OptP as the Normal Behavior of
NP-Complete Problems

William 1. Gasarch* Mark W. Krentelt
Department of Computer Science Department of Computer Science
University of Maryland Rice University
College Park, Maryland 20742 Houston, Texas 77251

Kevin J. Rappoport*
Department of Computer Science
University of Maryland
College Park, Maryland 20742

November 25, 1992

Abstract

In previous work [Kre88, Gas86], the authors considered the functional versions of
NP problems, defined OptP as a class of functions computing the optimal value of an
NP problem and gave natural complete functions. This approach has the advantage of
retaining more of a problem’s original structure and of unifying NP with the closely-related
complexity classes D? and AL. The central thesis of this paper is that an NP-complete
problem can usually be extended to an OptP-complete function. In support of our claim,

we show how to do this for forty problems from Garey and Johnson [GJ79].

*Supported in part by NSF grants CCR-88-03641 and CCR-90-20079.

tSupported in part by NSF grant CCR-88-09370.
Y Author’s current address: Supercomputing Research Center, 17100 Science Drive, Bowie, Maryland

20715.

1 Introduction

Many NP problems such as TRAVELING SALESMAN and CLIQUE naturally arise as optimiza-
tion problems. In studying their complexity, these problems are usually first converted to
an equivalent yes/no question, and this is the way that complexity classes are normally
defined. Krentel [Kre88] and Gasarch [Gas86] considered the functional versions of prob-
lems, defined OptP as a class of functions computing the optimal value of an NP problem,
and gave natural complete functions such as TRAVELING SALESMAN. This approach has
the advantage of retaining more of the original structure in a problem and unifies com-
pleteness results for NP with other closely-related classes such as D? and Af. The central
thesis of this paper is that if an NP-complete problem arises naturally as an optimization
problem, then its functional version is also complete for OptP or a subclass of OptP, and
that this is the normal behavior of NP-complete problems. In support of our claim, we
show that this is the case for several problems from Garey and Johnson [GJ79].

Although NP is defined as a class of yes/no languages, many of these problems are
taken from optimization problems, and we wish to study their original functional versions.
For example, we are interested in computing the length of the shortest traveling salesman
tour, the size of the largest clique, etc. We define OptP (Optimization Polynomial Time)
as a generalization of NP in order to discuss the complexity of these problems when viewed
as functions. A function is in OptP if it can be computed as the maximum (or minimum)
value over the set of feasible solutions of an NP machine. For example, the length of
the minimum traveling salesman tour naturally fits this definition because we can try all
possible tours with an NP machine and then take the shortest one. The size of a graph’s
largest clique, its minimum chromatic number, and the fewest number of vertices in a
vertex cover are also examples of OptP functions.

The original motivation for OptP was the observation that NP-complete problems can
express much more about other problems than just their yes/no value. Often the value of
the optimal solution is either preserved or closely-related in the reduction. For example,
in Karp’s [Kar72] reduction from SATISFIABILITY to CLIQUE, the number of vertices in the
largest clique is the maximum number of simultaneously satisfiable clauses. Or, a graph
with n nodes has an independent set of size k if and only if it has a vertex cover of size
n — k. Even in Aho, Johnson and Ullman’s [AJU77] reduction from FEEDBACK VERTEX
SET to CODE GENERATION, the length of the optimal program is the size of the minimal
feedback vertex set plus some constant. In order to capture this additional structure,
we say that f is metrically reducible to g if given z we can compute some y such that
f(z) can be computed from ¢(y) in polynomial time. Note that we only require that
f(z) be easily computable from g(y), not that they are equal. We also say that g is
OptP-complete if ¢ € OptP and all f € OptP are metrically reducible to g. It turns out

that many NP-complete problems, when considered as functions, are also OptP-complete.
For example, TRAVELING SALESMAN, GRAPH PARTITIONING, SUBSET SUM and ZERO-ONE
LINEAR PROGRAMMING are all OptP-complete. This says that these problems can express
the optimal value of any problem in OptP. Skiena [Ski85] defined solitaire game Turing
machines and the class SGP, identical to our notion of OptP, and independently proved
several complete problems.

Some problems in OptP such as CLIQUE and COLORING do not appear to be complete
because their range of values is too limited. For example, a graph with n nodes cannot
possibly have a clique larger than n, and this isn’t enough information to express an
arbitrary value with polynomially many bits. For these problems, we define OptP[I(n)] to
be a subclass of OptP where f € OptP[l(n)] if the binary representation of f(z) requires
at most [(|z]) bits. CLIQUE, VERTEX COVER and COLORING are all in OptP[O(logn)] and
this is the natural subclass for these unweighted problems. Indeed, these three problems
are complete for OptP[O(logn)] and they cannot be complete for OptP unless P = NP. So,
when viewed as functions, it turns out that NP-complete problems are not all equivalent.

Another approach to OptP functions is determining the number of NP queries needed
to compute the function. Let FAL be the class of functions computable in polynomial time
with an oracle for NP, and let FAZL[I(n)] be the subclass restricted to I(n) oracle queries.
The main result from [Kre88] is that any FAZ[I(n)] function is metrically reducible to an
OptP[l(n)] function, and in particular, the correct sequence of oracle answersin a FAL[l(n)]
computation is an OptP[l(n)] function. A corollary of this result is that any function
complete for OptP[l(n)] is also complete for FA%[I(n)]. This gives a way of identifying
“how much” NP-completeness is embedded in OptP functions. This further says that
what is hard about an FAY function is a closely-related OptP function. For example, the
difficulty of Papadimitriou’s [Pap84] UNIQUELY OPTIMAL TRAVELING SALESMAN problem
is in computing the length of the optimal tour.

It is interesting to note that different NP-complete problems have widely varying
“amounts” of NP-completeness in this measure. Many weighted problems such as TRAV-
ELING SALESMAN, SUBSET SUM and GRAPH PARTITIONING are OptP-complete and hence
also FAL-complete. And many unweighted problems such as CLIQUE, COLORING and
VERTEX COVER are complete for OptP[O(logn)] and FAS[O(logn)]. If we modify CLIQUE
or VERTEX COVER by putting weights on the vertices and ask for the maximum weight
clique, or minimum weight vertex cover, then these problems become complete for OptP
and FAL. Other problems are in even lower subclasses of FA%. The Karmarkar and Karp
algorithm [KK82] approximates BIN PACKING within an additive constant of O(log?n).
This implies that the optimal number of bins can be computed in FAS[O(loglogn)] by
performing binary search on the remaining interval. Another example is CHROMATIC

INDEX, the fewest number of colors needed to color the edges of a graph. Vizing’s The-

orem [Ber85] says that the chromatic index of a graph is always h or h 4 1, where h is
the degree of the graph, and Holyer [Hol81] proved that distinguishing these two cases is
NP-complete. Together these results imply that cHROMATIC INDEX is FAZ%[1]-complete.
We point out that for technical reasons, CHROMATIC INDEX is in OptP[O(logn)] but not
in OptP[1] because the output cannot be described with a single bit. However, EXCESS
CHROMATIC INDEX, the chromatic index of a graph minus its degree, can be described
with a single bit and is OptP[1]-complete as a minimization function.

A further advantage of OptP is that it unifies NP with D? and Af. A language L is
in D? if it can be written as L = Ly N Ly for some L; and Ly in NP. Papadimitriou and
Yannakakis [PY84] defined this class and showed examples of natural complete problems
such as polytope facets, exact problems and critical problems. For our purposes, the most
important of these examples are the exact problems, that is, asking if the value of some
function is ezactly equal to k, instead of greater than or equal to k. EXACT CLIQUE and
EXACT TRAVELING SALESMAN are examples of exact problems that are complete for D?.
The advantage of the functional approach is that these results all follow from a single
OptP-completeness result. In fact, under very general conditions, any function in OptP
that is hard for at least OptP[2] will have its exact problem DP?-complete, and this will be
true for all of our problems in Section 3.

OptP is also closely-related to AL. A language is in A} if it can be solved in polyno-
mial time with an oracle for NP. This class has the same computational power as FA®
but it is restricted to yes/no problems. There are only a few examples of natural com-
plete problems for AL. Papadimitriou [Pap84] showed the first such example: UNIQUELY
OPTIMAL TRAVELING SALESMAN, that is, given an instance of traveling salesman, is the
optimal solution unique. In his construction, it is crucial that the correct sequence of
oracle answers in a AL computation can be embedded in the length of the optimal tour.
This is not surprising, because it is exactly this embedding that allows us to reduce any
FA? function to an OptP function, and it says that the difficulty of TRAVELING SALESMAN
is in computing the cost of the optimal tour. By asking a different question about the
optimal solution, we can make other Af-complete problems. Again, under very general
conditions, if f is an OptP-complete function, then determining if f(z) is equivalent to
k1 mod ky will be Af-complete. In summary, if f is OptP-complete, then deciding if f(z)
is greater than (or less than) k is NP-complete, deciding if f(z) is exactly equal to k is
DP-complete, and deciding if f(z) equals k4 mod kg is Ab-complete, and these results all
follow as corollaries of the OptP-completeness result.

