
Open Problems Column
Edited by William Gasarch

This Issue’s Column!
This issue’s Open Problem Column is by Lance Fortnow and its titled Worlds

to Die For: Open Oracle Questions for the 21st Century.

Request for Columns!
I invite any reader who has knowledge of some area to contact me and

arrange to write a column about open problems in that area. That area can be
(1) broad or narrow or anywhere in between, and (2) really important or really
unimportant or anywhere in between.

1

Worlds to Die Harder For
Open Oracle Questions for the 21st Century

Lance Fortnow

August 18, 2021

Abstract

Most of the interesting open problems about relationships between
complexity classes have either been resolved or have relativizable worlds
in both directions. We discuss some remaining open questions, updating
questions from a similar 1995 survey of Hemaspaandra, Ramachandran
and Zimand and adding a few new problems.

1 Introduction

Most of the interesting questions in complexity have relativized worlds in both
directions, like whether the polynomial-time hierarchy is infinite [Yao85, H̊as89],
or whether the Berman-Hartmanis isomorphism conjecture holds [FFK96, BBF98].

Some have questioned the importance of relativization after the non-relativizing
techniques of interactive proof systems [FS88, LFKN92]. However these tech-
niques have had limited use and in the thirty years hence we have not seen any
significant new non-relativizing techniques and there have been no new examples
of theorems that go against previously published relativization results.

For an introduction and defintions of relativization I recommend the original
oracle paper by Baker, Gill and Solovay [BGS75], the author’s survey on the
role of relativization in complexity [For94] and

In 1995, Lane Hemaspaandra, Ajit Ramachandran and Marius Zimand wrote
a survey entitled “Worlds to Die For” [HRZ95], giving a list of several open ques-
tions about the existence of oracles and random oracles that would make vari-
ous complexity classes true. We review progress in these questions in Section 5.
Even though 26 years have passed, only a few of the problems mentioned by
Hemaspaandra et al. have been fully solved showing the vast difficulty of these
problems.

2 The Complexity Zoo

The Complexity Zoo [Aar], created by Scott Aaronson, lists most, if not all, of
the known complexity classes. For the many classes mentioned in this survey I
recommend visiting the zoo if you are unfamiliar with them.

2

One can use the zoo itself for finding open questions, looking for the minimal
classes C and D where it is open whether C ⊆ D and whether there is an oracle
A such that CA 6⊆ DA.

Robert Sanders [San19] automated this process to generate open questions,
such as whether BQP has (non-quantum) interactive proofs. Since BQP is
in PSPACE [ADH97], languages in BQP have interactive proof systems in
the “real world” making the oracle question less interesting. Automating the
creation of open questions might reveal some good problems otherwise missed
but one needs to carefully check that the problems would reveal new insights
into complexity.

3 How to Solve Tough Oracle Questions

Underlying many oracle questions is a combinatorics one. In the most fa-
mous example, Yao’s paper “Separating the polynomial-time hierarchy by or-
acle” [Yao85] is heralded more for showing parity doesn’t have constant-depth
polynomial-size circuits. Some of the oracle questions below, specifically Prob-
lems 5.5 and 6.4, are hard because the underlying combinatorial problems are
difficult.

Another challenge for oracle constructions are trying to fulfill conflicting
requirements. For example in Problem 5.4, we know how to collapse the Boolean
hierarchy or make the polynomial-time hierarchy infinite with relativizations but
doing both at the same time conflict in ways we don’t know how to resolve.

One approach is to create the oracle first and then show it has the right
properties. Fenner, Fortnow and Kurtz [FFK94] used this approach to give the
first oracle relative to which the Berman-Hartmanis isomorphism conjecture
held. The “An Oracle Builders Toolkit” [FFKL03] by Steve Fenner, Lance
Fortnow, Stuart Kurtz and Lide Li, explores this approach in detail.

The questions in this survey have stymied the various attempts to settle
them and likely some clever new techniques will be needed.

4 The Extremes

These are oracles which push the limits of what we don’t know how to prove
and of which many other oracle results follow. Pushing these limits further are
good open problems.

