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Request for Columns! I invite any reader who has knowledge of some area to contact me and arrange
to write a column about open problems in that area. That area can be (1) broad or narrow or anywhere
inbetween, and (2) really important or really unimportant or anywhere inbetween.

1 Introduction

Inspired by an open question at the 2011 Bertinoro workshop [22], the last decade has seen an explosion
of interest in using streaming algorithms for approximating constraint satisfaction problems (CSPs). Some
results we know in this area include:

• Single-pass lower bounds for Max-Cut [32, 28, 29, 27],

• Multi-pass lower bounds for Max-Cut [2, 1, 6, 14] and other CSPs [15],

• Algorithms and lower bounds for approximating Max-DiCut [19, 7, 37, 36, 35],

• Quantum algorithms and lower bounds for Max-Cut and Max-DiCut [24, 25, 26],

• Results on other specific CSPs, including unique games ([18]), monarchy-like predicates ([9]), and
Max-kAnd ([41]),

• Dichotomy theorems and results for general CSPs [8, 10, 11],

and various other results, including lower bounds for ordering CSPs (including Max-Acyclic-Subgraph
and Max-Betweenness) [40], for solving CSPs exactly [47, 44, 33], and for solving CSPs approximately on
dense instances [3]. See the surveys [39, 43, 46] for some (perhaps already out of date!) exposition.

In this column, I highlight nine “frontier” conjectures that have emerged in recent works in this area
(and give some brief overviews of the notions needed to understand the questions). I will do my best to cite
conjectures if they already appear in published work; some appear may here for the first time.
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2 Constraint satisfaction problems

Constraint satisfaction problems (CSPs) capture a broad class of computational problems. In this column,
we will only consider maximization CSPs; these include numerous well-studied problems such as Max-Cut,
Max-DiCut, Max-kSat, Max-kXor, Max-qColoring, and Max-qUniqueGames.1 These problems,
and their hardness of approximation, have been studied extensively throughout complexity theory; see
e.g. [23, 12, 17, 45, 20, 5] (a small, chronological sampling of many, many papers). Maximization CSPs are
also intimately connected with the unique games conjecture [30, 31, 34] and with probabilistically checkable
proofs [13].

In this column, we restrict further to the case of Boolean CSPs, which keeps things interesting while
simplifying notation. Here is the general setup we consider. Let k ∈ N be a (typically small) number,
the arity, and let Π ⊆ ({0, 1}k){0,1} denote a set of predicate functions {0, 1}k → {0, 1}. For n ∈ N, a
constraint is a tuple C = (j1, . . . , jk;π) for distinct j1, . . . , jk ∈ [n] and π ∈ Π. An assignment is a vector
x = (x1, . . . , xn) ∈ {0, 1}n, and x satisfies the constraint C = (j1, . . . , jk;π) iff π(xj1 , . . . , xjk) = 1. An
instance Φ consists of a list of constraints, and the value of an assignment x ∈ {0, 1}n on Φ is

valΦ(x) := Pr
C∼Φ

[x satisfies C],

(here the distribution on C is uniform over all constraints, or sometimes Φ might also specify a weight
distribution). The goal of the problem Max-CSP(Π) is to approximate the quantity

max-val(Φ) := max
x∈{0,1}n

valΦ(x),

the maximum value of any assignment. Specifically, we say v ∈ [0, 1] is an α-approximation for Max-CSP(Π)
if α ·max-val(Φ) ≤ v ≤ max-val(Φ). We let

αtriv(Π) := lim
n→∞

[
inf

Φ, Max-CSP(Π) inst. on n vars.
max-val(Φ)

]
denote the so-called “trivial approximation ratio” for Π; this is, informally, the best possible lower bound on
max-val(Φ) which does not actually depend on Φ. Note that for every ε > 0 and large enough n, the value
αtriv(Π)− ε is always a (αtriv(Π)− ε)-approximation for Max-CSP(Π). The complexity-theoretic question
we are interested in is: Are (αtriv(Π) + ε)-approximations possible, and if so, how large can ε be?

