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1 Introduction

Imagine that you are given an oracle for the
halting set but you can only ask it (say) 5
questions (no time or space bound on compu-
tation). What can you compute? Could you
compute more with 6 queries? More generally,
if me&N and A C N then

e What functions can we compute with m
queries to A7

e Are there functions that can be computed
with m queries to A that cannot be com-
puted with m — 1 queries to A? To any
set X7

In this paper we survey much of the work
that has been done on these two questions.
Our framework is recursion-theoretic— the
computations have no time or space bound.

Several people have studied this problem
with different motivations:

While Richard Beigel was looking for a the-
sis topic, he (together with Jon Seigel) pon-
dered the following question “What could be
computed if a Turing machine were allowed to
compute ‘forever’?” Could the notion of ‘for-
ever’ be quantified? One way to formalize the
notion of ‘forever’ was to look at queries to K.
One way to quantify this notion was to put ex-
plicit bounds on the number of queries. Thus
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the following natural question arose: “Are i+1
queries to K more powerful than i queries
to K7?” This question can be interpreted in
four different ways depending on whether one
is computing functions or deciding sets; and
whether the queries are serial or parallel. He
showed that answer is YES in all these cases
[6, 16]. He later extended many of his results
to general nonrecursive sets [6].

Louise Hay was initially interested in the
n-r.e. sets, which are a stratification of some
of the sets that are <p K (we define n-r.e.
in Section 10). The queries-to-K hierarchy is
another stratification of those same sets. Hay
was concerned with how these two hierarchies
relate to each other. The main theorem of [16],
also stated in Section 10, answered her ques-
tions.

William Gasarch initially wanted to develop
a complexity theory within recursion theory,
with the number-of-queries-to-an-oracle being
the resource of interest [26]. This goal is par-
tially realized in [12, 13] where several prob-
lems about finding the chromatic number of
a recursive graph are characterized in terms
of bounded queries. These results will be re-
viewed in Section 13.

2 Technical Summary

We now formally define bounded query classes.



Definition 2.1 Let m € N and A C N. A
function fisin FQ(m, A)if f is recursive in A
via an algorithm that makes at most m queries
to A. Later queries can depend on answers to
previous queries. Such queries are called se-
rial. A function f is in FQ)(m, A) if f is
recursive in A via an algorithm that makes
at most m queries that are asked all at once.
Note that the queries cannot depend on previ-
ous answers. Such queries are called parallel.

Definition 2.2 TLet m € N and A C N. A set
Bisin Q(m, A) if its characteristic function is
in F'Q(m, A). The class Q(m, A) is defined

similarly.

Bounded queries differ from truth-table re-
ductions in two ways:

1. If A € Q(n, B) then queries can depend
on previous answers. This is not the case
for A Stt B.

2.If A € Q)(n,B) or A € Q(n,B), and
the wrong answers are supplied, then the
computation might diverge. By contrast,
if A <;t B then even if the wrong an-
swers about B are supplied, the compu-
tation terminates.

3. We parameterize the number of queries
exactly. By contrast, the different no-
tions of truth-table reduction (bounded,
unbounded, and weak) differ in less re-
fined ways.

The following definition will be helpful in
several places.

Definition 2.3 If C'is a set then C*™ is the set
of all true statements that are boolean combi-
nations of atoms of the form ‘n € C'.’

Much of the work that has been done in this
area concerns how hard, in terms of number-
of-queries, the following functions are to com-
pute:

Definition 2.4 Let m € N and A C N. The
functions F/A #4  and the set V.2, are defined
by

Fn’j(ml,...,mm) ={(xa(z1),...,xa(zm))
#fl(ml, cookm) =iz € A}
VA ={(z1, . 2, b1, b s (Vi)xa(z:) = b}

Intuitively F4 is asking for membership of

m numbers, #2

of m numbers, and V2 is asking to verify the

is asking for the cardinality

membership status of m numbers. The most
interesting theorems in this field (in the au-
thor’s opinion) involve FA and #2 . They are

(3X,n)F{t € FQ(n, X) = A rec. [15]

(3X,n)#4. € FQ(n, X) = A rec. [33]

We will refer to the latter theorem as the
cardinality theorem.

