most n, there is a string x0 such that the oracle X changes the complexities of the elements
of S in the same way as the condition x0, up to O(log n) precision?

3 Information-theoretic properties

This rather vague title means, informally speaking, that we are interested in the properties of finite objects
that can be expressed in the language of the information theory. For example, one can observe that informa-
tion contained in every string x is “divisible” in the following sense: one can find two strings x1 and x2 of
complexity C(x)/2 that together contain all the information in x, i.e., C(x |x1, x2) = 0 (all with logarithmic
precision). This is an information-theoretic result: we do not care whether strings x, x1, x2 start with 0 or 1,
what exactly their length is, etc., (but care about their complexity).

Then some general and not quite well-defined question arises: is the complexity of a string x its only
information-theoretic characteristic? Can it happen that two strings x and x′ with the same complexity have
drastically different information-theoretic behavior? Here is one way to formalize this question:

Q5 For a given string x and given k, we consider the set of profiles of (k + 1)-tuples (x, y1, . . . , yk) for
all k-tuples y1, . . . , yk. This set depends only on x; is it true that this set (for given k), considered
with logarithmic precision, depends only on the complexity of x?

We may equivalently ask this question for all random (incompressible) strings of a given length. Indeed,
every string x of complexity k is “informationally close” to some random string of length k, namely, to the
shortest program for x. Here two strings x and y are called informationally close, if the information distance

d(x, y) = C(x |y) + C(y |x)

between them is small. It is easy to see that the set mentioned in our question is almost the same for
informationally close string. So, if our question has a positive answer (complexity is the only important
information-theoretic property), this fact can be considered as a finite analogue of Kolmogorov’s 0-1-law
for invariant properties of random sequences.

Another way of distinguishing strings of the same complexity can be the following one. Given a string
x of complexity n, and some m < n, we can study the axiomatic power of the statement C(x) > m, in par-
ticular, the complexity of the universal statements that follow from it. (Universal statements are statements
about non-termination of some program in an optimal programming language, and their complexity is the
length of this program, see [12] for details.) If x and x′ have small information distance, then we can posi-
tively check this, and therefore the high complexity of x provably implies (almost as) high complexity of x′

and vice versa. So the axiomatic power of a string (in the sense explained above) is an invariant property.

Q6 Does the axiomatic power distinguish strings of the same complexity?
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Remark. In fact, algorithmic statistics does distinguish strings of the same complexity using more subtle
properties of strings like the Kolmogorov structure function that (for a given string x) is defined as

k 7→ minimal log-cardinality of a finite set of complexity at most k that contains x;

note that here we speak not only about complexity of strings, but also about complexity of finite sets of
strings (defined as the complexity of their encodings).

Kolmogorov structure function is well studied in algorithmic statistics; it can be defined in several
equivalent ways (resource-bounded complexity, (α, β)-stochacticity, computational/logical depth, see, e.g.,
the survey [51] for details and historical information).

However, this is a rather subtle property of a string x that can be drastically different for two strings x
and x′ that are informationally close (in terms of algorithmic statistics, one of them can be stochastic while
there other is far from being stochastic). If we are interested in this kind of properties, we should modify
the definition of informationally close strings using the total complexity CT(x |y) defined as the length of a
minimal total program that maps y to x. But this goes beyond the scope of our survey.

4 Extracting common information

When we switch from individual strings to pairs of strings, we get a much more diverse landscape: the
complexity profile of a pair (x, y), i.e., a triple (C(x),C(y),C(x, y)), does not determine the information-
theoretic properties of the pair (x, y). This was found long ago by Gács and Körner who realized that there
are pairs with the same profile and for one pair the “mutual information” I(x :y) = C(x) + C(y)−C(x, y)
is extractable and for the other one it is not [19]. Extractability means that the diagram of Figure 1 can be
understood literally: there are three strings (p, q, r) that correspond to the three parts of the diagram. This
means that

• p, q, r are independent (have mutual information close to zero);

• x is informationally close to (p, q);

• y is informationally close to (q, r).

Then we can say that x and y have common information q, while x (in addition to the common part q)
has some private part p, and y (in addition to q) has some private part r. It is easy to see that in this case
complexities of p, q and r respectively are C(x |y), I(x :y), C(y |x), and that C(q |x) and C(q |y) are close
to 0.

A second way to define the extractability of mutual information: there exists a string q of complexity
close to I(x :y) that is simple relative to both x and y. Then p and r can be chosen as the minimal programs
to produce x and y given q.

And a third way to define extractability: there exists a string q of complexity I(x :y) that makes x and y
independent, i.e., I(x :y |q) = 0.

It is easy to check that all these definitions are equivalent, and, furthermore, if a string q certifies ex-
tractability of mutual information in one way, then it also certifies it in the other two. In a very intuitive
sense (or rather, three senses) the string q represents the common information in x and y.