Examples of CSPs. The definition in the previous paragraph captures a wide array of CSPs, but it turns
out that even very simple special cases are quite interesting from a complexity-theoretic perspective. The
simplest interesting CSP is Max-Cut, wherein k = 2 and Π = {Cut} where Cut(x1, x2) := x1⊕ x2 (where
⊕ is the binary Xor operation). (Equivalently, Cut(x1, x2) = 1 iff x1 6= x2.) The second simplest CSP
is Max-DiCut, where again k = 2 but Π = {Dicut} where Dicut(x1, x2) := 1[x1 = 1 ∧ x2 = 0] (equiv.,
Dicut(x1, x2) = x1 ∧ x2).

Here is another interesting example: For k ∈ N and b ∈ {0, 1}k, let Notb : {0, 1}k → {0, 1}k be the
function Notb(x1, . . . , xk) := (x1 ⊕ b1, . . . , xk ⊕ xk). (It is useful to think of Notb as placing negations
on some variables. For instance, Not011(x1, x2, x3) = (x1, x2, x3).) Let kAND : {0, 1}k → {0, 1} be the

function kAND(x1, . . . , xk) =
∧k
i=1 xi. In the Max-kAnd problem, Π = {kAND◦Notb : b ∈ {0, 1}k}. (For

instance, 2AND ◦Not01 = Dicut.)
Note that Max-Cut and Max-DiCut both involve only one predicate. Further, the predicate Cut

is symmetric to reordering its inputs. Thus, it simplifies notation to imagine Max-Cut constraints as
unordered pairs {j1, j2} and Max-DiCut constraints as ordered pairs (j1, j2). Correspondingly, we can
view the input to a Max-Cut problem as an undirected graph G on vertex-set [n] and the input to a
Max-DiCut problem as a directed graph G on [n], and refer to the constraints in these problems as edges.

1By “maximization”, we mean that the goal is to determine (or approximate) the maximum satisfiable fraction of constraints.
A related problem is deciding whether there exists an assignment satisfying all constraints; a dichotomy theorem for such
problems was shown in the seminal work of Schaefer [38], who showed that every (Boolean) such problem is either in P or is
NP-complete. Creignou [12] established a similar theorem for Boolean maximization CSPs.
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It is not hard to check that αtriv(Max-Cut) = 1
2 , αtriv(Max-DiCut) = 1

4 , and αtriv(Max-kAnd) = 1
2k .

(For instance, for Max-Cut, a random graph G with Ωε(n) edges typically has max-val(G) ≤ 1
2 + ε

2 , while for
every graph G, a uniformly random assignment x ∈ {0, 1}n has E valG(x) = 1

2 .) Goemans and Williamson

[17] famously showed that very nontrivial ( 2
π max0≤θ≤π

θ
1−cos θ ≈ 0.878-)approximations to Max-Cut are

possible in polynomial time, and subsequent decades have seen extensive work on the polynomial-time
approximability of these problems; beating this ratio is known to be NP-hard assuming the unique games
conjecture [31].

3 Streaming algorithms

In this column, we are interested in the Max-CSP(Π) problem in a specific algorithmic model, namely, the
streaming model. In this model, the algorithm has the following kind of access to an input instance Φ: First,
it receives the number of variables n in Φ, and then it receives the constraints C1, . . . , Cm in Φ one by one
(in a possibly adversarial order). Between receiving constraints Ci and Ci+1, the algorithm may only store
s bits of internal memory state, where s is a (typically small) function of n.2 At the end of the stream, the
algorithm is asked to output an α-approximation to max-val(Φ); the complexity-theoretic question is how
much space is required to achieve particular values of α.

Formalizing this is not difficult: For fixed n, a deterministic algorithm for Max-CSP(Π) is a pair
(Alg : C × {0, 1}s → {0, 1}s, Output : {0, 1}s → [0, 1]) where C is the set of possible constraints for Π.
The algorithm starts at some initial state S0; as constraints arrive, the state Sj+1 ← Alg(Cj , Sj) updates
iteratively, and the final output is Output(Sj). A randomized algorithm for Max-CSP(Π) is a distribution
over deterministic algorithms. In this column, we are concerned with algorithms achieving, say, 2

3 probability
of outputting correct approximations.