In Sections 3 and 4 we review the prehis-
tory of bounded queries, i.e., research in the
literature that was close to this topic. In Sec-
tions 5, 7, and 8 we examine the complexity
of FA #2 and V2 respectively (Section 6 is
devoted to some variations on the complexity
of F4). Sections 9,10,11, and 12 examine the
question of when extra queries increase com-
putational power. Section 13 summarizes the
work done on classifying problems in recursion
theory, especially recursive graph theory, by
using number-of-queries as a complexity mea-
sure. Section 14 compares and contrasts the
work done on bounded queries in complexity
theory with that done on bounded queries in
recursion theory.

Throughout this paper we will only prove
theorems that are not in the ‘open’ litera-
ture. Some results, though ‘well known,” ap-
pear with proof here for the first time.



3 Prehistory:
Kolmogorov Complexity
Theory

Kolmogorov complexity (see [34, 35] for refer-
ences and background) deals with how many
bits are needed to produce certain objects.
Both Kolmogorov Complexity and Bounded
Queries are concerned with how much infor-
mation 1s needed to compute an object; how-
ever, there is little overlap. We discuss the
differences of the two fields, and then give an
example of a weak overlap which will under-
score the point that there is little overlap.

Definition 3.1 Let U be a fixed universal
Turing machine. If z and y are finite strings
then we Ky (z | y) is the length of the shortest
z such that U(y, z) = z.

If U7 and Uy are universal Turing machines
then there exists a constant ¢ such that for ev-
ery z,y, we have Ky, (z | y) < Ky,(z | y) +¢c.
Hence the choice of U only affects additive con-
stants. Henceforth we fix a particular U and
denote Ky(z | y) by K(z | y). Intuitively
K(z | y) is the number of bits needed to de-
scribe z, given y.

Notation 3.2 If A is a set then a,, is the ini-
tial segment of A of length n.

Many theorems in Kolmogorov complexity
are concerned with the growth of K(a, | n)
for various sets A. The next (easy) proposi-
tion weakly links Kolmogorov complexity to
bounded queries, and is folklore.

Proposition 3.3 Let A,Y be sets, and f a
function, such that (Ym)[FA € FQ(f(m),Y)].

Then there exists ¢ such that

(Vm)[K (am | m) < f(m) +c].

Proof:

Let FA € FQ(f(m),Y) via oracle Turing
machine MO. Consider the computation of
FA(0,1,...,m —1). This computation makes
f(m) queries to Y. Let biby---bsm) be the
correct answers to these queries. Given this
sequence, the Turing machine MO (of con-
stant size ¢), and the value m, one can easily
produce the string FA(0,1,...,m — 1) = a,.
Hence from f(m) + ¢+ O(1) bits one can pro-
duce a,,.

A key difference between Kolmogorov com-
plexity and bounded queries is that Kol-
mogorov complexity deals with initial seg-
ments of sets, whereas (say) FA is asking
about any m numbers.

To our knowledge there is no nontrivial the-
orem in Kolmogorov theory that implies a re-
sult in bounded queries, or vice-versa.

4 Prehistory:
(m, n)-computability

Frequency computations are a precursor to
bounded queries. This work is not well known
since most of the papers in the field are either
in Russian, badly written, or both. A recent
survey [28] gives a nice summary of the area.
We define some of the basic terms of the field,
and show that some results in it can be derived
from results in bounded queries, while others
(probably) cannot.

Definition 4.1 [45] A set A is (m,n)-
computable if there exists a recursive function
f N — {0,1}" such that for all pairwise
distinct tuples (21, ..., 2,), if f(z1,...,2,) =
(b1,...,bn) then |{i : xa(z;) =b;}| > m.

Myhill (see [37] P. 393) asked if making m
close to n forces A to be recursive. Traht-
enbrot [50] answered YES by showing that if



2m > n then A is recursive. Kinber [30, 31]
solved several variations of the problem (see
[28)).

The techniques used by Trahtenbrot and
Kinber are weak forms of techniques used
by Owings’ and Kummer in proving Theo-
rems 7.1, 7.2, and 7.3 (the cardinality the-
orem). Consequently, everything proven by
Trahtenbrot and Kinber can be derived from
the cardinality theorem. We give one exam-
ple: Trahtenbrot’s theorem above. The in-
terested reader should see [28] for statements
and proofs of other theorems about (m,n)-
computability and their relation to the cardi-
nality theorem and various subcases of it.

Theorem 4.2 [50] If A is (m,n)-computable,
and 2m > n, then A is recursive.