To summarize: the mutual information I(x :y) is just a number, but for some x and y this mutual
information can be “extracted,” or “materialized” in the form of a string, and then this string is called the
common information in x and y.
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It is easy to find strings where common information can be extracted. Just take independent p, q, r
and let x = (p, q) and y = (q, r). Proving non-extractability is a more difficult task. Gács and Körner
proved [19] that the repeated sampling of dependent random variables leads (with high probability) to two
strings that do not have extractable mutual information, except for some trivial cases. Many other examples
of pairs with non-extractable mutual information were constructed later. In particular, Muchnik showed that
for a random pair of incident line and point on a finite affine plane those line and point have non-extractable
mutual information [35]. Still quantitatively this phenomenon is not well understood.

Quantitative understanding means that we want to measure how far is the pair (x, y) from the situation
we described above (that can be called “full extractability”). Different equivalent definitions of extractability
lead to different measures.

Gray–Wyner profile

For strings (x, y) with (fully extractable) common information there exists a string q such that C(q) =
I(x :y), C(x |q) = C(x |y), and C(y |q) = C(y |x). This motivates the following definition: for a given
pair of strings (x, y) we consider all triples of integers (α, β, γ) for which there exists some q with C(q) ≤ γ,
C(x |q) ≤ α and C(y |q) ≤ β. We call this set the Gray–Wyner profile of the pair (x, y); the Shannon’s ver-
sion of this notion for independent samples of random variables was considered in [20]. Fully extractability
of common information means that Gray–Wyner profile contains the triple (I(x :y),C(x |y),C(y |x)) (up
to logarithmic terms, as usual). In fact, for strings with extractable common information the Gray–Wyner
profile is maximal. We also know the tight lower bound for the Gray–Wyner profile, i.e., we can give an
example of a pair where the Gray–Wyner profile is minimal [47, Chapter 11].

Q7 Determine the Gray–Wyner profiles for specific examples of pairs where the mutual information is
not extractable (e.g., for a random pair of incident line and point on the affine plane and for Gács–
Körner example; in the latter case one may hope to adapt the results from [20]). Describe all possible
Gray–Wyner profiles for pairs of strings. (The same questions can be asked for Wyner profile and
extended profile defined below.)

Wyner profile

As we mentioned above, for a pair (x, y) with (fully extractable) common information one can find a string
q of complexity I(x :y) that makes x and y independent, i.e., I(x :y |q) is (almost) zero. If we do not bound
the complexity of q, such a string (that makes x and y independent) always exists, we may let q = x or
q = y. The question is how much we can decrease the complexity of q while keeping I(x :y |q) reasonably
small. This can be formalized as follows: the Wyner profile of the pair (x, y) is the set of all α and β such
that there exists some q such that C(q) ≤ α and I(x :y |q) ≤ β. An analogous question for Shannon’s
entropy was raised by A. Wyner in the classical paper [52].

Extended profile

There are other ways to measure the extractability of common information, e.g., one may look at the maximal
complexity of q such that both C(q |x) and C(q |y) do not exceed some α. All these measures can be derived
from the most informative one that can be called the extended profile and is defined as follows: consider all
strings q and for each of them consider the profile of the triple (x, y, q). The set of all these profiles is called
the extended profile of the pair (x, y).
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A profile of a triple is a point in 7-dimensional set, but for fixed x and y we have three quantities (that
form the profile of a pair) fixed, so essentially the extended profile is a four-dimensional set. Note that
the Gray–Wyner profile was three-dimensional, and the Wyner profile was two-dimensional. So a natural
question arises:

Q8 Does the extended profile contain more information about (x, y) than the Gray–Wyner profile, or
Wyner profile? Is it possible to find two pairs that have (almost) the same Gray–Wyner or Wyner
profiles but significantly different extended profiles? Does the Gray–Wyner profile determine the
Wyner profile? Does the Wyner profile determine the Gray–Wyner profile? Do we get even more
information if we consider a tuple of strings (q1, . . . , qk) instead of one string q in the definition of
the extended profile?

As we have mentioned, all the notions (and most results) of the algorithmic information theory can be
relativized by adding some oracle to all computations. It is easy to see that relativizing the complexity
function by any oracle does not increase the complexity of a given string. On the other hand, relativizing the
complexity function by a random oracle does not decrease the complexity of a given string with probability
close to 1. So, a random oracle does not change the complexity profile of given tuple of strings. However,
it is not obvious whether the same is true for more complicated information-theoretic properties of strings.
Here is one natural question of this type.

Q9 Is it true that random oracles do not change the Gray–Wyner profile with high probability? A similar
question can be asked for other types of profiles we considered.

In [34] a positive answer to this question was proven for stochastic tuples of strings, using the restricted
algorithmic Ahlswede–Körner lemma, which takes us to the next section.

5 The Ahlswede–Körner lemma and Kolmogorov complexity

It was suggested in [34] that Q9 is linked with the (seemingly technical) problem that we bring up in this
section. Actually, the questions Q10 and Q11 below are stand-alone problems that are interesting in their
own right. These questions are also connected with a more general problem of extraction of common
information (see the discussion on this type of problems in Section 7).