Standard sparsification arguments show that for any Max-CSP(Π) instance Φ, if Φ is a “subsampled”
random instance with m = Θ(n/ε2) constraints, each of which is sampled i.i.d. uniformly from Φ, then
w.h.p. |max-val(Φ)−max-val(Φ)| ≤ ε. This essentially gives the following algorithmic result:

Theorem 3.1 (Folklore, see e.g. [10]). For every constraint family Π and ε > 0, there is an (1 − ε)-
approximation streaming algorithm for Max-CSP(Π) in O(n log n/ε2) bits of space.

Remark 3.2. Our definition of the streaming model makes no assumptions about the algorithm’s running
time, meaning that an algorithm can calculate max-val(Φ) exactly (even though this problem is NP-hard). ♦

On the other end of the spectrum, simply outputting the trivial approximation αtriv(Max-CSP(Π)) uses
zero space and achieves an (αtriv(Max-CSP(Π)) − ε)-approximation for ε > 0. The “nontrivial” regime,
therefore, is using space ω(1) and o(n log n) to get approximation ratios αtriv(Max-CSP(Π)) < α ≤ 1. For
some CSPs, like Max-Cut, it appears that this is essentially impossible [28, 27, 14], and the interesting
questions are about proving lower bounds with optimal parameters (see §§4 and 5). For other CSPs, like
Max-DiCut, nontrivial approximations are possible [19, 7, 11, 36], and there are many open questions on
tradeoffs between streaming parameters and the approximation ratio (see §7 below).

Variant models. There are a few interesting variations on the streaming model we described above. At
times, we make the model more generous to algorithms:

• assuming the provided list of constraints in Π is uniformly randomly ordered (as opposed to adversar-
ially ordered),

• assuming the instance Π is “bounded-degree”, meaning that every individual variable i ∈ [n] appears
in only O(1) constraints,

• allowing the algorithm to make multiple passes over the list of constraints C1, . . . , Cm.

Conversely, when proving lower bounds, we might need to make more stringent assumptions on possi-
ble algorithms. Specifically, a sketching algorithm is a special type of streaming algorithm describable

2In this column, space is always measured in bits.
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by functions Compress : C → {0, 1}s and Compose : {0, 1}s × {0, 1}s → {0, 1}s such that Alg(S,C) =
Compose(S, Compress(C)) and:

Compose(Compress(C1), Compose(Compress(C2), Compress(C3)))

= Compose(Compose(Compress(C1), Compress(C2)), Compress(C3)).

Informally, this rules out streaming algorithms that treat constraints differently depending on where they
appear in the stream.3

Why streaming CSPs? There are a few reasons for why it is so interesting to study the approximability
of CSPs via streaming algorithms. By ignoring time complexity, we can prove (unconditional!) lower bounds
against streaming algorithms; these can be viewed as information-theoretic limits on the extent to which a
Max-CSP(Π) instance Φ can be compressed while maintaining enough information to recover max-val(Φ).
Indeed, all existing streaming lower bounds we cite in this column are unconditional and proven via tech-
niques from communication complexity. At the same time, streaming algorithms can achieve nontrivial
approximations for many problems, including Max-DiCut ([19]). Progress on streaming algorithms for
CSPs has employed ideas from sketching, sampling, local, and distributed algorithms; in turn, this progress
has led to simpler polynomial-time approximation algorithms for some problems [4]. See Remark 6.1 below
for some (very rough) intuition on why some CSPs admit algorithms in the streaming setting and others do
not.

4 Single-pass, linear(ish)-space streaming lower bounds

Recall that Max-Cut is the “simplest interesting” example of a CSP, and that the trivial approximation
threshold for Max-Cut is αtriv(Cut) = 1

2 . It turns out that in the (sublinear-space) streaming setting,
doing any better than a trivial 1

2 -approximation for Max-Cut is very hard. After a significant line of
work [32, 28, 29, 27], the strongest single-pass lower bounds for Max-Cut which we currently know are the
following:

Theorem 4.1 (Kapralov and Krachun [27]). For every ε > 0, every single-pass adversarial-order streaming
algorithm which ( 1

2 + ε)-approximates Max-Cut uses Ω(n) space.