Proof:

We show that if A is (m,n) computable via
f, and 2m > n, then #2 € FQ([logn], X);
hence by the cardinality theorem A is recur-
sive.

Let f(z1,...,2n) = b1 by
one of the following happens.

. Since 2m > n

(a) [{i:b; =0}| > 5, hence one of the ¢ with
b; = 0 is correct, so #2(x1,...,2,) # n.

(b) [{i:b; =1} > %, hence one of the i with
b =1is correct so #A(zy,...,2,) £ 0.

In both cases the range of values of
#2(x1,...,x,) is reduced from n + 1 to n.
Let X be the union of the following two sets.

{{z1, .., Zn, ) | (a) occurs and ith bit of
#A4(xq, .., 2p) is 1}

{z1, .., Zn, 1) | ( ) occurs and ¢th bit of
#ﬁ(ml, cyp) — 1is 1}

It is easy to see that #4 € FQ([logn], X).
|

1Tt should be noted that Owings did not know of
the papers of Trahtenbrot and Kinber when he proved
Theorems 7.1 and 7.2.

Another question of interest in this field
s ‘For which m,n,r s 1s it the case that all
(m, n)-computable sets are (r, s)-computable?’
The following results, which are inroads on
this question, do not seem to be derivable from
bounded queries. The general question is still
open.

Theorem 4.3 [18] Let n,m,r,s be such that
n > 2m, s > 2r, and n > s. All (m,n)-
computable sets are (r,s)-computable iff n —
m<s—r.

Theorem 4.4 [18] For every n > 2 there is
a (1,n)-computable set which is not (2,n+1)-
computable.

It is an open problem to define the notion of
(m, n)-computable functions in a complexity-
theoretic domain and prove something inter-
esting about it. It 1s not clear how interesting
this would be.

5 How hard is member-

ship?

We examine the complexity of computing
FA(z1, ..., 2m) = (xa(z1),. .., xa(®m)). Tt is
clear that Ft € FQ)(m, A). For which sets A
can we compute F4 with fewer serial queries
to A? To some X7 For A = K we can do very
well:

Theorem 5.1 [15, 16] For all n,
FE_, € FQ(n, K).

Can this be improved upon? The next the-
orem says NO in a very strong way.

Theorem 5.2 [15] For all sets A, if there ex-
1sts a set X and a number n such that
Fit € FQ(n, X), then A is recursive.



Are there any other natural sets for which
we can obtain FA € FQ(m — 1,A4)? Or for
which there is an X with F4 € FQ(m—1, X)?
We shall see that answer is no. Recall [48]
that if A is a set then A’ is the halting set
relative to A. Virtually all natural sets in re-
cursion theory, including the X;-complete and
II;-complete sets, are of the form A’ for some

A.

Theorem 5.3 [15] If A is nonrecursive then
for allm and X FA ¢ FQ(m—1,X).

How does the Turing degree of a set A re-
late to the number of queries needed to com-
pute FA? The next three theorems show that
within a Turing degree a variety of behaviors
are possible.

Theorem 5.4 [15] If a is any nonrecursive
Turing degree then there exist sets A, B € a
and a set' Y, such that

e Foralln, Ffi_; € FQ(n, A).
e Foralln, F{A_, € FQy(n,Y).

o For all m, and all X, FE ¢ FQ(m —
1, X).

The second item cannot be improved (see
Theorem 6.1).

Our next result is about r.e. degrees. For
every r.e. set A, for all n, F{i_; € FQ(n, K).
Hence a result like ‘FA ¢ FQ(m—1, X)’ is not
possible.

Theorem 5.5 [15] If a is any r.e. Turing de-
gree then there exist r.e. sets A, B €a such
that

e Foralln, F{i_; € FQ(n, A).
e Forallm, F2 ¢ FQ(m -1, B).

The results stated so far have a ‘feast or
famine’ flavor— either F2 is very hard or very
easy. The next theorem partially explains this.

Theorem 5.6 [ Let A be any set. If there
exist ¢,k and X such that FA € FQ(k—1,X)
then there exist mg and Y such that

(Vm > mg)[Fia € FQ((k—2)logm +¢,Y)].