We claim as the central thesis of this paper that for NP-complete problems which
naturally arise as optimization problems, their functional version is complete for OptP or
a subclass of OptP, and that this is the normal behavior of NP-complete problems. In

support of our claim, we show that this is the case for over forty problems, mainly from

Garey and Johnson [GJ79], and including INDUCED SUBGRAPH WITH PROPERTY II from
Lewis and Yannakakis [LY80]. We also have at least one problem from each section in the
Appendix of [GJ79]. We don’t intend our list to be exhaustive; rather, we have tried to
provide a sampling of problems from diverse areas. We view our collection of problems as
evidence that OptP is an important and typical aspect of NP-complete problems, and we
encourage other authors to state their results in terms of OptP-completeness.

In Section 2, we review the definitions and basic results of OptP, FAY, completeness,
etc. Section 3 contains our list of complete problems. We have tried to keep the proofs as
short as possible, often just claiming that an existing reduction works or can be modified
to work. All of the results in Section 3 are stated as completeness for OptP or a subclass,
and it is important to remember that several corollaries follow from OptP-completeness.
These corollaries are discussed in Section 2.2. For weighted problems, there is an obvious
generalization of the problem to arbitrary-length weights. That is, we restrict the length
of the weights in the problem instance to at most I(n) bits and often the resulting problem
is OptP[l(n)]-complete. Since this extension straightforward for most problems, we state

our results for general weights wherever possible.

2 Background

We begin with a description of the complexity classes that we will need, especially OptP
and FAL. Then we discuss the corollaries that follow from an OptP-completeness result.
Recall that in the next section, we state all of our results as completeness for OptP or one
of its subclasses. We assume some familiarity with P, NP and reduction: [GJ79] is a good

reference.

2.1 Definitions

The definitions of metric Turing machine and OptP generalize NP to functions and are
intended to capture our intuitive notion of a discrete optimization problem. The size of the
largest clique in a graph or the length of the shortest traveling salesman tour are examples
of OptP functions. Although we define OptP as a class of maximization functions, we also

consider OptP to include minimization problems.

Notation N = {0,1,2,...} is the set of natural numbers; X* is the set of finite-length
strings over some alphabet; we often write 1% to mean a string of 1’s k long; and logn

means logarithm base 2.

Definition An NP metric Turing machine, N, is a nondeterministic polynomially time

bounded Turing machine such that every branch writes a natural number in binary and

accepts. For z € ¥* we write opt"(z) for the maximum (or minimum) value on any

branch of N(z).

Definition A function f: ¥* — N is in OptP (Optimization Polynomial Time) if there
is an NP metric Turing machine N such that f(z) = opt™(z) for all 2 € ¥*; and f is in
OptP[l(n)] if, in addition, the length of f(z) in binary is at most {(|z]) bits.

Note that OptP = OptP[n®(1)]. We also need to consider problems computable with
an NP oracle; AL is the language class and FAZ is the function class. It is straightforward
to show that OptP C FAZY by binary search on the optimal value. Later we show that
any FAL function can be reduced to an OptP function. The main difference between
these two classes is that an FA? function can compute its answer by any polynomial-time
function of its oracle answers, while OptP is restricted to the maximization operator. For
example, the low-order bits of the length of the shortest traveling salesman tour is easily

computable in FAY but does not appear to be in OptP.

Definition A function f:¥* — N is in FAL if f is computable in polynomial time with
an oracle for NP; and f is in FAL[I(n)] if, in addition, f(z) is computable with at most

I(|z]) queries to its oracle.

Definition A language L C ¥* is in A} if L is decidable in polynomial time with an
oracle for NP; and L is in Af[I(n)] if, in addition, L is decidable with at most /(n) queries
to its oracle. ©5 = Af[O(logn)], and L is in D? if L = L; N Ly where L; and Ly are in
NP.

Again, A5 = Ab[n©(M] and FAL = FAL[RCM]. Among the language classes, Wag-
ner [Wag88] studies O and shows that several different characterizations are actually
equivalent. ©% has enough computational power to compute the optimal value of un-
weighted problems. For example, determining if the largest clique in a graph has an odd
number of vertices is @f-complete. Papadimitriou and Yannakakis [PY84] define D? and
show several complete languages.

For reductions between languages, we use many-one polynomial-time reductions. For
functions, we use a generalization of many-one reductions called metric reductions. Essen-
tially, f is reducible to g as functions if for every z we can compute a single y such that
f(2) can be computed from ¢(y). We don’t require that f(z) equal g(y), but if this is the
case, then the reduction is called ezact. If the map from g(y) to f(z) is a linear function,
then the reduction is called linear. Linear reductions are an important special case be-
cause they imply several other completeness results as corollaries. All of the reductions in

Section 3 are linear.

Definition Let f,g : ¥* — N. A metric reduction from f to ¢ is a pair of polynomial-
time computable functions (17,7%) where 77 : ¥* — ¥* and 75 : ¥* X N — N such that
f(z) = To(z,g(T1(2))) for all 2 € ¥*. A metric reduction is linear if for all z € X* the
map k — T5(z,k)is a linear function (but the coefficients may depend on z), and a metric

reduction is ezact if Ty(z, k) = k.

Definition For either functions or languages, we say that f is hard for a complexity class
C if all g € C are reducible to f, and f is complete for C if, in addition, f € C.

When considering the subclasses OptP[l(n)] and FAL[I(n)], it is convenient to impose
some form of constructibility assumption on /(n). We usually require that /(n) be con-
structible and monotonic and we call this smooth. The hypothesis of uniformly smooth is
used for weighted problems when restricting the weights to at most I(n) bits. We discuss

this in the beginning of Section 3.

Definition A function!: N — N is constructibleif 1™ — 1/") is computable in polynomial
time, [is smooth if, in addition, z < y implies I(z) < I(y), and [is uniformly smooth if, in
addition, there is some constant ¢ such that {(cn) > I(n) + 1.

2.2 Corollaries

In this section, we review the corollaries that follow from an OptP-completeness result.
Rather than repeat these results for each problem in the next section, we present them
just once and then state all of the results in Section 3 as OptP[l(n)]-completeness for an
appropriate [(n). We emphasize that these corollaries apply to all of the problems in the
next section, and indeed one of the main motivations for OptP is that these results all
follow from a single completeness result. Unless otherwise noted, the theorems in this
section are from [Kre88].

The first and most basic corollary is that an OptP-complete function can express
the optimal value of any function in OptP. This is, of course, merely a restatement of
the definition of completeness. For example, given an instance of an OptP problem, we
can construct a single instance of TRAVELING SALESMAN such that the optimal value in
the original problem can easily be computed from the length of the minimum traveling
salesman tour. A similar result applies to cLIQUE for any OptP[O(logn)] function. These
results show that TRAVELING SALESMAN and CLIQUE can express much more about an
NP problem than just the answer to its yes/no question.

OptP is also closely related to FAL. It turns out that every function in FAY can be
reduced to an OptP function. This says that the inherent difficulty of an FAL computation
is embedded in an OptP problem and that an OptP-complete function is also complete
for FAL.

Theorem 2.1 For any constructible I(n),
1. OptP[I(n)] C FAS[I(n)].

2. Any f € FAL[l(n)] can be expressed as f(z) = h(z,g(z)) where g € OptP[l(n)] and

h:¥* x N — N is computable in polynomial time.

Theorem 2.2 For any smooth I(n),
1. f € FALI(n®W)] if and only if f is metrically reducible to some g € OptP[l(n)].

2. If f is complete for OptP[l(n)], then f is also complete for FAL[l(n)].

We should point out that a metric reduction can stretch the size of a problem instance
by any polynomial amount. This implies that a function in FA5[/(n®M)] can always be
reduced to a function in FAL[l(n)] and therefore an FAZ[I(n)]-complete function is also
complete for FA5[I(nOM)].

The connection with FA? identifies how many NP queries are needed to compute
an OptP function. A completeness result for FAL[l(n)] says that exactly I(n) queries to
an NP oracle are needed to compute the function. For example, TRAVELING SALESMAN
is complete for n°(1) queries and CLIQUE is complete for O(logn) queries. A further
consequence of FAP-completeness is that we can embed several yes/no questions into the
value of a single FAY function. For example, given boolean formulas 4, ..., z,, we can
construct a single instance of TRAVELING SALESMAN such that the answers to all of the
questions “Is z; € SAT?” can be easily computed from the length of the minimum traveling
salesman tour. A similar result applies to CLIQUE if we restrict the number of queries to

logn.