Theorem 4.2 (Kapralov, Khanna, and Sudan [28]). For every ε > 0, every single-pass random-order
streaming algorithm which ( 1

2 + ε)-approximates Max-Cut uses Ω(
√
n) space.

Note the comparative weaknesses of the two bounds: The first holds only for adversarial-order streams
(but in o(n) space), and the second holds only in o(

√
n) space (but in randomly-ordered streams). It is

natural to ask whether the limitations in Theorems 4.1 and 4.2 are artificial, or whether we can generalize
both bounds simultaneously into a single lower bound:

Conjecture 1

For every ε > 0, every single-pass random-order streaming algorithm which ( 1
2 + ε)-approximates

Max-Cut uses Ω(n) space.

Remark 4.3. There are interesting technical reasons for why assuming adversarial input ordering and/or
o(
√
n)-space makes it easier to prove streaming lower bounds. We will not delve deeply into lower bound

techniques in this column, but we remark that the reasons are “real” for other CSPs: we know that from [36,

37] that for the related Max-DiCut problem, allowing either random input ordering or Õ(
√
n) space strictly

increases the achievable approximation ratio (vs. what o(
√
n)-space, adversarial-ordering algorithms can

achieve). ♦

3The reasons we consider sketching algorithms are twofold. Firstly, many natural algorithms for streaming CSPs are sketching
algorithms [19, 7, 11, 36]. Secondly, sketching algorithms can be simulated in the simultaneous communication model. In turn,
this model can be simulated by the sequential communication model (which can also simulate general streaming algorithms).
It is often easier to prove lower bounds in the simultaneous model.
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All known lower bounds for approximating CSPs via streaming algorithms, including Theorems 4.1
and 4.2, use the following framework: Define two distributions DYes and DNo over streams of constraints,
show that w.h.p. there is a large gap between the Max-CSP(Π) values of the corresponding instances, and
then show that these distributions are indistinguishable in the streaming model of interest via a reduction
from a hard one-way communication problem. Naturally, technical details of the “source” communication
problem have significant impacts on the exact type of hardness we get for the “target” streaming problem
(CSP approximation).

In the proof of Theorem 4.1, DYes and DNo have order-sensitive definitions. More precisely, each stream
in the support of DYes and DNo can be divided into O(1) successive chunks such that within each chunk,
the corresponding edges form a matching. The input distributions used in Theorem 4.2 do not have this
structure, which turns out to make proving lower bounds hairier. Morally, this is why the authors of [28]
had to “settle” for a o(

√
n)-space lower bound. This gap between

√
n space and n space is a common theme

for several of the conjectures in this column.

Remark 4.4. Conjecture 1 would imply lower bounds for ( 1
2 + ε)-approximating Max-DiCut with single-

pass o(n)-space random-order streaming algorithms (via the trivial reduction that randomly directs each
edge); this would demonstrate the tightness of the random-ordering streaming algorithm for Max-DiCut
in [35]. ♦

Another conjecture about lower bounds for Max-Cut with single-pass algorithms is the following:

Conjecture 2

For every ε > 0, every single-pass adversarial-ordering streaming algorithm which ( 1
2 +ε)-approximates

Max-Cut uses Ω(n log n) space.

I.e., we hope to improve over Theorem 4.1 by an additional logarithmic factor in the space usage. This
would match the space usage of the generic sparsifier-based (1−ε)-approximation for all CSPs (Theorem 3.1).

5 Multi-pass streaming lower bounds

For a long time, despite some works [2, 1] making partial progress, we seemed very far from any full under-
standing of the hardness of approximating Max-Cut once algorithms are allowed more than one pass over
the input distribution. This changed with the recent breakthrough work of Fei, Minzer, and Wang [14], who
proved the following amazing result:

Theorem 5.1 (Fei, Minzer, and Wang [14]). For every ε > 0, every k-pass, s-space streaming algorithm
which ( 1

2 + ε)-approximates Max-Cut has ks = Ω( 3
√
n).