Can Theorem 5.6 be improved to (say)
Fa4 € FQ(17logm,Y)? The next theo-
rem shows that the answer is no— for ev-
ery k there are sets such that (roughly)
FA ¢ FQ(klogm, A) but (VX)F2 ¢ FQ((k—
1)logm, X). The proof is in the appendix.
The theorem is due to Beigel and Gasarch and
was proven in 1988, though never published.

Theorem 5.7 Ifa is any Turing degree above
(or equal to) K, then for every k € N there
exists a set A €a such that

o (Vm)[F4 € FQ(k [log 2t + 1], A)].
o (Ym)(VX)[F ¢ FQ((k=1) [log 7|, X)].

Much less is known about how many queries
to A are required to compute F/4. The follow-
ing theorem is all that is known.

Theorem 5.8 [5P Let A be any set. If there
exists k such that FA € FQ(k — 1, A) then
there exist mg and r < 1 such that

(Ym > mo)[FA € FQ(m", A)].

It is an open problem to improve this result.

6 How hard is member-
ship? (A second look)

The algorithm for FX_, € FQ(n, K) has two
features that we wish to examine:

?In [4] this theorem was proven in a complexity-
theory framework, but the proof is the same for our
recursion-theoretic framework.

3Tn [5] this theorem was proven in a complexity-
theory framework, but the proof is the same for our
recursion-theoretic framework.



1. The queries are made serially.

2. If incorrect answers are supplied then the
computation must diverge.

We show that if either of these luxuries are
disallowed, then, for all m, FX requires m
queries to K.

Examining Luxury 1:

Theorem 6.1 [7] If A is any nonrecursive set
then, for allm, FA ¢ FQu(m—1,A4)

Proof:
If F2 € FQ)(m — 1, A) then, by induction,
for all 7, an_l_l- € FQ)(m—1,A). This contra-

dicts Theorem 5.2.
|

Corollary 6.2 (Ym)FX ¢ FQ(m—1,K).

If parallel queries to a different oracle are
allowed then a large savings occurs: there
exists a set Y such that for all m, FE ¢

FQ)([log(m + 1)],Y).

Examining Luxury 2:
Definition 6.3 et m € N and A C N. A

function f is in FQC'(n, A) if there exists an
oracle Turing machine MO such that

1. MX computes f.

2. For all oracles Y, for all z, MY (z) makes
at most m queries and halts.

Beigel and Gasarch proved the following
theorem in 1987, though it appears here for
the first time.

Theorem 6.4 For all m and X,
FE ¢ FPQC(m—1,X).

Proof:

Assume FE € FQC(m — 1,X) via MO,
We construct programs zi,...,2z,, such that
FE(zy,... zm) # MX(21,...,2,). Our con-
struction of x1,...,x,, uses the m-ary recur-
sion theorem [44, 47] so program z; knows the
programs i, .

Our algorithm for z; is as follows. On any
input, z; runs MO(zy,...,2,,) using all 271
possible sequences of answers. (All these com-
putations halt by the assumptions about MO).
Let the outputs be wy,...,wom-1 € {0,1}™.
Let w be the least element of {0,1}™ that is
not in {w,..., wym-1}. If the ith bit of w is
0 then z; diverges, else x; converges.

For all z; the same w 1s found. The z;’s
conspire to make FX(zy,...,2,) = w. But w
is not a possible output for MO(z1,. .., 2,,).
In particular MX(zy,...,2,) # w. Hence
FAzy,. . . 2m) # MX(21,...,2m).

R

Corollary 6.5 If A is such that K <,, A
then for allm and X, FA ¢ FQC(m —1,X).

All the lower bounds, and most of the upper
bounds in this paper would hold if () and F'@)
were replaced with QC' and FQC'. In fact, all
the theorems in this paper are true for QC and
FQC with the same prove, except for Theo-
rem 5.1 (which is FALSE, as shown in this
section), and Theorem 10.2 (which has not
been investigated along these lines). Tt might
be of some interest to see where else these two
notions differ.

7 How hard is cardinality?

We examine the complexity of comput-

ing #4(z1,...,xm)=|{i:z; € A}|.  This
function looks easier to compute than
FA(zy,...,2m); nevertheless, Beigel conjec-

tured that for all n, A, and X, #4. cannot



be computed with only n queries to X. This
conjecture turned out to be interesting and
hard; it has recently been answered affirma-
tively. Owings took the first steps to a solution
by proving the following two theorems.

Theorem 7.1 [42] For all A,n and X,
if F5 € FQ(n, X) then A <1 K.