Q10 Is it true that for every pair of strings (x, y) of complexity at most n and for every string z there exists
another string z′ such that the complexity values(

C(x |z),C(y |z),C(x, y |z)
)

(1)

are equal (with a logarithmic precision) to(
C(x |z′),C(y |z′),C(x, y |z′)

)
(2)

and at the same time C(z′ |x, y) = O(log n)?

We do not require in this question that z′ is simple relative to z as well, it would be too much: in the
case x = y this would require extracting the mutual information from x and z.

This statement is the algorithmic information theory version of the Ahlswede–Körner lemma in the
Shannon information theory (where it is proven for independent samples of random variables, see [2]).
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Figure 3: Question Q10 in a picture. Six areas of the same color (on the left and on the right) represent equal
complexity quantities. The vanishing information quantity is shown in white.

There is also a partial result for the algorithmic information theory version: the claim is true if the pair (x, y)
is stochastic (i.e., is an element of almost maximal complexity in a simple finite set, see [47, Section 14.2]).
This result can be partially constructivized: the string z′ can be computed given (x, y), the profile of (x, y),
by a double exponential time algorithm (that also gets oracle access to the set that appears in the definition
of the stochasticity).

Q11 Can the double exponential runtime be improved?

6 Communication problems: Shannon and algorithmic version

Multi-source network coding problems have been extensively studied in the context of Shannon’s informa-
tion theory. In these problems we are given a network (a directed graph), where some nodes are associated
with input sources (mutually correlated random variables, usually with some properties of ergodicity), and
some nodes are terminals, which wish to reconstruct specific parts of the input data. The edges play the role
of communication channels with limited capacities. The aim is to establish the relation between the entropy
profile of the input sources and the capacities of the edges that allow vertices to perform encoding/decoding
satisfying the capacity constraints and allow the terminal nodes to obtain the desired data.

Such problems can be studied in the framework of algorithmic information theory as well, where the
data are represented by strings, and their correlations are measured in terms of Kolmogorov complexity.
One specific example, motivated by the problem of Gray–Wyner profile discussed above, is shown in Fig. 4.
At the source (the leftmost vertex) both strings x and y are known. Three channels of bounded capacity (the
dotted lines) connect the source with three intermediate nodes, and then the unlimited capacity channels
(the solid lines) connect intermediate nodes with terminals (two vertices on the right) that should output
messages x and y (respectively). For this network we ask whether there exist some messages on all edges
that have complexity bounded by the edge capacity such that no new information is created at every vertex
(the outgoing messages are simple given the incoming ones). There are three edges of bounded capacity, so
we look for three messages: q of complexity at most γ for the middle edge, and p and r of capacities at most
α and β for the top and bottom edge. (The edges of unbounded capacity may just transmit all the available
information.) The messages p and q together should be enough to reconstruct x, so C(x |q) ≤ α; for
the same reasons, C(y |q) ≤ β. So, if the information transmission problem is solvable, the triple (α, β, γ)
belongs to the Gray–Wyner profile. The reverse statement is also true: if there is some q such that C(q) ≤ γ,
C(x |q) ≤ α, and C(y |q) ≤ β, then we can let p and q be the shortest programs that transform q to x and
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Figure 4: Network information transmission problem that corresponds to Gray–Wyner profile.
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Figure 5: Three cuts provide three necessary conditions for the points in the Gray–Wyner profile.

y, respectively. The only missing conditions are that p, q, r are simple given x and y (the information
transmission problem requires that no new information appears in the leftmost vertex). If this is not the
case, we can replace p, q, r by other strings that have the required properties (have correct lengths and are
enough to reconstruct x and y) found by search; note that the properties are computably enumerable, so we
can wait until the first triple appears, and this triple will be simple given x and y. We reformulated the notion
of Gray–Wyner profile in terms of a multi-source information problem. For each network there are simple
conditions corresponding to the information flow through each cut of the network that are necessary for
satisfying the constraints (derived as in the max-flow min-cut theorem, see [47, Chapter 12] for the details).

For example, for the Gray–Wyner network one can consider three cuts (Figure 5). The first one says that
p, q, r together should provide enough information to reconstruct x, y, so the triple (α, β, γ) can be in the
Gray–Wyner profile only if α + β + γ ≥ C(x, y). The second and third cuts show that α + γ ≥ C(x) and
β + γ ≥ C(y) for every point in the Gray–Wyner profile.

We get some upper bound for the Gray–Wyner profile, and this upper bound is reached if the common
information exists. For the cases where the common information does not exist, the Gray–Wyner profile is
smaller, and these necessary conditions are no longer sufficient.