Theorem 2.3 For any smooth l(n), the following function is in FAL[l(n)] and hence can

be reduced to any OptP[l(n)]-complete function.

e QUERY[l(n)]
Instance: 1"#x1# - - - #x, such that |z;] < n and k < I(n).

Output: by ---by where b; is 1 if z; € sAT and 0 if z; & SAT.

We should point out that QUERY[/(n)] is probably not complete for FA%[I(n)] because
the successive questions to SAT do not depend on the answers to the previous questions.
The following hierarchy results are known for FAL. Part (2) is from [ABG90].

Theorem 2.4 Let [(n) be smooth and assume P # NP

1. FALl(n) — 1] # FAL[l(n)] whenever I(n) < (1 — €)logn for some fized € > 0.

2. FAL[l(n) — 1] # FAL[l(n)] whenever l(n) < clogn for some fized ¢ if, in addition,
¥ # 115,

3. FAR[O(logn)] # FAL.

A further corollary is that every OptP-complete function can be modified to give
complete languages. In particular, there is always some predicate on the optimal value
that gives a AL-complete language. This is not surprising because we already knew that
the function itself was complete for FAS. If f is complete under linear reductions, then
there are specific questions about f(z) that are complete for A%, D? and NP. For example,
the EXACT PROBLEM for f (given z and k, is f(z) = k?) is DP-complete whenever f is
OptP[l(n)]-complete under linear reductions and I(n) > 2.

Theorem 2.5 For any smooth l(n), if f is complete for OptP[l(n)], then there is some
polynomial-time computable predicate P such that L = {z#y | P(z, f(y))} is complete
for AL[l(n)]. In particular, if f is OptP or OptP[O(logn)]-complete, then L is AY or

OF-complete.

Theorem 2.6 Let [(n) > 1 be smooth and let f be complete for OptP[I(n)] under linear

metric reductions. Then,

1. Ly = {a#ki#ky | f(z) = k1 (mod kq)} is AL[l(n)]-complete. In particular, if
f is OptP or OptP[O(logn)]-complete under linear reductions, then Ly is AL or

Of-complete.
2. Ly ={z#k| f(z) =k} is DP-complete for I(n) > 2.

3. Ly ={z#k| f(z) > k} is NP-complete (for f a mazimization function).

3 Completeness Results

3.1 Introduction

We begin with a discussion of the ground rules for the completeness results in this section.
First of all, we have tried to keep the proofs as short as possible. Often the original NP-
completeness proof is already a metric reduction or can easily be modified to give a metric
reduction. In these cases, we merely cite the original construction. Whenever a problem
appears in the appendix in Garey and Johnson [GJ79], we give their reference number for
the problem. For example, VERTEX COVER is [GT1], the first problem in the graph theory

subsection of the appendix. A summary of the reductions is in Figure 1 at the end of the

paper.

We state all of the results in this section as completeness for OptP or one of its
subclasses and refer the reader to Section 2.2 for a discussion of the corollaries that follow
from OptP-completeness. Except for QUADRATIC PROGRAMMING, it is straightforward to
verify that all of our problems are in OptP and we don’t restate this fact each time.

Many problems naturally have both weighted and unweighted variations. For example,
the unweighted CLIQUE function is simply the number of vertices in the largest clique in
a graph, and this function is complete for OptP[O(logn)]. An obvious generalization is
to allow integer weights on the vertices and ask for the maximum weight of any clique,
where the weight of a clique is the sum of the weights on the vertices in the clique.
This weighted version of CLIQUE is complete for OptP. Furthermore, the construction for
weighted CLIQUE is an easy extension to the proof of unweighed cLIQUE. In fact, for the
majority of problems, it is almost no extra work to prove completeness for both weighted
and unweighted versions, and we state our results in this way whenever possible. We view
this behavior as further evidence that functional versions of NP-complete problems are
usually also OptP-complete.

We can further generalize weighted problems by restricting the length of the weights to
at most /(n) bits, and this often gives an OptP[/(n)]-complete function. For example, with
the weights on the vertices restricted to [(n) bits, CLIQUE becomes OptP[l(n)]-complete,
and again the proof is a straightforward extension of the other constructions. But this
brings up a technical problem. If z1, ..., z, are [(n) bit integers, then 3" z; is an [(n)+logn
bit integer. One solution would be to claim that the function is hard for OptP[l(n)] and
in OptP[l(n)+logn|. Instead, we require that /(n) be uniformly smooth (see Section 2.1),
that is, [(cn) > I(n) + 1 for some c. This implies that {(n ?()) > I(n) 4+ O(logn) and hence
[(n) grows uniformly at least as fast as logn. With this assumption, we can keep the
restricted weighted version in OptP[l(n)] by padding the size of the problem instance by
some polynomial amount. In particular, any OptP[l(n)+logn] function can be reduced to
an OptP[I(n®M)] function and hence to an OptP[l(n)] function by padding the problem
instance. This is a convenient assumption because we can add numbers at will and stay
within the /(n) bound.

We state our completeness results for up to three variations of each problem. In the
weighted version, the weights are arbitrary integers written in binary. This version is
normally complete for OptP. In the unweighted version, there are either no weights, or
the weights are all 1 or from {0, 1}. This version is normally complete for OptP[O(logn)].
Finally, in the restricted weighted version, the weights are at most /(n) bits long, where
n is the size of the problem instance. This version is normally complete for OptP[I(n)].
Except for the generic problems, we always assume that /(n) is uniformly smooth for the

restricted version. When we say, for example, that a problem has “no weighted version,”

we mean either that the problem does not have a natural weighted generalization or that

the weighted version is not known to be complete.

3.2 Generic Problems

In the following generic problems, the value of the OptP function can be reduced exactly.

Theorem 3.1 For any smooth l(n), the following functions are complete for OptP[l(n)]

under exact metric reductions.

e UNIV[/(n)]
Instance: N#x#1% where N is an NP metric Turing machine, 2z € ¥* and k € N.
Output: UN1V[l(n)] simulates each branch of N(z) for k£ moves and outputs the

same value; branches of N(z) that do not halt within £ moves or output more
than [(|z]) bits have value 0.

o LEX[/(n)]
Instance: Boolean formula ®(z1,...,z,) in conjunctive normal form and integer
m < 1(|8)).
Output: The lexicographically maximum 2 ---z,, € {0,1}™ that can be extended

to a satisfying assignment, or 0 if the formula is not satisfiable.

e CIRCUIT OUTPUT[{(n)]
Instance: Boolean circuit C' with n inputs and m outputs where m < I(|C]).

Output: The lexicographically maximum output of C' in {0,1}™.

Proof: The constructions for UNIV and LEX are in [Kre88]. Given a boolean formula
®(z1,...,2,) and m € N, it is straightforward to construct a circuit C(z1,...,2,) with
output xy---2,, if 21, ..., z, satisfies ® and 0 otherwise (see [Lad75]). This gives an

exact metric reduction from LEX[{(n)] to ciRcuIT[l(n)]. O

3.3 SAT Variations

The main interest in the following variations of SATISFIABILITY is in proving other problems
complete. CHEATING SAT has somewhat unusual constraints and is especially useful in
the unweighted versions of 3-DIMENSIONAL MATCHING and TRAVELING SALESMAN. In
SAT and CHEATING SAT, the constraints and the objective function play dual roles. SAT
requires a legal truth assignment for the variables and then tries to maximize the number
of satisfied clauses. CHEATING SAT requires that every clause be satisfied and tries to

minimize the number of variables with an illegal truth assignment.

10

We write boolean formulas in conjunctive normal form as ® = (Cq)*1---(Cp,)¥m
where Cy, ..., (', are the clauses in ® and w; is the weight associated with clause C;.
The weight of an assignment is the sum of the weights on the satisfied clauses. In the

unweighted case, the value of an assignment is the number of satisfied clauses.

Theorem 3.2 The weighted, unweighted and restricted weighted versions of the following
functions are complete for OptP, OptP[O(logn)] and OptP[l(n)] (for uniformly smooth

l(n) > logn) under linear metric reductions.

e SATISFIABILITY (SAT) [LO1, LO2, LO5]

Instance: Boolean formula ®(z4,...,2,) = C;---C,, in conjunctive normal form

with weights w1, ..., w,, on the clauses.
Output: The maximum weight of an assignment.