4.1 P = PSPACE

Discovered by Baker, Gill and Solovay in the original oracle paper [BGS75].
Collapses everything between P and PSPACE.

P = NP = coNP = PH = ⊕P = PP = BQP = P#P = PSPACE = NPSPACE

3

4.2 Generic Oracles

First applied to computational complexity by Blum and Impagliazzo [BI87].
These oracles separate as much as possible. P 6= NP, the polynomial-

time hierarchy is infinite, PP is not in PNP, NP is not in ⊕P and much
more. Oddly enough they diagonalize against machines that need to fulfill
a promise condition and so with the appropriate construction one also gets
P = NP ∩ coNP = UP = BPP = BQP.

4.3 P = ⊕P and NP = EXP

First proved by Beigel, Buhrman and Fortnow [BBF98].
Relative to this oracle ZPP = ⊕EXP and the Berman-Harmanis isomor-

phism conjecture [BH77] holds (all NP-complete problems are reducible to each
other via invertible bijections).

4.4 P = NP and ⊕P = EXP

Discovered by Beigel and Maciel [BM99].
The polynomial-time hierarchy collapses to P and yet the exponential hier-

archy sits inside ⊕P.

4.5 P = ⊕P and BPP = EXPNP

Discovered by Buhrman and Torenvliet [BT00, Corollary 4.8].
No even very weak derandomization for BPP. Valiant-Vazirani puts NP in

RP⊕P but in this oracle NP is not even in coNP⊕P.

4.6 PRP = NEXP

Discovered by Buhrman, Fenner, Fortnow and Torenvliet [BFFT01].
No even very weak derandomization for RP. Implies PNP = PNEXP (also

implied by the next oracle).

4.7 PNP = ⊕P = PEXP

A strong version of Beigel’s oracle where PNP is not in PP [Bei91] (though the
entire polynomial-time is in PPP relative to any oracle [Tod91]) and PP is not
closed under Turing-reductions.

You can replace ⊕P with ModkP for any prime k in any of the above. We
don’t believe any of the statements to be true in the unrelativized world but all
of them remain open and would require nonrelativizing techniques to disprove.

4

5 Updates to Die For

A brief update on the problems asked by Hemaspaandra et al. [HRZ95]. We
refer you back to that paper for details on the problems.

5.1 Show that with probability one, the polynomial time
hierarchy is proper

Resolved by H̊astad, Rossman, Servedio and Tan [HRST17] who showed that a
random oracle will, with probability one, separate all the levels of the polynomial-
time hierarchy.

5.2 Construct an oracle relative to which BPTIME[n] =
BPTIME[n2].

Still open in its full generalization. Rettinger and Verbeek [RV01] show there
exists an oracle A such that BPPA

tt = BPTIMEA
tt(n), equality if the machines

only have truth-table (non-adaptive) access to the oracle.
You can get a separation (for all oracles) if you allow the machine a single

bit of advice, i.e.,
BPTIME(n2)/1 6= BPTIME(n)/1 (see [FS06]).

5.3 Show that relative to a random oracle there are secure
pseudorandom generators

Settled in the affirmative by Marius Zimand [Zim98].

5.4 Build an oracle such that the Boolean Hierarchy col-
lapses yet differs from the polynomial hierarchy

Remains open. We can show that if PNP[1] = PNP[2] then P = PNP [BF99]
and PH = Sp

2 ⊆ ZPPNP [FPS08] and these proofs relativize.

Nevertheless there still may be relativized world where PNP[1] = PNP[2]

and PNP 6= ZPPNP. To settle 5.4 in the negative, one would need relativizable
proofs of the following.

1. Prove the same consequence for any collapse of the Boolean hierarchy,
i.e., PNP[k] = PNP[k+1] for some k implies P = PNP and PH = Sp

2 ⊆
ZPPNP. I suspect this would follow with a careful analysis of the earlier
proofs.