The proof of [14] introduces some very novel ideas to the study of streaming CSP approximations, includ-
ing an argument which formalizes some folklore intuition about streaming algorithms for Max-Cut: Optimal
algorithms essentially just use their memory space to remember increasingly large connected components in
the graph, and then search for odd-length cycles in these components as they keep seeing additional edges.
Thus, the task of proving lower bounds against arbitrary algorithms morally reduces to proving lower bounds
only against these algorithms.4

There are numerous interesting questions following up on [14]. For instance, it is not clear at all what
happens once we allow ω( 3

√
n) space and O(1) passes. For starters, we conjecture the following, which would

generalize the o(n)-space lower bound for a single pass in Theorem 4.1:

4[27] also includes a very nice analysis of these “component-growing” algorithms in the single-pass setting. It would be
very interesting if the reduction to component-growing protocols in [14] could be reworked into the single-pass setting, giving
a simpler proof of the [27] result for general algorithms.
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Conjecture 3

For every ε > 0, every two-pass, adversarial-order streaming algorithm which ( 1
2 + ε)-approximates

Max-Cut uses Ω(n) space.

It is also interesting to consider how crucial the 3
√
n-space threshold in Theorem 5.1 is. Perhaps one could

prove the following:

Conjecture 4

For every ε > 0, every k-pass, s-space streaming algorithm which ( 1
2 + ε)-approximates Max-Cut has

ks = Ω(
√
n).

However, to my current knowledge, there are multiple places where the [14] argument breaks beyond 3
√
n

space, and so proving Conjecture 4 may be very hard.

Remark 5.2. There is a folklore result which shows that the hard distributions DYes and DNo used in [14]
to prove Theorem 5.1 (which are roughly the same instances as those used in [28, 27] to prove Theorems 4.1

and 4.2) are actually distinguishable in Õ(
√
n) space and Õ(1) passes. Very roughly, in this regime, one

can take O(
√
n) random walks of length O(log n) in the input graph and find odd-length cycles in DNo via

looking at collisions among the walks’ endpoints. This is why our Conjecture 4 goes only up to the
√
n

threshold. ♦

Beyond
√
n space, it is much less clear what should happen. One reasonably safe conjecture might be

the following:

Conjecture 5

For every C > 0, there exists some ε > 0 such that every streaming algorithm which (1 − ε)-
approximates Max-Cut uses Ω(nC) passes or Ω(n) space.

See also [42, Rmk. 1.5] for discussion on semidefinite-programming-based multi-pass algorithms for
Max-Cut.

6 More o(
√
n)-space streaming lower bounds

It turns out that Max-DiCut behaves very differently than Max-Cut in the streaming setting: It admits
nontrivial approximations, while Max-Cut does not. Some intuition for this is the following:

Remark 6.1. A directed graph G is satisfiable for Max-DiCut iff every vertex has either all outgoing
or all incoming edges. Thus, it is easy to detect locally whether a Max-DiCut instance is not perfectly
satisfiable, i.e., by just looking at the neighborhood of every vertex independently. Max-Cut does not
have such a nice characterization: A graph G is bipartite (a.k.a., is perfectly satisfiable for Max-Cut) iff it
contains no odd cycles, and so certifying unsatisfiability for Max-Cut requires finding an odd-length cycle,
which, in a sparse graph, might have length Ω(log n). Thus, very roughly, it is possible to “reason locally”
about Max-DiCut, while Max-Cut requires an algorithm to “reason globally”. ♦

Building on [19], Chou, Golovnev, and Velusamy [7] proved the following characterization for Max-DiCut:

Theorem 6.2 (Chou, Golovnev, and Velusamy [7]). For every ε > 0, there is an O(log n)-space sketching
algorithm which ( 4

9−ε)-approximates Max-DiCut, but every streaming algorithm which ( 4
9 +ε)-approximates

Max-DiCut uses Ω(
√
n) space.

Here the pesky o(
√
n)-space threshold pops up again.5 Chou, Golovnev, Sudan, and Velusamy [11]

5The [7] algorithm is based on a quantitative form of the observation in Remark 6.1. It measures a quantity called the
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generalized the [7] result into a dichotomy theorem between Õ(1) and o(
√
n)-space for sketching algorithms

for all CSPs (!):

Theorem 6.3 (Chou, Golovnev, Sudan, and Velusamy [11]). For every k ∈ N, predicate family Π ⊆
({0, 1}k){0,1}, and α ∈ [0, 1], either:

1. For every ε > 0, there is a sketching algorithm (α − ε)-approximating Max-CSP(Π) in O(polylog n)
space.

2. For every ε > 0, every sketching algorithm which (α + ε)-approximates Max-CSP(Π) uses Ω(
√
n)

space.