Remark: Also holds with at most two literals per clause (2-SAT).

e POSITIVE NOT-ALL-EQUAL 3-SAT [LO3]

Instance: Same as SAT with the restrictions that every variable appears positively

(un-negated) and that every clause has at most three literals.

Output: Same as SAT except that a clause is “satisfied” if it has at least one true

literal and at least one false literal.

® ONE-IN-THREE SAT [LOA4]

Instance: Same as SAT with the restriction that every clause has at most three

literals.

Output: Same as SAT except that a clause is “satisfied” if it has exactly one true

literal.

o CHEATING SAT

Instance: Same as SAT except that the weights are associated with the variables
instead of the clauses.

Output: The minimum cost of a {0, 1, *} assignment to the variables that satisfies
every clause, where z = 1 satisfies clauses containing x, = 0 satisfies clauses
containing ¥ and x = * satisfies clauses containing either z or 7, and the cost

of an assignment is the sum of the weights of the variables assigned .

Remark: Also holds with at most two literals per clause.

Proof: The weighted version of SATISFIABILITY is shown in [Kre88] and it is straight-

forward to extend the result to the restricted weighted case. In all of the unweighted

11

versions of SAT, the weights only need to be polynomially large, so they can be removed
by repeating clauses.

Let ®(zy,...,2,) = (C1)“1---(Cy)™ be a boolean formula in conjunctive normal
form where w; is the weight of clause C'; and let M = } w;. We put ® in 2CNF by
making a new variable for every occurrence of every literal in ®. If z; or 7; appears in
C; then make a new variable 2. Replace C; = (y1 + -+ y,)* with (yJ)¥-- -(y3)” and
add clauses (7 + %)M for every 1 < a < b < p to say that a clause can only be satisfied
once. Also add clauses (7, + @‘Z)M for every pair of literals y, in C; and y; in C; such
that y, = 7, to say that we can’t use both y, and 7,. Call the resulting formula ¥. An
optimal assignment to ¥ must satisfy all of the clauses with weight M, so this reduces
SAT to 2-SAT.

Next, we reduce 2-SAT to POSITIVE NOT-ALL-EQUAL 3-SAT. Note that the construction
for 2-sAT only uses clauses of the form (z) and (Z + 7). Let 0 and 1 be two new variables.
Replace (z) with NAE(z,0,0), and replace (T+7) with NAE(z,y,1). Finally, add a clause
NAE(0,0,1) with weight greater than the sum of the weights on all of the other clauses.
We then reduce this to ONE-IN-THREE SAT by replacing NAE(z,y, z) with 1/3(z,y,2) and
1/3(7,7,%).

Finally, we reduce 2-SAT to CHEATING SAT. Let ®(zq,...,2,) = (C1)*1---(Cp,)¥m
be a boolean formula in 2CNF. Again, we replace occurrences of literals in ® with new
variables. Replace z; in C; with a new variable x‘z, add clauses (x‘z —I—ff)(f‘z +z¥) for every
pair j # k, and let xf have weight w;. Assigning * to mf corresponds to failing to satisfy

C';, so this reduces 2-SAT to CHEATING SAT. O

3.4 Graph Theory

In the following problems, we usually associate the weights with either the vertices or the
edges in the graph. The weight of a subgraph is the sum of the weights on the vertices or
edges in the subgraph.

CLIQUE and APPROXIMATE CLIQUE are also dual problems in how they treat the
constraints and the objective function. In CLIQUE the subgraph must really be a clique
and we maximize the size of the subgraph. In APPROXIMATE CLIQUE the size of the

subgraph is fixed and we try to maximize the number of edges.

Theorem 3.3 Fzcept for COLORING, the weighted, unweighted and restricted weighted
versions of the following functions are complete for OptP, OptP[O(logn)] and OptP[i(n)]

(for uniformly smooth I(n) > logn) under linear metric reductions.

e CLIQUE [GT19]
Instance: Graph G' = (V, £) with weights on the vertices.

12

Output: The maximum weight of any clique in G.

APPROXIMATE CLIQUE
Instance: Graph G = (V, E') with weights on the edges and integer k.

Output: The maximum sum of the weights on the edges in an induced subgraph
V' C V of size exactly k.

INDEPENDENT SET [GT20]
Instance: Same as CLIQUE.

Output: The maximum weight of any independent set in G.

VERTEX COVER [GT1]
Instance: Same as CLIQUE.

Output: The minimum weight of any vertex cover for G.

DOMINATING SET [GT2]
Instance: Same as CLIQUE.
QOutput: The minimum weight of any dominating set for G.

Remark: V! C V is a dominating set if for all v € V — V'’ there exists v’ € V' such
that (v,v") € E.

KERNEL [GT57]
Instance: Directed graph G' = (V, E) with weights on the vertices.
Output: The maximum weight of any kernel in GG or else 0 if G has no kernel.

Remark: V! C V is a kernel if V' is an independent set and for all v € V — V'
there exists v’ € V' such that (v/,v) € E.

LONGEST CYCLE [GT37, GT38, ND28]

Instance: Graph G = (V, E) with weights on the edges.

Output: The length of the longest simple cycle in G.

Remark: Holds for directed and undirected graphs, and with weights on the ver-

tices or the edges.

COLORING [GT4]
Instance: Graph G = (V, E).
Output: The chromatic number of G.

Remark: No weighted or restricted weighted version. This result immediately im-

plies the same result for PARTITION INTO CLIQUEs [GT15]. Also complete

13

(APPROXIMATE COLORING) if the instance includes an integer k and weights
on the edges, every vertex must be assigned one of k colors and we ask for the
minimum sum of the weights on the edges with both endpoints assigned the

same color.

e FEEDBACK VERTEX SET [GT7]
Instance: Directed graph G = (V, E) with weights on the vertices.
Output: The minimum weight of V/ C V such that G — V' is acyclic.

Remark: Also complete if we ask for the maximum weight of V/ C V such that

the subgraph induced by V' is acyclic.

e FEEDBACK EDGE SET [GTS]
Instance: Directed graph GG = (V, E) with weights on the edges.
Output: The minimum weight of £/ C F such that G — F' is acyclic.

Remark: Also complete if we ask for the maximum weight of any £’/ C FE such
that (V, £') is acyclic.

e INDUCED SUBGRAPH WITH PROPERTY Il [GT21]
Instance: Graph G = (V, E') with weights on the vertices.

Output: The maximum weight of any V/ C V such that the subgraph induced by
V' satisfies II.

Remark: Holds for any hereditary property II that is true for arbitrarily large
graphs, not true for all graphs and is verifiable in polynomial time. See [LY80].

Proof: CLIQUE, INDEPENDENT SET and VERTEX COVER. The reduction from sAT
in [Kar72] is sufficient for the unweighted version of CLIQUE and it is straightforward to
extend this result to the weighted versions. The reductions to INDEPENDENT SET and
VERTEX COVER are immediate.

Proof: APPROXIMATE CLIQUE. Reduction from MAX cuT. For the weighted version,
let G = (V,E) be a graph where V = {1,2,...,n}, let w;; be the weight on (¢,j) € £
or 0if (4,j) ¢ £ and let M = " w;;. We reduce G to the graph G’ = (V’, E’) where
Vi={a1,...,2n,Y1,...,yn} and E’ includes an edge between every pair of vertices except
(2,9;). The weight on (z;,z;) is M for ¢ # j and similarly for the y;’s and (z;,y;) has
weight M + w;; for ¢ # j. Finally, k = n.

Any subset of V’ with size n and only one element from each pair z;, y; has weight
at least (g) M and a subset with size n and both z; and y; for some ¢ has weight at most

(g) M. So, the optimal solution in G’ must include exactly one from each pair and therefore

14

correspond to a valid cut in . Thus, the optimal weight in G’ is (g) M plus the optimal
weight in G.

In the unweighted case, the reduction from MAX CUT is conceptually similar to the
weighted case, except that we repeat vertices instead of weighting the edges. Again, let
G = (V,E) be a graph with V = {1,2,...,n} and reduce G to G’ = (V', £’). V' includes
vertices z;; and y;; for 1 <7 < n and 1 < j < M where M is chosen later. Say that
Xi=A{zn,zi2,..., i} is a group of vertices at level 7 (and similarly for ;) and say that
the z;;’s are on the left side and the y;;’s are on the right side. Within a group, £’ includes
all (]g[) edges (z;j,,%:j,) for j1 # j2, and similarly for the y;;’s. Across groups on the same
side, £’ includes all edges (2, ,,2iy;,) for iy # i3 except (2,5, ;). This is M? — 1 edges.
Across sides on the same level, £’ includes no edges of the form (z;;,,vi;,). And across
sides at different levels, £’ includes all edges (z;,,, ¥i,;,) for i1 # 1o except that (z;;,y;;)
is included if and only if (¢,j) € E. This is either M2 or M? — 1 edges depending on
(7,7) € E. Call the edge (z;;,y;;) € £ for (¢,7) € E special and call the other edges basic.
Finally, k = n M, half of the vertices.