For some other networks the information flow conditions are not only always necessary but also always
sufficient. One of the first examples was Muchnik’s theorem on conditional codes [32] that deals with the
network in Fig. 6. Here the terminal needs to reconstruct x knowing y, and gets some information about
x through the bounded channel; how much information does it need? In other words, we are looking for
a program p that is simple conditional on a string x and that produces x given a string y as a condition.
Obviously, the size of such a program cannot be less than C(x |y), which is by definition the length of the
shortest program that transforms y (known to the receiver) to x. The difficulty is that the sender does not
know y (if it knew y, then such a program could be found by search: we need only to know its length, and
this is logarithmic amount of information).
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Figure 7: Network information transmission problem for the Slepian–Wolf theorem.

This problem has the following interpretation. Suppose that Alice wants to send a document x to Bob,
who holds an older version y not known by Alice. Then Alice would like to get a short description of
x given y (something like a diff file), without having y.3 Muchnik’s theorem demonstrates that, surpris-
ingly, the absence of y does not cost too much the sender: the “overhead” is only logarithmic. That
is, there exists a program p of length C(x |y) + O(log C(x, y)) producing x conditioned by y such that
C(p |x) = O(log C(x, y)). (In the next section we shall see that in some circumstances the program p can
be found efficiently.) Thus, the capacity of the bounded channel in Fig. 6 is necessarily at least C(x |y), and
Muchnik’s theorem guarantees that this capacity is essentially sufficient.

Another network for which the information flow conditions are always sufficient, is the Slepian–Wolf
network in Fig. 7; it was considered in [48] in the Shannon information theory setting; the algorithmic
information theory version was studied in [43] (English version [44]),[56], [9]. Here the receiver wants to
know both strings x and y, and two senders know x and y respectively. The first is allowed to send α bits,
while the second is allowed to send β bits. For which α and β is this possible? Note that for unbounded β
we get the previous information transmission problem.

There are information flow bounds:

• α + β ≥ C(x, y), since the receiver should reconstruct the pair (x, y) having only α + β bits of
information;

• α ≥ C(x |y), since the bottom sender and the receiver together initially know only y, and should
reconstruct x getting α bits of information;

• β ≥ C(y |x), for symmetric reasons.

Slepian and Wolf [48] proved in the Shannon information theory setting that these information flow
conditions are not only necessary, but also sufficient. Algorithmic information versions of this theorem with
increasingly better parameters were obtained in [43, 44, 56, 9]. The strongest result is in [9] and it says

3This problem is known as document exchange and also as information reconciliation in the theoretical computer science (TCS)
literature, and as asymmetric Slepian–Wolf coding and also as compression with side information at the receiver in the information
theory (IT) literature. Typically the scenario in TCS is that the Hamming distance or the edit distance between x and y is small,
and in IT that x and y are realizations of random variables X and Y with small entropy H(X |Y ). The corresponding scenario in
Kolmogorov complexity (namely C(x |y) is small) is arguably the least restrictive one in this group.
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that the senders can use probabilistic polynomial-time algorithms to find messages of lengths α and β (plus
log2(n/ε) overhead) that solve the Slepian–Wolf transmission problem with probability (1 − ε), provided
of course that α and β satisfy the necessary information flow conditions.4

We see that there are non-trivial results of both types (when the information flow conditions are sufficient
and when they are not). So we come to the following question:

Q12 For which networks are the information flow conditions sufficient for the existence of a solution?

The relation between Shannon and algorithmic information theory approaches to network flow is not
well understood. The Shannon information theory considers random variables as sources (and wants to
reconstruct them at the destinations). To compare it with algorithmic setting, we consider strings obtained
by N independent samples of all the variables. If the information flow is achievable in the Shannon’s sense,
then one can use the same coding/decoding functions to solve the problem in the algorithmic setting (though
maybe it does not give us logarithmic precision). The reverse direction looks even less clear: the reason is
that the algorithmic setting is non-uniform and “advices” of logarithmic size are allowed in the intermediate
vertices.

Q13 Is the reverse statement true? If the information flow is not achievable in the Shannon’s sense for
independent samples of random variables, may it happen that with high probability the corresponding
algorithmic information flow problem is solvable for those samples? More generally, what are the
connections between algorithmic and Shannon’s multi-source information theory?

Even for the Slepian–Wolf network where there are results for both Shannon and algorithmic settings,
the parallelism between them is quite perplexing: none of these theorems can currently be derived from the
other one.

Q14 Is there a natural statement that would imply both the Slepian–Wolf theorem and its algorithmic
version?

7 Search-to-profile reductions

We started from inequalities for Kolmogorov complexities of tuples; they are universal statements saying
that something is true for all strings. Then we considered some results that have the more complicated
∀A∃B-form: for example, the Slepian–Wolf theorem guarantees that for every strings x, y and for all triples
of numbers that satisfy the information flow constraints, one can find suitable messages for transmission.
The obvious statement about the divisibility of information that we use as the opening example in Section 3
also has this form.