Remark 6.4. [11] also describes an algorithm for deciding whether Item 1 or Item 2 applies, which runs
in polynomial space in the relevant parameters. ♦

Note that the general lower bound (Item 2 in Theorem 6.3) only holds against sketching algorithms.
The authors of [11] also provide technical conditions under which lower bounds hold more generally against
streaming algorithms. These conditions recover all previously known o(

√
n)-space streaming lower bounds

([28, 18, 7]), but we appear far from knowing whether Item 2 holds against streaming algorithms for all Π
and α. Hence, it makes sense to examine some CSPs for which the currently-known sketching lower bounds
(à la [11]) are stronger than the currently-known streaming lower bounds.

For instance, using the [11] characterization, Boyland, Hwang, Prasad, Singer, and Velusamy [4] proved
the following:

Theorem 6.5 (Boyland, Hwang, Prasad, Singer, and Velusamy [4]). For every ε > 0, there is an O(log n)-
space sketching algorithm which ( 2

9 − ε)-approximates Max-3And, but every sketching algorithm which
( 2

9 + ε)-approximates Max-3And uses Ω(
√
n) space.

A natural follow-up conjecture (which did appear in [4]) is the following:

Conjecture 6

For every ε > 0, every single-pass streaming algorithms which ( 2
9 + ε)-approximates Max-3And uses

Ω(
√
n) space.

In fact, [4] contains a general theorem of this form with an explicit constant for Max-kAnd for every k.

Remark 6.6. [4] does use the [11] technical condition to show a streaming lower bound for ( 2
9 + ε)-

approximating Max-3And when ε > 0.0141, but they also show that the condition cannot give a full
2
9 -approximation lower bound. ♦

Remark 6.7. I am aware of unpublished work of Raghuvansh Saxena that shows that DYes and DNo

distributions constructed from the procedure in [11] for sketching Max-3And are indeed distinguishable via
streaming algorithms. [4] shows that this pair of the distribution is the unique “[11]-type” pair giving a
( 2

9 + ε)-approximation sketching lower bound. ♦

Conversely, refuting Conjecture 6 by demonstrating a streaming algorithm which strictly outperformed
all sketching algorithms would of course also be very interesting.

A related example is the monarchy function

kMonarchy(x1, . . . , xk) :=

(
k∧
i=2

xi

)
∨

(
x1 ∧

(
k∨
i=2

xi

))
.6

We define the CSP Max-kMonarchy := Max-CSP(Π) with Π := {kMonarchy ◦ Notb}b∈{0,1}k . Note

that αtriv for this CSP is 1
2 . Chou, Golovnev, Shahrasbi, Sudan, and Velusamy [9] studied this (and related)

functions vis-a-vis the [11] dichotomy theorem, and showed the following approximation resistance result:

average bias of a directed graph, which detects whether typical vertices have either almost all outgoing or almost all incoming
edges.

6Think of this as a voting scheme where there is 1 monarch and k − 1 subjects. x1 is the monarchs’s vote and each xi for
i ∈ {2, . . . , k} is subject i’s vote. The vote passes if all the subjects vote affirmatively, or if the monarch votes affirmatively and
at least one subject does too.
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Theorem 6.8 (Chou, Golovnev, Shahrasbi, Sudan, and Velusamy [9]). For every k ≥ 5 and ε > 0, every
single-pass sketching algorithm which ( 1

2 + ε)-approximates Max-kMonarchy uses Ω(
√
n) space.

We naturally conjecture an analogue of Conjecture 6 for this problem:

Conjecture 7

For every k ≥ 5 and ε > 0, every single-pass streaming algorithm which ( 1
2 + ε)-approximates

Max-kMonarchy uses Ω(
√
n) space.