Say that a subset of V'’ of size nM is good if every level 7 includes all of X; and none
of Y; or vice versa. This corresponds to a valid cut in . Also, a good subset has exactly
n(];[) +(G)(ME-1) = (né”) — (%) basic edges and any subset has at most () special edges.
A subset of size nM that fails to be good must have some level i with | X;| + |Y;| > M and
both X; and Y; non-empty. One of these must have size at least M /2 and so the subset
must omit at least M /2 basic edges. If we take M > 2(%), then a bad subset cannot be
optimal. Thus, the optimal solution in G’ corresponds to a cut in GG and has size (7“2”) —-(3)
plus the size of the optimal cut in G.

Proof: DOMINATING SET. Reduction from SET COVER. Let S, ..., Si be subsets
of {z1,...,2,} and suppose S; has weight w;. Let G = (V,FE) be a graph where V =
{S1,...,5,21,...,2,}. Put an edge between every S; and 5, put no edges between any
z; and z;, and put an edge between z; and 5; if z; € 5;. Let S; have weight w; and let each
x; have weight E;ﬁ:l w;. The z;’s are too expensive to use in an minimum dominating
set, so a subset of the 9;’s is a dominating set in G if and only if it is a set cover.

Proof: KERNEL. Immediate reduction from INDEPENDENT SET. Replace each undi-
rected edge (u,v) by the two directed edges (u,v) and (v,u). A kernel in the new graph
corresponds to a maximal independent set in the old graph.

Proof: LONGEST cYCLE. The unweighted version is proved in [Kre88] and it is straight-
forward to extend the result to the weighted versions.

Proof: COLORING is in [Kre88] and APPROXIMATE COLORING is immediate from MAX
CUT.

15

Proof: FEEDBACK VERTEX/EDGE SET. The constructions in [Kar72] are sufficient for
the unweighted versions, and it is straightforward to extend the results to the weighted
versions.

Proof: INDUCED SUBGRAPH WITH PROPERTY II. We use Lewis and Yannakakis’s
reduction from VERTEX COVER [LY80]. In the unweighted case, Lewis and Yannakakis
show that there is a vertex cover of size [if and only if deleting nkl vertices is sufficient
to leave a graph that satisfies II, so their reduction is already a linear reduction. In
the weighted case, we note that the vertices ¢; and d in their construction correspond
directly to the vertices in the original VERTEX COVER problem. So, it is sufficient to use
their graph, carry over the weights on these vertices and put a large weight on all other

vertices. O

3.5 Network Design

Theorem 3.4 The weighted, unweighted and restricted weighted versions of the following
functions are complete for OptP, OptP[O(logn)] and OptP[l(n)] (for uniformly smooth

[(n) > logn) under linear metric reductions.

e MAX CUT [ND16]
Instance: Graph G = (V, E') with weights on the edges.

Output: The maximum weight of any partition of V' into two pieces (of any size),
where the weight of a partition is the sum of the weights on the edges that

cross the partition.

e GRAPH PARTITIONING [ND14]
Instance: Same as MAX CUT.
Output: The minimum weight of a partition of V into two equal-size pieces.

Remark: The maximization version is also complete.

e STEINER TREE [NDI12]
Instance: Graph G' = (V, £) with weights on the edges and subset R C V.

Output: The minimum weight of a subtree of G that contains R.

e TRAVELING SALESMAN [ND22]
Instance: Complete graph G' = (V, E) with weights on the edges.
Output: The length of the shortest cycle in G that visits every vertex exactly once.

Remark: In the unweighted version, the edge costs are from {1,2}. All results hold
with the triangle inequality.

16

¢ INTEGRAL FLOW WITH MULTIPLIERS [ND33]
Instance: Directed graph G = (V,), distinguished vertices s, € V, multipliers
h(v) € N for vertices v # s,t and capacities ¢(e) € N for edges e € E.
Output: The maximum flow f : E — N from s to ¢ such that 0 < f(e) < ¢(e) for
alle € E and 32, yep f(v,w) = h(v) Fo(uv)ep f(u,v) for all v # s, ¢.
Remark: In the unweighted version, all multipliers are from {0, 1,2} and all ca-

pacities are 1.

Proof: MAX cuT. Reduction from POSITIVE NOT-ALL-EQUAL 3-SAT. Replace a clause
NAE(z,y, z) of weight w with a triangle between z, y and z where each edge has weight
w, and replace a clause NAE(z,y) of weight w with a single edge between z and y with
weight 2w. The weight of a partition is twice the weight of an assignment.

PT‘OOf.‘ GRAPH PARTITIONING. We can reduce MAX CUT to MAXIMUM GRAPH PAR-
TITIONING by adding a sufficient number of isolated vertices. Then MAXIMUM GRAPH
PARTITIONING can be reduced to MINIMUM GRAPH PARTITIONING by changing the weight
of each edge from w to M — w (considering a non-edge to have weight 0), where M is a
constant larger than the weight on any edge.

Proof: STEINER TREE. We modify Karp’s construction [Kar72] to give a reduction
from SET COVER. We use Karp’s graph but with different edge costs. Suppose 51, ...,
Sk are sets with costs ¢q, ..., c; containing elements z1, ..., x,. The graph has vertices
V= {*51,....5,21,...,2,}, edges (x,5;) for 1 < j < k and (S5;,2;) if z; € 5, and
R={*x21,...,2,}.

In the weighted versions, the cost of (*, 5;) is ¢; and the cost of (S5;,z;) is M =} ¢;.
In an optimal steiner tree, every z; must have degree one because it would be cheaper to
replace an edge (5;,z;) with (,.5;). So the steiner tree must represent a valid set cover
and will have cost nM plus the cost of the cover.

In the unweighted version, the cost of every edge is 1. Again, if some z; has degree
more than one, an edge (5;, ;) can be replaced with an edge (*,.5;) with no increase in
cost. So, the cost of the optimal steiner tree is n plus the size of the minimal cover.

Proof: TRAVELING SALESMAN. The weighted version is proved in [Kre88] and the
result can be extended to the triangle inequality by adding a large constant to the cost
of every edge. For the unweighted version, we first reduce CHEATING 3-SAT to DIRECTED
CHEATING HAMILTON CYCLE (given a graph, find a permutation of the vertices that min-
imizes the number of non-edges and output the number of non-edges) by modifying the
construction from SAT to HAMILTON CYCLE in [HU79] as follows. By putting all of the
positive occurrences of a variable before any of its negative occurrences, the number of

non-edges in CHEATING HAMILTON CYCLE is at most the number of variables cheated on in

17

SAT. We claim without proof that there is no more powerful way to pick non-edges. That
is, any occurrence of a non-edge in HAMILTON CYCLE can be replaced by a non-edge in the
gadget representing the choice for some variable. Thus, the minimum number of cheated
variables is the minimum number of non-edges. Then, DIRECTED CHEATING HAMILTON
CYCLE can be reduced to UNDIRECTED CHEATING HAMILTON CYCLE by the construction
in [HU79] or in [Kar72]. Again, we claim without proof that any non-edge for the undi-
rected problem can be replaced with a non-edge that corresponds to a non-edge in the
directed problem.

Proof: INTEGRAL FLOW WITH MULTIPLIERS. [SahT74] gives a reduction from SUBSET
suM such that optSUBSET SUM — optFLOW which is sufficient for the weighted version.
However, this reduction is not sufficient for the unweighted or restricted weighted versions

because these versions of SUBSET SUM are not complete.

For the general case, we give a reduction from 2-saT. Let ®(zq,...,2,) = C1---Cp,
be a boolean formula with weights w1, ..., w,, on the clauses. Let G = (V, F) be a graph
where V' = {s,t,81,...,84,%1,+« s &0, T1y-- -, Tn,C1y--.,Cm,d}. There are edges (s,s;),

(si,2;) and (s;,7;) with capacity 1 for each 1 < ¢ < n. There are edges (z;,¢;) with
capacity 1 if z; € C;, and similarly for (7;,¢;) if 7; € C;. There are edges (c;,t) and
(¢j,d) with capacity w; for each 1 < j < m. The multiplier for z; is the number of times
z; occurs in @, and similarly for ;. The multiplier for ¢; is w;, the multiplier for d is 0
and the multiplier on all other vertices is 1. In an optimal flow, either z; or T; will have
its maximum capacity and the other will have zero flow, and the flow into ¢; will be the
number of true literals in ;. The flow into ¢ is the sum of the weights on the satisfied
clauses and the excess flow drains into d. In the unweighted case, the multipliers on z;

and T; can be replaced by several vertices with multiplier 2. O

3.6 Sets, Covers and Partitions

Theorem 3.5 The weighted, unweighted and restricted weighted versions of the following
functions are complete for OptP, OptP[O(logn)] and OptP[l(n)] (for uniformly smooth

[(n) > logn) under linear metric reductions.

e 3-DIMENSIONAL MATCHING [SP1, SP2, SP3]
Instance: Sets W, X and Y and weighted subset M C W x X x Y.
Output: The maximum weight of a matching M’ C M.