Theorem 7.2 [{2] For all A and X,
if F{* € FQ(1,X) then A is recursive.

Kummer [33] built on the latter theorem, in
an intricate way, to obtain a beautiful proof of
Beigel’s conjecture. The proof used a version
of Ramsey’s Theorem.

Theorem 7.3 [33] For all A and X,
if Fft € FQ(n, X) then A is recursive.

We now examine what behavior #4 might
have within a degree. We do not get the same
variety of behavior we obtain for F/4 because
of the following theorem.

Theorem 7.4 [9] For every set A and n € N
there exists X such that #4._, € FQ(n, X).

Proof: Let X = A", The value of
#4._1(x1,...,x9n_1) can be found with n

parallel queries to X since every bit of
#4._(z1,...,79n_1) can be expressed as a
boolean combination of atoms of the form

ze A 1

We still get some variety of behavior by
looking at how hard it is to compute #: using
queries to A.

Theorem 7.5 [9] If a is any Turing degree
then there exists a set A in a such that

#5n_1 € FQ)(n, 4).

Proof: Let A be any set of the form B
where B €a. Then use the technique of The-
orem 7.4. |

Theorem 7.6 [15] If a is any Turing degree
above (or equal to) K, then then there exisis a
set A €a such that for allm, #4 ¢ FQ(m —
1, A).

Theorem 7.7 [15] If a is any r.e. Turing de-
gree then there exists an r.e. set A €a such

that for all m, #2 ¢ FQ(m — 1, A).

It is an open question to prove Theorem 7.6
for any nonrecursive Turing degree.

8 How hard
tion?

is verifica-

We examine the complexity of deciding the set
Vn? = {(3317 L] mmabh L] bm> : (VZ)XA(IZ) = bl}a
in terms of queries to A. Unlike FX and #X
there is (almost) no limit to savings on queries.

Theorem 8.1 [24] For all m,
Q(2, K) but VK ¢ Q(1, K).

VE ¢

Are there nonrecursive sets A such that, for
allm, V4 € Q(1,A)? YES! In fact, within any
Turing degree such a set can be found. More
generally, as the next three theorems show,
within most Turing degrees a variety of be-
haviors occurs.

Theorem 8.2 [2/] If a is any nonrecursive
Turing degree then there exist A, B € a such
that

1. for allm, VA € Q(1, A);
2. for allm, VB ¢ Q(m — 1, B).
Theorem 8.3 [2/] If a is any nonrecursive

r.e. Turing degree then there exist r.e. sets A
and B such that

1. for allm, Vi € Q) (2, A);



2. for allm, V.2 ¢ Q(m —1,B).

Theorem 8.4 [2/] If a is any Turing degree
above (or equal to) K then, for all i, there ez-
ists A € a such that

1. for allm, V2 ¢ Q) (i, A);
2. VAEQE-1,A).

It is an open question whether Theorem 8.4
holds for any nonrecursive Turing degree.

9 Do extra queries help to
compute functions?

We show that in the case of computing func-
tions, extra queries always help.

Theorem 9.1 [7] For all nonrecursive sets A,

forallie N, FQ(i, A) C FQ(i+ 1, A).

Proof:

Since FA € FQ(i, A) but Ffi ¢ FQ(i, A)
(by Theorem 5.2), there exists j such that
FA e FQ(i,A) but FA, ¢ FQ(i, A). Tt
is easy to see that Fjﬁ_l € FQU+ 1,A) —
FQ(i, A).

|

By Theorem 6.1 we have

Theorem 9.2 [7] For all nonrecursive sets A,

for alli € N, FQ||(i,A) C FQ||(i+ 1, A).

10 Do extra queries to K
help to decide sets?

We state a theorem which implies that ad-
ditional queries to K do add to the power
of an oracle Turing machine to decide sets.
More generally, we show that the classes
Dp,Q(n,K), and Q)(n, K) interleave in a

beautiful way, where the sets D,, form the dif-
ference hierarchy (to be defined).

The difference hierarchy was first studied in
detail in [21], where the connection with the
“k-trial predicates” of [43] was noted. The
relation between the levels of the difference
hierarchy and bounded truth-table reducibil-
ity with fixed norm was first noted in [44,
Theorem 14.IX]. The n-r.e.sets and weakly
n-r.e.sets were introduced in [19] and [20] re-
spectively, where their Turing degrees were
considered.