We can associate to a true ∀A∃B-statement the natural search problem: on input A, find a B that
certifies the truth of the statement, and, furthermore, one may ask whether this problem can be effectivized,
i.e., (a) whether an object B can be found effectively, or even better, (b) whether it can be found efficiently.
Since the complexity function is non-computable, it is natural to assume that the complexity profile of the
input strings (from A) is also given. For some search problems the answer to question (a) is now positive
in a rather trivial way. This is so, because for some problems, if we have the profile, we can effectively

4Note that the senders do not know each other data and, thus, the problem in Fig. 7 is that of distributed compression. The
interpretation of the Slepian-Wolf theorem is that, amazingly enough, distributed compression can achieve the same compression
lengths as centralized compression (in which the senders share data and collaborate).
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enumerate a list of “suspects” that is guaranteed to contain an object B and, therefore, eventually we will
find B. This type of search is, alas, very slow. For other problems, even with the profile in our hands, we
cannot effectively enumerate a list of suspects as above and, for them, even a slow search procedure (not to
mention an efficient one) would be remarkable. Thus the real question is: For a ∀A∃B-problem, if we are
given the profile of the objects in A, is there a non-trivial search algorithm that finds B? In case the answer
to this question is ‘yes’, we say that the problem admits a search-to-profile reduction.

For illustration, suppose we want to find a shortest or close to shortest program of a string x (arguably
the primary search problem in Kolmogorov complexity). As it is well-known, there is no algorithm for
this task (and this remains true even if we weaken a lot the optimality requirement, see for example [7,
Lemma 6.2]). On the other hand, having the profile of the input (which in this case consists of only C(x))
helps because we can run in parallel all programs of length C(x) until one of them produces x. Running
in parallel all programs of the given length is an extremely long procedure.5 Surprisingly, if we are content
to find a program for x whose length may be slightly greater than the optimal value (with an overhead of
size O(log2 |x|)) and also allow a small probability of failure, then we can do the search in probabilistic
polynomial time.

This efficient procedure actually works for the following more general problem: Find a close to short-
est program for a string x conditioned by a string y (the optimal size of such a program is by definition
C(x |y)). Muchnik’s Theorem, discussed on page 13, says that there exists an algorithm which on input x,
and provided with some help information about the pair (x, y) of length only O(log C(x |y)) bits, returns a
program of x conditioned by y of length C(x |y)+O(log C(x |y)). The help information in the original ver-
sion of Muchnik’s Theorem is a mystery, as it arises from a technical component of the proof given in [32].6

Arguably, a more natural version of this result was proven in [8, 9]: there exists a probabilistic polynomial
time algorithm that, on input x and an integer k with k ≥ C(x |y), outputs with probability 1− ε a program
p for x given y of length |p| ≤ k + O(log2(|x|/ε)). This is relevant for the “document exchange” problem
from page 13 in which Alice wants to send a document x to Bob, who has an older version y. Even though
Alice does not know y, she may know C(x |y) or an upper bound k for it, i.e., she may have an idea about
how “far” is x from y.7 Note that in the above result the “help information” C(x |y) can be determined (with
logarithmic precision) from the profile of the pair (x, y). Thus, the problem of finding a short program for
x given y, admits a search-to-profile reduction.

In a similar way, the results on the Slepian-Wolf coding problem from [56, 9] mentioned in Section 6,
imply that this problem admits a search-to-profile reduction. In general, it may happen that all the results
of the considered type can be effectivized. One may formulate the following bold conjecture:

Search-to-profile reduction. Given a tuple of strings (x1, . . . , xk) and the profile of a big-
ger tuple (x1, . . . , xk, y1, . . . , ym) for some y1, . . . , ym (but not the (y1, . . . , ym) themselves),
one can find (via a polynomial probabilistic algorithm) some y′1, . . . , y

′
m such that the tuple

(x1, . . . , xk, y
′
1, . . . , y

′
m) has profile logarithmically close to the one that is given.

Q15 Is this conjecture true or false? If it is false (it seems too optimistic to be true), what weaker versions
hold true?

5This is an effective procedure but its runtime is larger than any computable function. An effective procedure with a non-
computable runtime might look contradictory. But there is no paradox since the procedure works with the promise that its input is
(x,C(x)).

6In the papers [14, 36, 6, 50, 55], which (roughly speaking) look at this problem from various angles, the help information is
the seed of an extractor, or of a disperser (these are functions studied in the theory of pseudorandomness).

7Still, unfortunately, the decoding process, i.e., running the program p, is not efficient. This is unavoidable, since there are
strings for which the bounded-time complexity is significantly higher than the unbounded one.
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There are several special cases when this question could be asked. For example, one may ask whether
one can find effectively the messages for the Gray–Wyner information transmission problem when the pair
(x, y), its profile, and a point in its Gray–Wyner profile are given. Similar questions may be asked for
Wyner profile and extended profile; see also Q10 in Section 5. Note that for the Gray–Wyner profile the
messages could be found by exhaustive search since the requirements are computably enumerable. One can
also restrict in the Gray–Wyner problem (Fig. 4) the sum of the lengths of all three messages p, q, r and the
length of the message q that both recipients receive; this also leads to computably enumerable requirements
(and therefore exhaustive search is possible). Similarly, a string z′ in Q10 (if it exists) can be found by brute
force search given x and y and the complexity profile of (x, y, z). However, even if such a z′ exists, it is not
clear whether it can be found efficiently.