Remark: Also called EXACT COVER. Also holds if the weights are associated with
the elements in W, X and Y instead of the triples in M.

e SET COVER [SP5, SP§]

18

Instance: Set S and weighted collection C' of subsets of 5.
Output: The minimum weight of C’ C C that covers 5.

e ELEMENT COVER
Instance: Weighted set 9, collection C' of subsets of 5 and integer k.
Output: The maximum weight that can be covered by any €’ C C with |C’| < k.

Proof: 3-DIMENSIONAL MATCHING. For the weighted and restricted weighted versions,
the reduction from 3-sAT in [GJ79] will work. Put a large weight on the sets covering the
“internal” elements, give the sets covering the “clause” elements the weight of the clause
and eliminate the “garbage collection” sets. A maximum matching must cover all of the
internal elements, so it represents a legal assignment to the variables. The weight of the
assignment will be the weight of the sets representing the clauses.

For the unweighted version, the construction in [GJ79] will also work as a reduction
from CHEATING SAT. In the “truth-setting” component, put all positive occurrences of a
variable together and all negative occurrences together. By missing only one “internal”
node, a cover can get credit for the clauses containing either positive or negative occur-
rences of the variable. We claim without proof that this is the most powerful way to
cheat.

Proof: SET COVER. Immediate reduction from VERTEX COVER.

Proof: ELEMENT COVER. Reduction from saT. Let ®(2y,...,z2,) = C1---Cp, be a
boolean formula with weights wq, ..., w,, on the clauses. Let S = {c1,...,€m, Y15 Yn}
where ¢; has weight w; and y; has weight > w;. Let C = {X1,..., X,, X1,..., X, } where
X; contains y; and all ¢; such that z; satisfies C'; and X; contains y; and all c; such that z;
satisfies C';. Finally, let k£ = n. Any optimal C’ C C with |C’| = k must cover {y1,...,¥n}
and so it must contain exactly one of X; and X;. This reduces SAT to ELEMENT COVER.
O

For the weighted set problems SUBSET SUM and PARTITION below, we can show OptP-
completeness with general weights, but these results do not extend to the unweighted or
restricted weighted versions. These problems are solvable in pseudo-polynomial time and
seem to need polynomially long integers even to simulate an OptP[1] function. For exam-
ple, if all of the a;’s are 1, then these problems become trivial. Or, if the weights are re-

stricted to {(n) bits, then there is a dynamic programming solution that uses time 2 O(i(n)),

Theorem 3.6 The following functions are complete for OptP under linear metric reduc-

tions.

e SUBSET sUM [SP13]

Instance: Set A = {ay,...,a,} of positive integers and integer K.

19

Output: The minimum of |} ;cga; — K| for any subset S C {1,...,n}.

Remark: No unweighted or restricted weighted version. Also complete if we ask
for the maximum } ;. g a; less than or equal to K, or if we ask for the min-
imum) ;. a; greater than or equal to K. This implies similar results for

KNAPSACK [MP9] and INTEGER EXPRESSION MEMBERSHIP [AN18].

e PARTITION [SP12]
Instance: Set A = {aq,...,a,} of positive integers.
Output: The minimum of |}7,cga; — 37;g5 a;| for any subset 5 C {1,...,n}.

Remark: No unweighted or restricted weighted version.

Proof: The version of SUBSET sUM in which we ask for the maximum) ;5 a; less than
or equal to K was called KNAPSACK and was shown in [Kre88]. In that reduction, the
difference between) ;. s a; and K is in its lowest order bits, and any sum greater than K
must differ in higher order bits and hence is farther away from K. Thus, this reduction
also works for SUBSET SUM.

We can then reduce this version to PARTITION. Let S = 37, a;, let a = 35 and let
B =254 2K. An optimal partition to A U {a, 3} must put o and 3 on opposite sides,
and this reduces SUBSET SUM to PARTITION. O

3.7 Data Storage and Compression

Theorem 3.7 The following functions are complete for OptP[O(logn)| under linear met-

ric reductions.

e SHORTEST COMMON SUPERSEQUENCE [SRS]
Instance: Finite alphabet Y and finite subset R C »*.
Output: The length of the shortest x € ¥* such that every string in R is a subse-

quence of x.

e LONGEST COMMON SUBSEQUENCE [SR10]
Instance: Same as SHORTEST COMMON SUPERSEQUENCE.

Output: The length of the longest z € ¥* such that z is a subsequence of every
string in R.

Proof: COMMON SUB/SUPER-SEQUENCE. The reductions from VERTEX COVER in

[Mai78] are linear reductions. O

20

3.8 Scheduling Problems

Theorem 3.8 The following function is complete for OptP under linear metric reduc-

tions.

¢ TWO-PROCESSOR SCHEDULING [SS§]
Instance: Set of jobs J with integer lengths.
Output: The minimum length of a two-processor schedule for J.

Remark: No unweighted or restricted weighted version.
Proof: TWO-PROCESSOR SCHEDULING. Immediate from PARTITION. O

Theorem 3.9 The weighted, unweighted and restricted weighted versions of the following
function are complete for OptP, OptP[O(logn)] and OptP[l(n)] (for uniformly smooth

[(n) > logn) under linear metric reductions.

¢ PRECEDENCE CONSTRAINED SCHEDULING [SS3, SS9]

Instance: Set of jobs with unit runtimes, weights on the jobs, precedence rela-

tion <, number of processors p and integer deadline D.
Output: The minimum sum of weights of the tardy jobs.
Remark: Also complete to compute the minimum > w;C; or > w;1T; where w; is

the weight of job J;, C; is the completion time for J; and 7T; is the tardiness of
J;.

Proof: PRECEDENCE CONSTRAINED SCHEDULING. We use the construction in [LK78]
as a reduction from APPROXIMATE CLIQUE. Let G = (V| E) be a graph, let n = |V| and
m = |E], let w;; be the weight of (¢,7) € £, let M = 3~ w;; and let k be the size of the
subset of V. We write the reduction for a variable number of processors. It is easy to
convert this to a constant number of processors by adding dummy jobs as in [UII75].

The set of jobs is J/ = V U £ and the precedence is 7,5 < (7,j) where ¢ and j are the
endpoints of (7, j). The weight of i € V' is M and the weight of (¢,7) is w;;. The number
of processors at time 1 is k, at time 2 it is (]2“) + n — k, at time 3 it is unlimited and the
deadline is D = 2. The optimal solution must schedule all of the vertices by the deadline,
so this leaves room at time 2 for the edges among the vertices scheduled at time 1. The
cost of the optimal schedule will be M minus the weight of the optimal subset of V in
APPROXIMATE CLIQUE. O

Theorem 3.10 The following function is complete for OptP[O(logn)] under linear metric

reductions.

21

e MINIMAL COMPLETION TIME [SS9]

Instance: Same as PRECEDENCE CONSTRAINED SCHEDULING without the weights
on the jobs and the deadline D.

Output: The minimal time D such that all of the jobs can be completed by time D.

Proof: MINIMAL COMPLETION TIME. We modify the proof for PRECEDENCE CON-
STRAINED SCHEDULING to give a reduction from unweighted SATISFIABILITY. In the pre-
vious construction, restrict the number of processors at time 3 to be m — (g) and set the
deadline to 3. The completion time will be 3 if and only if the graph has a clique of size k,
otherwise it will be 4 (this was the NP-completeness proof of SCHEDULING in [LK78]). By
combining the reductions from SATISFIABILITY to CLIQUE to SCHEDULING, we can reduce
a boolean formula to a scheduling problem that has completion time 3 or 4 depending on
whether or not the formula is satisfiable.