(See also [42, Rmk. 1.7] for discussion of algorithms for Max-kMonarchy which use o(n) space.) Proving
(or refuting) these conjectures would go a long way towards understanding the extent to which the [11]
dichotomy theorem (Theorem 6.3) characterizes all streaming algorithms, not just sketching algorithms.

7 More lower bounds beyond o(
√
n) space

There are many further interesting questions that pop up once we move into the regime of Õ(
√
n) and

beyond space (but still o(n)). In this regime, we do have strong streaming lower bounds for Max-Cut
(Theorem 4.1 due to [27]) and more generally for Max-CSP(Π) when Π has the so-called “wideness”

property [10]. At the same time, Õ(
√
n) space is enough to enable some improved approximations, in

particular for Max-DiCut [37, 36] and probably also for Max-kAnd [41]. Towards the question of strong
o(n)-space lower bounds, a very strong conjecture would be the following:

Conjecture 8

Every predicate family Π which cannot be nontrivially approximated by o(
√
n)-space sketching algo-

rithms (à la [11]) also cannot be nontrivially approximated by o(n)-space streaming algorithms.

We would not be surprised if this conjecture is false, but having simple counterexamples would also help
orient future study on these types of problems.

Towards the question of Max-DiCut approximability, Saxena, Singer, Sudan, and Velusamy [36] (build-
ing on their earlier work [37], and combined with some numerical work due to [16, 41, 21]) proved the
following theorem:

Theorem 7.1 (Saxena, Singer, Sudan, and Velusamy [36]). There is a 0.485-approximation single-pass

Õ(
√
n)-space adversarial-ordering streaming algorithm for Max-DiCut.

Note that this is strictly better than the O(log n)-space ( 4
9 − ε)-approximations from Theorem 6.2, which

were optimal in o(
√
n) space [7].

The [36] algorithm relies on the notion of “oblivious algorithms” from [16]. For these “oblivious” algo-
rithms, lower bounds (at roughly 0.49) were constructed in [16] and improved in [21].7 It is natural to ask
whether one can do better in o(n) space; Saxena, Singer, Sudan, and Velusamy [35] showed recently that
this is possible:

Theorem 7.2 (Saxena, Singer, Sudan, and Velusamy [35]). For every ε > 0 and D ∈ N, there is some δ > 0

and a ( 1
2 − ε)-approximation single-pass Õ(n1−δ)-space sketching algorithm for Max-DiCut on graphs with

maximum degree D.

The maximum degree assumption here is a technical condition which, I believe, can be removed, though
it might be quite annoying to do so. But is the tending-towards-linear space dependence in Theorem 7.2
necessary? That is, could one even achieve ( 1

2 + ε)-approximations for all ε > 0 in Õ(
√
n) space? We

conjecture that this is not possible:
7The optimal approximation ratio achievable by oblivious algorithms is not currently known; the current best word is due

to Hwang, Singer, and Velusamy [21], who show that the constant is in the interval [0.4853, 0.4889]. Finding (or characterizing)
the optimal ratio is an interesting open question.
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Conjecture 9

There exist constants ε, δ > 0 such that every single-pass sketching algorithm which ( 1
2 − ε)-

approximates Max-DiCut uses Ω(n
1
2 +δ).

If this is true, one could even imagine a whole hierarchy of upper and lower bounds as the approximation
ratio tends to 1

2 and the space usage tends to Θ(n): That is, perhaps, for every δ > 0, there exists ε > 0
such that ( 1

2 − ε)-approximating Max-DiCut is hard in o(n1−δ) space.

References

[1] Sepehr Assadi and Vishvajeet N. Graph streaming lower bounds for parameter estimation and property
testing via a streaming XOR lemma. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing (STOC 2021), pages 612–625, virtual, June 2021. Association for Computing
Machinery. doi: 10.1145/3406325.3451110.

[2] Sepehr Assadi, Gillat Kol, Raghuvansh R. Saxena, and Huacheng Yu. Multi-Pass Graph Streaming
Lower Bounds for Cycle Counting, MAX-CUT, Matching Size, and Other Problems. In 2020 IEEE
61st Annual Symposium on Foundations of Computer Science (FOCS 2020), pages 354–364, virtual,
November 2020. IEEE Computer Society. doi: 10.1109/FOCS46700.2020.00041.