In the previous questions we assumed that we are only given the complexity profile for one specific tuple
of strings. We can extend the setting and consider an oracle that computes the complexity function C(x) for
every string x. It is known, for example, that this oracle permits to find in polynomial time, for each n, an
incompressible n-bit string x, see [10]. Can we do more with this oracle?

Q16 (Rather informal.) Which search problem can be solved efficiently (say, in probabilistic polynomial
time) with an oracle that computes C?

We finish this section with the remark that a similar reduction property has been very recently noticed
also in time-bounded Kolmogorov complexity [22, 28].

8 Secret key agreement

In information-theoretical cryptography, the basic objects (messages, secret keys, shares of the secret, and
so on) are represented by random variables, and the cryptographic strength of a secret key is measured by its
Shannon entropy. This approach has many practical and theoretical advantages, but also some limitations.
For example, if a random number generator produces a secret key that consists of only zeros, we cannot use
this specific key in practice. However, in the framework of the Shannon’s theory we have no vocabulary
to complain about such a key: an individual value of a random variable is irrelevant, only the probability
distribution in the whole makes sense.

In contrast, Kolmogorov complexity does allow us to talk about the “quality” of an individual instance
of a secret key. Surprisingly, we still have no consistently developed framework of theoretical cryptography
based on Kolmogorov complexity, even though some steps were done by Antunes et al. in [4], who trans-
lated several cryptographic primitives (the one-time pad, secret sharing) in the language of Kolmogorov
complexity. Some other results of this type were obtained by Muchnik in [33].

We discuss here one specific cryptographic primitive, namely secret key agreement (which is pretty well
studied in the context of Shannon’s approach (see the classical papers [1, 31] and more recent references in
the surveys [37, 49]), and recently in the framework of Kolmogorov complexity [45]). We focus on secret
key agreement for two parties (Alice and Bob). Let us assume that Alice and Bob possess some strings a
and b that may be dependent (have mutual information). They want to use this fact to establish a common
secret by communicating with each other via a public channel. They want to ensure that Eve, who initially
has no information on a and b but overhears all communication messages, does not know anything about
this common secret. In some natural setting it can be proven (under some minimal assumptions) that the
size of this common secret can not exceed I(a :b).

To make the question more formal, we must explain the “communication” between Alice and Bob in
terms of Kolmogorov complexity. One way to do it is to say that every message (sent by Alice or Bob)
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must be “simple” (i.e., must have small Kolmogorov complexity) given the input data of this party and the
previously received messages. More specifically, we consider a sequence of O(1) strings Π = (π1, . . . , πk).
Informally, π1 stays for the first message of Alice, π2 is the response of Bob, π3 is the second message of
Alice, etc. Formally we require that π1 is simple given a (Alice has no other information when π1 is sent),
π2 is simple given b and π1, then π3 is simple given a and π2 (we may add also π1 to the conditions, it does
not change anything since π1 is simple given a), etc. Then, if some string c (common secret) is now known
both to Alice and Bob (i.e., is simple with respect to a,Π and with respect to b,Π), but the external observer
has no information about it (I(c :Π) ≈ 0), then the complexity of c is at most I(a : b) with logarithmic
precision.

An alternative formalism uses the standard notion of a communication protocol. We assume Alice and
Bob fix in advance a communication protocol (which can be randomized, with private or public sources
of randomness), and then apply this protocol to the given inputs a and b. The transcript of the protocol
Π = (π1, . . . , πk) is a sequence of messages computed according to the protocol rules. Now the number
of messages (rounds) k can be an arbitrary number, not necessarily a constant. We assume that Eve knows
the protocol and can intercept each message (but, of course, Eve does not know a and b). It turns out that
in this setting the upper bound for the common secret remains the same: Alice and Bob cannot agree (with
non-negligible probability) on a secret key of size larger than I(a : b). And this size of the key is achievable:
there is a communication protocol that permits to Alice and Bob to get a secret key of size approximately
(again, with a logarithmic precision) I(a : b). (Technically, we must assume that the parties know in addition
to a and b the complexity profile of (a, b), which is only a logarithmic amount of information). The proofs
of the lower and upper bounds can be found in [45]. It is also known that the optimal communication
complexity of this problem (in the worst case) is min{C(a |b),C(b |a)}, see [21].

The following questions remain unsolved.

Q17 Find the optimal communication complexity for various important examples of (a, b), e.g., for a pair
of strings with a given Hamming distance.

Q18 We said above “of course, Eve does not know a and b.” But what if Eve knows something, i.e., she
has c with I((a, b) :c) > 0? In other words, what is the optimal size of the secret key that can be
achieved if Eve has some a priori information about a and b.