Now, let ® be a CNF formula with m clauses. By Cook’s theorem [Coo71], we can
construct formulas Fy, ..., F,, where F; is satisfiable if and only if ® has at least z
simultaneously satisfiable clauses. By the above argument, reduce each F; to a scheduling
problem S5; such that 5; has completion time 3 or 4 depending on F; being satisfiable.
Combine 5, ..., 5, into a single scheduling problem § by extending the precedence so
that all jobs in 57 must precede all jobs in 55, all jobs in 53 must precede all jobs in
53, and so on. Then the minimal completion time for § will be 3m plus the number of

unsatisfied clauses in ®. O

3.9 Mathematical Programming

Theorem 3.11 FEzcept as noted, the weighted, unweighted and restricted weighted ver-
sions of the following functions are complete for OptP, OptP[O(logn)] and OptP[i(n)]

(for uniformly smooth I(n) > logn) under linear metric reductions.

e ZERO-ONE LINEAR PROGRAMMING [MP1]
Instance: Integer matrix A and integer vectors B and C'.

Output: The maximum value of CTX over all 0-1 vectors X satisfying AX < B,

or else 0 if no X satisfies the inequality.

¢ QUADRATIC PROGRAMMING [MP2]
Instance: Rational matrix A, rational vector B and rational numbers ¢q, ..., ¢y
and dy, ..., dp,.
Output: The maximum value of Y72, (¢;z? + d;z;) taken over rational vectors X

satisfying AX < B, or else 0 if no X satisfies the inequality.

22

Remark: Not known to be in OptP and no unweighted version. Weighted and
restricted weighted versions are OptP and OptP[l(n)] hard.

Proof: ZERO-ONE LINEAR PROGRAMMING. The weighted version is shown in [Kre88]
and it is straightforward to extend the result to the unweighted and restricted weighted
versions.

Proof: QUADRATIC PROGRAMMING. The constraint 0 < z < 1 together with a large
weight for M where Ma(z — 1) is in the objective function force z to be 0 or 1. The rest

of the construction proceeds as in ZERO-ONE LINEAR PROGRAMMING. O

3.10 Miscellaneous Problems

Theorem 3.12 For any uniformly smooth l(n) > logn, the weighted, unweighted and re-
stricted weighted versions of the following functions are complete for OptP, OptP[O(logn)]

and OptP[l(n)] under linear metric reductions.

e MINIMUM AXIOM SET [LO17]

Instance: Finite weighted set of “sentences” 5, subset 7' C 5 of “true sentences,”

and “implication relation” R consisting of pairs (A, s) where A C S and s € S.

Output: The minimum weight of any subset Sy C 5 such that the closure of Sy
under R includes 7.

e CLUSTERING [MS9]
Instance: Finite set X, integer distance d(z,y) for z,y € X and integer k.

Output: The minimum " d(z,y) taken over pairs z, y in the same equivalence class

for any partition of X into k classes.

o MAXIMUM PERMUTATION

Instance: Integer n and polynomial time computable function f defined on per-

mutations of {1,...,n}.

Output: The maximum value of f(o) taken over all permutations o.

Remark: See [Sah74].

® SQUARE TILING [GP13]
Instance: Set C' of colors, weighted set 7 C C'* of tiles and integer N.

Output: The maximum weight tiling of an N X N square where edges of adjacent

tiles agree in color.

Remark: In the unweighted version, tile weights are from {0,1}. Both max and

min versions are complete under exact metric reductions.

23

e UNIFICATION WITH COMMUTATIVE OPERATORS [AN16]

Instance: Set V of variables, set C' of constants, ordered pairs of expressions
(e1, f1), - -, (€n, fn), and weights wy, ..., w, for the pairs.

Output: The maximum weight of any assignment for the variables. An assignment
associates a variable-free expression with each variable. The weight of an
assignment is the sum of the w;’s such that e; and f; are equivalent under the
substitution.

Remark: An expression is a variable, a constant, or (e + f) where e and f are
expressions. Constants are equivalent if they are identical, and if e and e’ are
equivalent and f and f’ are equivalent, then (e+ f), (¢’ 4+ f') and (f'+ ¢€') are
all equivalent. Also complete if we associate weights with the constants, define
the weight of (e + f) to be the sum of the weights on e and f, and ask for the
minimum sum of weights of the expressions in the assignment that makes all

of the pairs equivalent.

Proof: MINIMUM AXIOM SET. Straightforward from SET COVER.

Proof: CLUSTERING. Immediate from MAX CUT.

Proof: MAXIMUM PERMUTATION. Immediate from TRAVELING SALESMAN.

Proof: SQUARE TILING. Reduction from UN1v[{(n)]. Let M be a metric Turing machine
computing UNIV[{(n)], with tape alphabet A, states () and running in time p(n).

We may assume that M has one tape and that M makes at most k& branches at any one
step, for some k. Let ' = AUA X Q x{1,...,k}. An element in I' represents either a tape
symbol or a tape symbol together with a state and a non-deterministic choice (indicating
that M’s tape head scans this cell).

Let w € ¥*, let n = |w| and let N = p(n). We construct a set of tiles 7" such that any
tiling of an N X N square represents a computation of M (w). Each tile represents the
contents of one tape cell (and possibly M’s state), with the tape cells numbered 1,..., N
from left to right and time numbered 1,..., N from bottom to top.

Note that the contents of tape cell 7 at time ¢ depends only on cells z — 1,7 and ¢ + 1
at time ¢ — 1. For a,b,c € I, let §(a,b,c) C I' be the set of possible tape contents of cell
if a, b and c are the tape contents at cells 7 — 1, 7z and ¢ + 1 at the previous step.

A color is either a 2-tuple from I' and an integer (for the left and right sides) or a 3-
tuple from I' and an integer (for the top and bottom). The set of tiles (except for the first
row) is: bottom = (a,b,¢,t), left = (a’,d,?), right = (d,¢’,i+ 1) and top = (d’,d, ¢/, t+ 1)
for any a,b,¢,d,a’,¢’ € I and 0 < i,t < N — 1, where d € §(a,b,c). The first row of tiles
contains the initial tape contents and consists of the input w and the initial state, followed

by blanks.

24

The weight of all of the tiles is 0 except for the tiles with time N. We may assume that
M writes its output in binary on cells 1,...,{(n) and erases the rest of its tape. Let a tile
with top color (a,b,c, N) and right color (b, c,7) have weight 42 ¢, for b € {0,1}. Then the
colors on the tiles represent the tape contents of a computation of M(w) and the weight
of the tiles is opt™ (w).

Proof: UNIFICATION. Reduction from 2-saT. Let ®(zq,...,2,) be an instance of 2-
SAT with clauses (1, ..., C,, and weights wy, ..., w,,. Let V = {&y,...,2,,%1,...,Tn,
Y1,---,Y2m } and let C = {0,1}. For each variable z;, make the pair (z; + 7;) and (0+ 1)
with weight M = 3 w;. For each clause C; = (a+b), make the pair ((a4b)+(y2;-1+y2;))
and ((0+ 1)+ (1 + 1)) with weight w;. An optimal assignment must satisfy all of the
variable pairs and will have weight n M plus the maximum weight of ®. With the weights
on the constants, a similar reduction from LEX will work. Let C' = {t1, f1,...,tn, fu}, let
the weight of #; be 2¢ and let the weight of f; be 0. O

Theorem 3.13 The following functions are complete for OptP[O(logn)] under linear

metric reductions.

e CODE GENERATION FOR TWO ADDRESS MACHINE [PO5]
Instance: Expression dag (directed acyclic graph) G for a basic block of a program.

Output: The length of the shortest sequence of instructions computing G' on a

two-address machine with unlimited registers.

Remark: See [AJU77] or [GJT79] for more details.

e GEOMETRIC COVER
Instance: Set S of points in the plane on integer coordinates and integer R.

Qutput: The minimum number of circles of radius R centered on integer coordi-

nates needed to cover all points in 5.

Remark: See [FPT81] or [BL89]. Also complete if we ask for the maximum number
of points in 5" that can be covered by n circles of radius R. This last version

with weights on the points in S is complete for OptP or OptP[i(n)].

e MINIMUM INFERRED FINITE AUTOMATA (MIN DFA) [ALS]
Instance: Finite alphabet Y and finite subsets A, R C »*.

Output: The minimum number of states of a deterministic finite automata that

accepts every string in A and rejects every string in R.

Proof: cODE GENERATION. The reduction from FEEDBACK VERTEX SET in [AJU77] is

a linear reduction.

25

Proof: GEOMETRIC COVER. The construction in [FPT81] can be modified to give a
reduction from CHEATING SAT.

Proof: MIN DFA. Reduction from coLorRING. Let G = (V,FE) be a graph and let
V={0,...,n—1}. Let ¥ = {0,1,20,...,%,_1}. Let A contain 07*! 11,011,..., 0711
and all strings 0%1z; for 0 < i < n — 1. Let R contain ¢, 0,00, ...,0", 1,01, ..., 0”1 and
all strings 0*1z; for every edge (i,5) € F.