[3] Aditya Bhaskara, Samira Daruki, and Suresh Venkatasubramanian. Sublinear Algorithms for MAXCUT
and Correlation Clustering. In 45th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2018), volume 107 of LIPIcs, pages 16:1–16:14, Prague, Czech Republic, 2018. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik. doi: 10.4230/LIPICS.ICALP.2018.16.

[4] Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, and Santhoshini Velusamy. On sketching
approximations for symmetric Boolean CSPs. In Amit Chakrabarti and Chaitanya Swamy, editors, Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX
2022), volume 245 of LIPIcs, pages 38:1–38:23, virtual, July 2022. Schloss Dagstuhl — Leibniz-Zentrum
für Informatik. doi: 10.4230/LIPIcs.APPROX/RANDOM.2022.38.

[5] Joshua Brakensiek, Neng Huang, Aaron Potechin, and Uri Zwick. Separating MAX 2-AND, MAX
DI-CUT and MAX CUT. In Proceedings of the 64th Annual Symposium on Foundations of Computer
Science (FOCS 2023), Santa Cruz, CA, USA, April 2023.

[6] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena, Zhao Song, and Huacheng Yu. Towards
Multi-Pass Streaming Lower Bounds for Optimal Approximation of Max-Cut. In Proceedings of the
2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), Florence, Italy, 2023. doi:
10.1137/1.9781611977554.ch35.

[7] Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal Streaming Approximations
for all Boolean Max-2CSPs and Max-kSAT. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS 2020), pages 330–341, virtual, November 2020. IEEE Computer Society. doi:
10.1109/FOCS46700.2020.00039.

[8] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Approximability of all
Boolean CSPs with linear sketches. February 2021. URL https://arxiv.org/abs/2102.12351.

[9] Chi-Ning Chou, Alexander Golovnev, Amirbehshad Shahrasbi, Madhu Sudan, and Santhoshini
Velusamy. Sketching Approximability of (Weak) Monarchy Predicates. In Amit Chakrabarti and
Chaitanya Swamy, editors, Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques (APPROX 2022), volume 245 of LIPIcs, pages 35:1–35:17, virtual, 2022. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.APPROX/RANDOM.2022.35.

9

https://arxiv.org/abs/2102.12351


[10] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and Santhoshini Velusamy.
Linear Space Streaming Lower Bounds for Approximating CSPs. In Proceedings of the 54th Annual
ACM Symposium on Theory of Computing (STOC 2022), Rome, Italy, 2022. Association for Computing
Machinery. doi: 10.1145/3519935.3519983.

[11] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Sketching Approxima-
bility of All Finite CSPs. Journal of the ACM, 71(2):15:1–15:74, April 2024. doi: 10.1145/3649435.

[12] N. Creignou. A Dichotomy Theorem for Maximum Generalized Satisfiability Problems. Journal of
Computer and System Sciences, 51(3):511–522, December 1995. ISSN 00220000. doi: 10.1006/jcss.
1995.1087. URL https://linkinghub.elsevier.com/retrieve/pii/S0022000085710872.

[13] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, June 2007. ISSN 0004-
5411, 1557-735X. doi: 10.1145/1236457.1236459. URL https://dl.acm.org/doi/10.1145/1236457.

1236459.

[14] Yumou Fei, Dor Minzer, and Shuo Wang. Multi-Pass Streaming Lower Bounds for Approximating
Max-Cut. In Proceedings of the 66th IEEE Symposium on Foundations of Computer Science (FOCS
2025), Sydney, Australia, March 2025. IEEE Computer Society.

[15] Yumou Fei, Dor Minzer, and Shuo Wang. A Dichotomy Theorem for Multi-Pass Streaming CSPs,
September 2025.

[16] Uriel Feige and Shlomo Jozeph. Oblivious Algorithms for the Maximum Directed Cut Problem. Algo-
rithmica, 71(2):409–428, February 2015. doi: 10.1007/s00453-013-9806-z.

[17] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145,
November 1995. doi: 10.1145/227683.227684.

[18] Venkatesan Guruswami and Runzhou Tao. Streaming Hardness of Unique Games. In Dimitris Achlioptas
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