For example, the following setting is motivated by quantum cryptography: Alice and Bob hold n-bit
strings x = x1 . . . xn and y = y1 . . . yn, Eve could somehow learn xi and yi for a small fraction of indices
i, and in the remaining part (that Eve does not know) the bits xi and yi are significantly correlated. What
can Alice and Bob (who do not know which bits are visible to Eve) do to create a common secret unknown
to Eve, and what are the restrictions on the size of this secret and amount of communications needed?

In the multi-party version of secret key agreement we know how to compute the optimal size of the
common secret key that can be obtained by the parties, but, unlike the two-party version, we do not know
the communication complexity.

Q19 Find the optimal communication complexity in the multi-party of secret key agreement (see [45, 21]
for details).
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9 Kolmogorov complexity in bipartite graphs

Previously we considered purely information-theoretic properties of finite objects without any structure on
them. In this section we add such a structure in the form of a certain finite bipartite graph. This brings up
the following generic question: given a bipartite graph and given a left vertex of some known complexity,
what can we say about the distribution of complexities among its right neighbors? Let us look at several
instances of this question.

Consider the graph where left and right vertices are n-bit strings, and x and y are connected by an edge
if the Hamming distance dH(x, y) does not exceed some threshold d. Then the neighbors of some string x
form a Hamming ball of radius d centered at x. Consider the minimal complexity of (d-) neighbors of x.
For every x this minimal value is a decreasing function of d. These functions may be different for different
strings x; what functions may appear in this way? The answer is provided by algorithmic statistics (see [51]
for details).

Q20 Consider now the maximal complexity of a d-neighbor as a function of d, for a given vertex x. Which
functions appear in this way?

Some partial results are known. It was noted in [10] that Harper’s theorem (saying that Hamming balls
have minimal neighborhood in the Boolean cube among all sets of the same size) gives a lower bound for
this function (knowing the complexity of x, we can prove a lower bound for the maximal complexity in the
d-neighborhood), and this bound is tight. The tight upper bound is also known — as well as some other
partial results recently obtained by Kozachinskiy and Vereshchagin (private communication).

Instead of minimal or maximal complexity, we may consider the typical complexity of a d-neighbor. It
is known (see [40]) that this notion is well defined, i.e., for every x most of its d-neighbors have (almost)
the same complexity. This complexity is (for every x) a function of d.

Q21 Which functions of d can appear in this way?

Some tight lower bounds for these functions are found in [40].
More generally, one may investigate the possible distributions of complexity among the neighbors of a

given vertex.
Another interesting graph is formed by lines and points on the affine plane. Consider some finite field F

and an affine plane over F. The points on this plane are pairs (x, y) where x, y ∈ F; the lines are defined by
equations y = kx + b and x = c (vertical lines). A bipartite graph is formed: left vertices are lines, right
vertices are points, and edges connect incident line and point. If the field F has about 2n elements, then
a random left vertex (line) has complexity about 2n; the same is true for a random right vertex (point). A
random edge has complexity about 3n (since the incidence condition subtracts n bits of complexity).

We already have seen this graph in Section 4 when discussing common information: a random edge of
it, considered as a pair of finite objects (line and point), has non-extractable common information. We asked
there what is the Gray–Wyner profile (or extended profile, or Wyner profile) of a random edge.

It is known that the Gray–Wyner profiles of all random edges are the same. Indeed, it is shown in [35, 41]
that for edge-transitive graph of low complexity this profile is determined by the following combinatorial
property: what is the maximal number of edges in a combinatorial rectangle of size 2k × 2l. But we do not
know whether the extended profiles of random edges are the same.

The question that we discussed for the Hamming graph, makes sense also for lines and points graph:

Q22 What distribution of complexities may appear among the neighbors of a line of a given complexity?
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Some partial results are known here. One can prove that the maximal complexity of a point on a line of
complexity k is min(k+n, 2n)+O(log n). This can be considered as a finite counterpart for the result about
effective Hausdorff dimensions of points on a line of given effective Hausdorff dimension [29], though the
argument is much easier.

Note also that answers to all these questions may depend on the choice of a finite field F. One may also
consider an continuous version of the problem when we consider lines and points over R but with some
finite precision. This setting looks closer to the question about Hausdorff dimension mentioned above, but
the lower bound for the maximal complexity of points on a line (that we mentioned) does not work anymore.

10 Randomness deficiencies

This section is an outlier in the sense that here we speak about infinite objects (binary sequences). Still the
questions we mention are not well studied in the algorithmic randomness theory because of their quantitative
nature: we do not just look whether a sequence is random or not, but are interested in its randomness
deficiency (that is finite for random sequences and infinite for non-random ones). Let us explain what it
means.

One of the most remarkable achievements of algorithmic information theory is the definition (that goes
back to Martin-Löf) of randomness for individual objects (infinite binary sequences) and its characterization
(due to Schnorr and Levin, see [47] for the history for these developments) in terms of complexity. One
(probably the most popular) version of this characterization goes as follows: a sequence ω is Martin-Löf
random with respect to the uniform Bernoulli measure if and only if K(x) ≥ |x| − c for some c and all
prefixes x of ω. Here K(x) is the prefix complexity of x, and |x| stands for the length of x.