2. Get the final collapse of ZPPNP to PNP. This would seem to require a
new technique.

5

5.5 Build an oracle relative to which PP⊕P (PSPACE.

Still open. This question is roughly equivalent to showing that any poly-
logarithmic degree polynomial over GF[2] has exponentially-small correlation
with Mod3, or some other problem in NC1. Jean Bourgain [Bou05] shows
exponentially-small correlation for degree slightly less than log. Bhowmick and
Lovett [BL15] proposed a potential barrier that could explain the difficulty.

5.6 Build a tally oracle T such that PT 6= NPT .

This one was a bit of a joke in the Hemaspaandra et al. survey as it is equivalent
to P 6= NP unrelativized. Still open.

5.7 Build an oracle A relative to which SPP has no com-
plete sets.

Resolved in the affirmative. Vereschagin [Ver93] showed that, modulo some
technical restrictions, that if there was an oracle making a class C different than
P and generic oracles collapse C and P then there is an oracle where C does
not have complete sets. Fenner, Fortnow, Kurtz and Li [FFKL03] showed these
conditions held for SPP.

6 A Few of My Favorite Open Oracle Questions

I’ve banged my head against the wall on all of these problems. Please help out.

6.1 Build an oracle where UP = NP and the polynomial-
time hierarchy is infinite

Suppose for every NP machine M there is another NP machine N such that
for all x if M(x) has an accepting path then

1. N(x) has a unique accepting path

2. The accepting path of N(x) encodes a single accepting path of M(x).

Hemaspaandra, Naik, Ogihara and Selman [HNOS96] show that under this con-
dition the polynomial-time hierarchy collapses to the second level.

NP = UP is similar but doesn’t require condition (2), the UP machine’s
accepting path may be unrelated to any accepting path of the NP machine. We
don’t know if NP = UP implies the polynomial-time hierarchy collapses, or a
relativized counterexample.

6

6.2 Build an oracle that separates Sp
2 from ZPPNP

Jin-Yi Cai [Cai07] has a clever proof that Sp
2 ⊆ ZPPNP and the original Sp

2

paper [RS98] shows PNP ⊆ Sp
2. Russell and Sundaram [RS98] also give a

relativizable proof that BPP ⊆ Sp
2 which implies an oracle separating PNP

from Sp
2 (follows from 4.5). Whether there is a relativizing proof showing that

ZPPNP ⊆ Sp
2 remains an interesting open problem.

6.3 Build an oracle where the polynomial-time hierarchy
looks like the arithmetic hierarchy

We know the structure of the arithmetic hierarchy in computability theory: for
all k, Σk 6= Σk+1 and Σk+1 ∩ Πk+1 are exactly the languages computable by a
Turing machine with an oracle for Σk.

Can we create an oracle relative to which the polynomial-time hierarchy has
the same structure, i.e., the hierarchy is infinite and Σp

k+1 ∩Πp
k+1 = PΣp

k for all
k ≥ 0?

Relative to a generic oracle, the polynomial-time hiearchy is infinite and
P = NP ∩ coNP [BI87] which suggested that generic oracles could give the
oracle for Problem 6.3. Fortnow and Yamakami [FY96] show this isn’t true,

Σp
k+1 ∩Πp

k+1 6= PΣp
k for k ≥ 1.

One can generalize this question in uncountably many ways. Let α =
α0α1 . . . be an infinite binary string. Build an oracle relative to which

1. The polynomial-time hierarchy is infinite.

2. For all k,

(a) If αk = 0 then Σp
k+1 ∩Πp

k+1 = PΣp
k .

(b) If αk = 1 then Σp
k+1 ∩Πp

k+1 6= PΣp
k .

Problem 6.3 asks to build an oracle for α = 0000 The only solved cases are
for generic oracles that satisfy the above for α = 0111 . . . and by straightforward
diagonalization for α = 1111 . . . There is no α for which we know no such oracle
exists.

On the other hand we can’t even rule out a relativizable proof that Σp
2∩Πp

2 =
PNP implies Σp

2 = Πp
2.