We identify a state in the DFA with a string that takes the initial state to it. The
states for ¢, 0, 00, ..., 07*! are all distinct because some number of 0’s distinguishes
them. The state for 0°1 represents vertex i. These states are all distinct from any state 07
because 1 distinguishes them. The minimum DFA accepting A and rejecting R consists
of n + 2 states for the strings ¢, 0, ..., 07! plus the states corresponding to the vertices.
States 0°1 and 071 are compatible if and only if there is no edge (i,5) € E (otherwise z; or
z; would distinguish them). Therefore, a minimum DFA corresponds to a legal coloring

and the minimum number of states is n + 2 plus the chromatic number of G. O

4 Open Problems

We conclude with a discussion of open problems. First, what is the precise number of
NP queries needed to solve BIN PACKING? Approximating BIN PACKING has been a
persistent open problem in approximation algorithms and it has a long history. John-
son et al. [JDU*74] showed an asymptotic ratio of 11/9. Fernandez de la Vega and
Lueker [dIVL81] improved the ratio to 1 + € for any ¢ > 0, and then Karmarkar and
Karp [KK82] showed how to get within an additive constant of O(log? n). This last result
implies that BIN PACKING is in FA%[2loglogn 4+ O(1)] because we can do binary search
on the interval it leaves.

Is there some function /(n) such that computing the optimal number of bins is complete
for FAL[l(n)]? We know that BIN PACKING is hard for FA%[1] because it is NP-complete
and that it can be solved with O(loglogn) queries, but its precise complexity is not known.
Of course, it is possible that BIN PACKING cannot be solved with fewer than O(loglogn)
queries but fails to be complete for this class. Alternatively, if we can’t identify its exact
complexity, maybe we can prove that BIN PACKING is equivalent to some other problems,
perhaps OPTIMAL LINEAR ARRANGEMENT or BANDWIDTH. Also, it’s still an open problem
if BIN PACKING can be approximated using at most one bin more than optimal.

A second open question is the complexity of actually producing an optimal solution
to an OptP problem and not just computing the optimal cost. For OptP[n?M)]-complete
problems such as TRAVELING SALESMAN, we can encode the solution in the low-order bits
of the optimal cost. This implies that computing the optimal solution is equivalent to

computing its cost for polynomially many queries. However, for fewer queries such as

26

O(logn), the situation is much less clear. For example, how do we find a maximum clique
just by knowing its size? We know that if optimal solutions for even FA%[1]-hard problems
can be found with I(n) > logn queries, then NP C Timge[29((")] because we can try all
possible sequences of oracle answers and then verify the solution. If O(logn) or fewer
queries suffice, then P = NP. Again, it is possible that O(n) queries are necessary but
that it fails to be complete for this class.

Chen and Toda [CT91] have a partial solution for the case of O(logn) queries. Let
PFRF be the class of functions computable in polynomial time with a polynomial number
of queries to an NP oracle but the queries must be made in parallel in one round. It is
easy to see that OptP[O(logn)] is contained in PFNF because we can ask if the optimal
value is greater than k for all possible k. Chen and Toda show that finding solutions to
OptP[O(logn)] problems can be randomly reduced to PFNY and that for many natural
OptP[O(log n)]-complete problems, finding solutions is PFNF-hard.

Another question is what other subclasses of FAY and OptP have natural complete
functions. We have already shown this for FA5[r?(M] and FA5[O(logn)], and indeed
the functional versions of most NP-complete problems are complete for one of these two
classes. Of course, the characteristic function of any NP-complete problem is complete for
FAP[1]. What other parameters [(n) have complete functions? For example, maybe BIN
PACKING is complete for O(loglogn) queries.

Lastly, are there NP-complete problems whose functional versions are not OptP-
complete? Our main result is that most NP-complete optimization problems are also
OptP[l(n)]-complete for some I(n), but surely not every problem from Garey and John-
son [GJ79] will work. For example, some of the problems in algebra and number theory
don’t seem to fit well. QUADRATIC CONGRUENCES asks if there is an z < ¢ such that
¢ = a (mod b). We can easily make this an optimization function by asking for the
largest such z, but the proof does not seem to work for this definition. If instead we ask
for the largest (z mod d) satisfying the congruence, then we claim that the problem is
OptP-complete. A similar result can be obtained for SIMULTANEOUS INCONGRUENCES.
Also, some other problems such as BANDWIDTH and OPTIMAL LINEAR ARRANGEMENT

have unusual optimization criteria and their proofs don’t seem to generalize to OptP.

Acknowledgement

We thank Clyde Kruskal and Todd Wareham for proofreading the text and for pointing
out an error in STEINER TREE.

27

References

[ABG90]

[AJUTT]

[Ber85]

[BL8Y]

[CooT1]

[CT91]

[dIVLS1]

[FPTS81]

[Gas86)]

[GJ79]

[Hol81]

[HU79]

Amihood Amir, Richard Beigel, and William [. Gasarch. Some connections
between bounded query classes and non-uniform complexity. In Proceedings
of Fifth Annual IEFEE Conference on Structure in Complezity Theory, pages
232-243, 1990.

Alfred V. Aho, S. C. Johnson, and Jeffrey D. Ullman. Code generation for
expressions with common subexpressions. Journal of the ACM, 24(1):146-160,
January 1977.

Claude Berge. Graphs. Noth-Holland, Amsterdam, 1985.

Chanderjit Bajaj and Ming Li. Geometric optimization and DP-completeness.
Discrete and Computational Geometry, 4:3—13, 1989.

Stephen Cook. The complexity of theorem-proving procedures. In Proceedings
of Third Annual ACM Symposium on Theory of Computing, pages 151-158,
1971.

Zhi-Zhong Chen and Seinosuke Toda. On the complexity of computing optimal

solutions. Manuscript, 1991.

W. Fernandez de la Vega and George S. Lueker. Bin packing can be solved
within 1 + € in linear time. Combinatorica, 1:349-355, 1981.

Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal
packing and covering in the plane are NP-complete. Information Processing
Letters, 12(3):133-137, June 1981.

William I. Gasarch. The complexity of optimization functions. Technical Report

1652, Department of Computer Science, University of Maryland, 1986.

Michael Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, San Francisco,
1979.

Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on Comput-
ing, 10(4):718-720, 1981.

John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading, Massachusetts, 1979.

28

[JDU*74] David S. Johnson, Alan Demers, Jeffrey Ullman, Michael R. Garey, and

[Kar72]

[KK82]

[Kre88]

[Lad75]

[LK78]

[LY80]

[Mai78]

[Pap84]

[PYS84]

[Sah74]

[SkiS5]

Ronald L. Graham. Worst-case performance bounds for simple one-dimensional
packing algorithms. SIAM Journal on Computing, 3(4):299-325, 1974.

Richard Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85-103.
Plenum Press, New York, 1972.

N. Karmarkar and Richard Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. In Proceedings of 23rd Annual IEFE
Symposium on Foundations of Computer Science, pages 312-320, 1982.

Mark W. Krentel. The complexity of optimization problems. Journal of Com-
puter and System Sciences, 36(3):490-509, June 1988.

Richard Ladner. The circuit value problem is log space complete for P. SIGACT
News, 7(1):18-20, 1975.

J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling under
precedence constraints. Operations Research, 26(1):22-35, January-February
1978.

John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hered-
itary properties is NP-complete. Journal of Computer and System Sciences,
20:219-230, 1980.

David Maier. The complexity of some problems on subsequences and superse-
quences. Journal of the ACM, 25(2):322-336, April 1978.

Christos H. Papadimitriou. On the complexity of unique solutions. Journal of
the ACM, 31:392-400, 1984.

Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of facets
(and some facets of complexity). Journal of Computer and System Sciences,
28:244-259, 1984.

Sartaj Sahni. Computationally related problems. STAM Journal on Computing,
3(4):262-279, December 1974.

Steven Skiena. Complexity of optimization problems on solitaire game Turing
machines. Master’s thesis, Department of Computer Science, University of

Ilinois at Urbana-Champaigne, 1985.

29

[UI175] Jeffrey D. Ullman. NP-complete scheduling problems. Journal of Computer
and System Sciences, 10:384-393, 1975.

[Wag88] Klaus W. Wagner. On restricting the access to an NP oracle. In Proceedings of
Fifteenth Annual International Colloquium on Automata, Languages and Pro-

gramming, pages 682-696. Springer-Verlag, Lecture Notes in Computer Science
(number 317), 1988.

30

Figure 1: Tree of reductions.

31