Soon it was realized (by Levin and Gács, see [18, 11]) that this result has a natural quantitative version.
One can define the universal expectation-bounded randomness test ω 7→ t(ω) as a maximal (up to a con-
stant factor) lower semicomputable non-negative real-valued function on infinite sequences that has finite
expected value (over uniform Bernoulli measure).8 The following result connects this test (with maximal
possible O(1)-precision) with prefix complexity of prefixes of ω:

log t(ω) = max
x is a prefix of ω

[|x| −K(x)].

In exponential scale this formula can be rewritten as

t(ω) = max
x is a prefix of ω

m(x)

P (x)

Here m(x) is the so-called discrete a priori probability, the maximal lower semicomputable non-negative
real function on strings that has finite sum; as Levin and later Chaitin have noted, m(x) = 2−K(x) with
maximal possible precision (up toO(1)-factors in both direction). By P (x) we denote the uniform Bernoulli
measure of the set of all extensions of the string x, i.e., P (x) = 2−|x|. In this form this formula allows
generalization for the case of arbitrary computable measure P ; one can also replace maximum by sum:

t(ω) =
∑

x is a prefix of ω

m(x)

P (x)

This remarkable (in its precision) result still leaves many question open.
8Lower semicomputability means that a function can be computably approximated from below; Bernoulli measure Bp is the

distribution of independent coin tossings with the probability of success p; when p = 1/2, we speak about uniform Bernoulli
distribution. See [11] for details.
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Q23 The original Martin-Löf definition corresponds to a slightly different notion of randomness test: a
universal probability-bounded test that is a maximal non-negative lower semicomputable function t
such that the event t(ω) ≥ c has probability at most 1/c for every positive c. Is it possible to find a
similar characterization of this kind of randomness deficiency in terms of complexities (plain, prefix,
monotone or some other ones)? It is known that expectation-bounded deficiency (in logarithmic scale,
defined as a logarithm of the corresponding universal tests) and probability-bounded deficiencies are
close to each other, but they do not coincide [39] and it is not known whether one can be somehow
expressed in terms of the other. We do not know also whether it is possible to find two sequences ω1

and ω2 such that the expectation-bounded deficiency of ω1 is bigger than for ω2, while the probability-
bounded deficiency of ω2 is bigger than for ω1.

Q24 There are other version of Schnorr–Levin characterization of random sequences: for example, they
are sequences for whose prefixes x the difference between |x| and monotone complexity KM(x) is
bounded. Here the monotone complexity can be understood in the sense of Levin; it can be also
replaced by a priori complexity KA(x). Do these results have a quantitative version similar to the
formula for randomness deficiency mentioned above?

Q25 One can go in the other direction: starting for a deficiency function d(ω) defined (in some way) on
infinite sequences ω, one can define deficiency of a finite sequence x as the minimal deficiency of
all its infinite extensions. This idea goes back to Kolmogorov: seeing a finite sequence of heads and
tails, we reject it as a possible outcome of a fair coin if all its possible extensions look dubious as
infinite random sequences. In this way we get a lower semicomputable deficiency function on finite
strings. Can we give a characterization of this function (with logarithmic or better precision) in terms
of complexities of finite strings (using some version of complexity)?

Q26 The previous question can be extended for randomness with respect to classes of measures. Con-
sider an effectively closed class of measures, for example, the class of Bernoulli measures Bp for all
p ∈ [0, 1] or the class of all shift-invariant measures on infinite sequences. Then one can naturally
define universal tests; for example, the universal expectation-bounded test for Bernoulli measures is
the maximal lower semicomputable non-negative real function on infinite binary sequences whose
expectation according to every Bernoulli measure is at most 1 (see [11] for the exact definition and
discussion). Can we relate those tests to complexities of finite strings? A natural idea (that goes back
to Kolmogorov) is to compare C(x) for a finite string x to the logarithm of the number of all strings
of the same length (as x) that have the same numbers of zeros and ones. In general, is it possible to
decide whether a bit sequence ω is Bernoulli random (has finite values of the universal Bernoulli test)
or not, knowing only the complexities of all its prefixes and the number of heads and tails in all its
prefixes?

For the class of all shift-invariant measures the situation is much more unclear: what properties of
a finite sequence of heads and tails make us reject the conjecture that it is generated by some shift-
invariant random process?

Q27 One can try to start with Levin–Gács formula for randomness deficiency and go in a different direction.
This formula is a quantitative version of a Schnorr–Levin “qualitative” complexity characterization of
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randomness. There are some other results about randomness that have natural quantitative versions
(e.g., the van Lambalgen theorem about randomness of pairs [5]; the image randomness characteriza-
tion [13]). Can one develop this theory systematically to get quantitative versions of other qualitative
results?
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