6.4 Is P 6= BQP relative to a random oracle?

This is widely believed to be true. If P = BQP relative to a random oracle
than BQP = BPP [FR99], and thus the factoring problem has an efficient
probabilistic algorithm.

Consider a variation: If P = PSPACE (unrelativized) then P = BQP
relative to a random oracle. This statement follows from Conjecture 6.1 below
about decision tree complexity.

7

Conjecture 6.1 For all p(x1, . . . , xn), polynomials of degree d over the reals
such that

1. For all (x1, . . . , xn) ∈ {0, 1}n, p(x1, . . . , xn) ∈ [0, 1].

2. For 0.99 fraction of the (x1, . . . , xn) ∈ {0, 1}n, |p(x1, . . . , xn)−1/2| ≥ 1/6.

There is a function f : {0, 1}n → {0, 1} of decision tree complexity polyno-
mial in d and log n such that for 0.51 fraction of the (x1, . . . , xn) ∈ {0, 1}n,
|p(x1, . . . , xn)− f(x1, . . . , xn)| ≤ 1/3.

Aaronson and Ambainis [AA14] give some evidence that Conjecture 6.1
might be false.

6.5 Build an oracle where for all f ∈#P, Pf 6= PNP

A language L is checkable if given a program P as an oracle there is a polynomial-
time probabilistic algorithm A such that for all x,

1. If P (x) 6= L(x) then AP (x) outputs “P is wrong on some input”.

2. If for all y, L(y) = P (y) then AP (x) outputs “P is correct on input x.”

Blum and Kannan [BK89] show that a language L is checkable if and only if
both L and L have multi-prover interactive proof systems where the provers
are computable in probabilistic polynomial-time with oracle access to L. Early
results on interactive proofs imply #P-complete, PSPACE-complete, EXP-
complete and Graph Isomorphism are all checkable among others. Whether
NP-complete problems are checkable is still a major open question and boils
down to Conjecture 6.2.

Conjecture 6.2 There is a multi-prover interactive proof system for SAT where
the provers are probabilistic polynomial-time with oracle access to SAT.

We already know Conjecture 6.2 fails relative to an oracle because Fortnow,
Rompel and Sipser [FRS94] give an oracle relative to which coNP has no multi-
prover interactive proof no matter how powerful the prover. But this doesn’t
give much evidence against Conjecture 6.2 since Lund, Fortnow, Karloff and
Nisan [LFKN92] show that coNP does have an interactive proof system.

There is a related complexity conjecture that may, or may not, shed light
on the checkability question.

Conjecture 6.3 Is there a function f ∈#P such that Pf = PNP?

Even an f such that NP ⊆ Pf ⊆ PH remains open.
One would hope that if such an f existed one could use it as a basis of an

interactive proof for SAT . Unfortunately it’s difficult to find an f in #P that
captures NP without counting solutions. Trying to find a relativized counterex-
ample seems equally difficult.

8

Acknowledgments

Thanks to Bill Gasarch who suggested this column, to Lane Hemaspaandra and
Marius Zimand for discussions of problems old (Section 5) and new, and to Fred
Green for updates on the polynomial questions in Section 5.5. Most of Section 4
first appeared in the author’s blog [For05].

References

[AA14] Scott Aaronson and Andris Ambainis. The need for structure in
quantum speedups. Theory of Computing, 10(6):133–166, 2014.

[Aar] S. Aaronson. Complexity Zoo. http://complexityzoo.net.

[ADH97] L. Adleman, J. DeMarrais, and M. Huang. Quantum computability.
SIAM Journal on Computing, 26(5):1524–1540, 1997.

[BBF98] R. Beigel, H. Buhrman, and L. Fortnow. NP might not be as easy as
detecting unique solutions. In Proceedings of the 30th ACM Sympo-
sium on the Theory of Computing, pages 203–208. ACM, New York,
1998.

[Bei91] R. Beigel. Relativized counting classes: relations among thresh-
olds, parity and mods. Journal of Computer and System Sciences,
42(1):76–96, 1991.

[BF99] H. Buhrman and L. Fortnow. Two queries. Journal of Computer
and System Sciences, 59(2):182–194, 1999. Special issue for selected
papers from the 13th IEEE Conference on Computational Complex-
ity.

[BFFT01] H. Buhrman, S. Fenner, L. Fortnow, and L. Torenvliet. Two oracles
that force a big crunch. Computational Complexity, 10(2):93–116,
2001.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P = NP
question. SIAM Journal on Computing, 4(4):431–442, 1975.

[BH77] L. Berman and J. Hartmanis. On isomorphism and density of NP
and other complete sets. SIAM Journal on Computing, 1:305–322,
1977.

[BI87] M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In
Proceedings of the 28th IEEE Symposium on Foundations of Com-
puter Science, pages 118–126. IEEE, New York, 1987.

[BK89] M. Blum and S. Kannan. Designing programs that check their work.
In Proceedings of the 21st ACM Symposium on the Theory of Com-
puting, pages 86–97. ACM, New York, 1989.

9

[BL15] Abhishek Bhowmick and Shachar Lovett. Nonclassical Polynomi-
als as a Barrier to Polynomial Lower Bounds. In David Zucker-
man, editor, 30th Conference on Computational Complexity (CCC
2015), volume 33 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 72–87, Dagstuhl, Germany, 2015. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[BM99] R. Beigel and A. Maciel. Circuit lower bounds collapse relativized
complexity classes. In Proceedings. Fourteenth Annual IEEE Con-
ference on Computational Complexity (Formerly: Structure in Com-
plexity Theory Conference) (Cat.No.99CB36317), pages 222–226,
1999.

[Bou05] Jean Bourgain. Estimation of certain exponential sums arising in
complexity theory. Comptes Rendus Mathematique, 340(9):627–631,
2005.

[BT00] Harry Buhrman and Leen Torenvliet. Randomness is hard. SIAM
Journal on Computing, 30(5):1485–1501, 2000.

[Cai07] J. Cai. Sp
2 ⊆ ZPPNP. Journal of Computer and System Sciences,

73(1):25 – 35, 2007.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes.
Journal of Computer and System Sciences, 48(1):116–148, 1994. Spe-
cial issue for selected papers from the 6th IEEE Structure in Com-
plexity Theory Conference.

[FFK96] S. Fenner, L. Fortnow, and S. Kurtz. The isomorphism conjecture
holds relative to an oracle. SIAM Journal on Computing, 25(1):193–
206, 1996.

[FFKL03] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s
toolkit. Information and Computation, 182(2):95–136, 2003.

[For94] L. Fortnow. The role of relativization in complexity theory. Bul-
letin of the European Association for Theoretical Computer Science,
52:229–244, February 1994. Computational Complexity Column.

[For05] L. Fortnow. Extreme oracles. Computational Complexity Weblog,
August 2005.

[FPS08] L. Fortnow, A. Pavan, and S. Sengupta. Proving SAT does not
have small circuits with an application to the two queries problem.
Journal of Computer and System Sciences, 74(3):358–363, May 2008.
Special issue for selected papers from the 18th IEEE Conference on
Computational Complexity.

10

[FR99] L. Fortnow and J. Rogers. Complexity limitations on quantum com-
putation. Journal of Computer and System Sciences, 59(2):240–252,
1999.

[FRS94] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover
interactive protocols. Theoretical Computer Science A, 134:545–557,
1994.

[FS88] L. Fortnow and M. Sipser. Are there interactive protocols for co-NP
languages? Information Processing Letters, 28:249–251, 1988.

[FS06] L. Fortnow and R. Santhanam. Recent work on hierarchies for se-
mantic classes. SIGACT News, 37(3):36–54, September 2006.

[FY96] L. Fortnow and T. Yamakami. Generic separations. Journal of Com-
puter and System Sciences, 52(1):191–197, 1996.

[H̊as89] J. H̊astad. Almost optimal lower bounds for small depth circuits.
In S. Micali, editor, Randomness and Computation, volume 5 of Ad-
vances in Computing Research, pages 143–170. JAI Press, Green-
wich, 1989.

[HNOS96] Lane A. Hemaspaandra, Ashish V. Naik, Mitsunori Ogihara, and
Alan L. Selman. Computing solutions uniquely collapses the poly-
nomial hierarchy. SIAM Journal on Computing, 25(4):697–708, 1996.

[HRST17] Johan H̊astad, Benjamin Rossman, Rocco A. Servedio, and Li-Yang
Tan. An average-case depth hierarchy theorem for boolean circuits.
J. ACM, 64(5), August 2017.

[HRZ95] Lane A. Hemaspaandra, Ajit Ramachandran, and Marius Zimand.
Worlds to die for. SIGACT News, 26(4):5–15, December 1995.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM, 39(4):859–868,
1992.

[RS98] A. Russell and R. Sundaram. Symmetric alternation captures BPP.
Computational Complexity, 7(2):152–162, 1998.

[RV01] Robert Rettinger and Rutger Verbeek. Monte-carlo polynomial ver-
sus linear time - the truth-table case. In Rūsiņš Freivalds, editor,
Fundamentals of Computation Theory, pages 311–322, Berlin, Hei-
delberg, 2001. Springer Berlin Heidelberg.

[San19] Jr. Sanders, Robert J. Complexity Zoology. PhD thesis, University
of California at Davis, 2019. Code and output for expert system
at https://rjsworks.wordpress.com/complexity-zoology/. Copyright
- Database copyright ProQuest LLC; ProQuest does not claim copy-
right in the individual underlying works; Last updated - 2020-11-03.

11

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM
Journal on Computing, 20(5):865–877, 1991.

[Ver93] N. Vereshchagin. Relativizable and nonrelativizable theorems in the
polynomial theory of algorithms. Izv. RAN. Ser. Mat., 57(2):51–90,
1993.

[Yao85] A. Yao. Separating the polynomial-time hierarchy by oracles. In Pro-
ceedings of the 26th IEEE Symposium on Foundations of Computer
Science, pages 1–10. IEEE, New York, 1985.

[Zim98] Marius Zimand. Efficient privatization of random bits. In Rusins
Freivalds, editor, Randomized Algorithms: Proceedings of Interna-
tional Workshop Brno, Czech Republik, August 27-28. Electronic
Colloquium on Computational Complexity, 1998.

12

	Introduction
	The Complexity Zoo
	How to Solve Tough Oracle Questions
	The Extremes
	P = PSPACE
	Generic Oracles
	¶= PPPP and NPNPNPNP= EXPEXPEXPEXP
	¶= NPNPNPNP and PPPP= EXPEXPEXPEXP
	¶= PPPP and BPPBPPBPPBPP= EXPEXPEXPEXP NPNPNPNP
	¶ RPRPRPRP= NEXPNEXPNEXPNEXP
	¶ NPNPNPNP= PPPP= PEXPPEXPPEXPPEXP

	Updates to Die For
	Show that with probability one, the polynomial time hierarchy is proper
	Construct an oracle relative to which BPTIMEBPTIMEBPTIMEBPTIME[n]= BPTIMEBPTIMEBPTIMEBPTIME[n2].
	Show that relative to a random oracle there are secure pseudorandom generators
	Build an oracle such that the Boolean Hierarchy collapses yet differs from the polynomial hierarchy
	Build an oracle relative to which PPPPPPPP PPPP PSPACEPSPACEPSPACEPSPACE.
	Build a tally oracle T such that ¶T= NPNPNPNPT.
	Build an oracle A relative to which SPPSPPSPPSPP has no complete sets.

	A Few of My Favorite Open Oracle Questions
	Build an oracle where UPUPUPUP= NPNPNPNP and the polynomial-time hierarchy is infinite
	Build an oracle that separates S2pS2pS2pS2p from ZPPZPPZPPZPP NPNPNPNP
	Build an oracle where the polynomial-time hierarchy looks like the arithmetic hierarchy
	Is ¶= BQPBQPBQPBQP relative to a random oracle?
	Build an oracle where for all f #P#P#P#P, ¶f=¶ NPNPNPNP