Definition 10.1 A set A is n-r.e. if there
exists a total recursive 0-1 wvalued func-
tion f(z,s) such that (1) f(z,0) = 0, (2)
for all z, lims_e f(z,s) = xa(z), and
B){s: flz,s) # flz,s+ 1)} <n. We de-
note the class of n-r.e.sets by D,,. We denote
D, Nco-D, by V,.

In the theorem below, we use the following
standard convention. If ® is any class of sets
(e.g., Q(3, K)) then @ is the set of Turing de-

grees that contain at least one set from ®.

Theorem 10.2 [16] The sets and degrees of
the Q(-, K) and Q|(-, K) hierarchies interleave
with those of the difference hierarchy as fol-
lows:

Dy C Q1K) = Q(,K) = Vy C Dy
C QH(Q,]{) = V3 C D3 C Q||(3,[() =
Q2,K)=V4C Dy CQu4,K)=V5C -
C Dn CQyn,K)=Vny1 CDnys C--- C

Dyn_s C Q2" —2,K)=Van_y CDyn1 C
QH(Q” —1,K)=Q(n,K)=Var C Dan C ---
D; = Q|(1,K) = Q(1,K) = V, C Dy =
Q”(Q,I() = V3 C D3 = Q||(3,I{) =
Q(2,K) =V, C Dy = Q(4,K)=V;5C
- C D, = Q”(n,K) = Vyu41 C Dyt C
<o C Don_g = Q”(Qn —2,K) = Van_1 C
Dy = Q2" - 1,K)=Q(n,K) = Vi C

DQn C



11 Do extra par-

allel queries to A help
to decide sets?

In Section 9 we showed that for every non-
recursive set A, (VO)[FQ(i, A) C FQ(i + 1, A)]
and (Vi)[FQ (i, A) C FQ(i+1,A)]. These
results do not hold for Q(i, A) and @ (i, A)
for general A. We prove this for Q (i, 4) in
this section, and for Q(i, A) in the next sec-
tion. Both proofs are included because they
are interesting and very different.

Definition 11.1 If B is any set then
PARITY? is the set of all tuples (Z1,...,2m)
such that |[BN{z1,...,zm}|is odd. (A pairing
function could be defined such that the differ-

ent arities do not conflict.)

Theorem 11.2 [7] For all i € N
Q) (i, PARITY®) = Q(1, PARITY).

Proof:

Let B € QH(i,PARITYK) via oracle Tur-
ing machine M0. We show how to, given z,
determine the value of MPARITY™ (z).

Run MPARITY™ on & until the one par-
allel query ‘@z; € PARITYX? ‘2, ¢
PARITY®?. .. ‘z; € PARITY®? is asked.
FEach z; is itself a tuple of programs. Let
the set of all programs in all the tuples be
Y1, Ym}

We create programs zg,z1,...,2Z, and
denote the output of these programs by
bo, b1, ..., by (the b; are either 0,1, or 1). The
intention is that by is an approximation to
MPARITY™ () “and, for all i > 1, b; will be 1
to signal that the most recent approximation
is wrong (the other values signal no change).
When b; = 1 we say that a mindchange has
occurred. The key will be that the parity of
the number of mindchanges will give us all the
information we need.

zg operates as follows. Dovetail the two

computations below:

a) Enumerate K  looking for any
of y1,...,Ym. Whenever any are found,
restart the simulation in b) using this in-

formation.

b) Run MPARITY® () under the assumption
that the only elementsin {y1, ..., ym JNK
are those found in a). This informa-
tion determines answers to all the queries,
though they may be incorrect. If this
halts with a 0-1 output, then print that
output and halt.

Note that zg will halt.

zi+1 operates as follows. Initially run z;
(this may diverge). If z; converges then let
m’ be how many elements of {y1,...,ym} N K
that z; thinks are in K, and let b be what z;
thinks MPARITY™ (z) is. If m' = m then out-
put 0. If m’" < m then z;4; enumerates K
looking for m’ + 1 elements of {y1,...,¥m}-
If such are found then dovetail the following
computations.

a) Enumerate K look-
ing for any of y1,...,y, that have not
already been found. Whenever any are
found, restart the simulation in b) using
this information.

b) Run MPARITY™ () under the assumption
that the only elementsin {y1, ..., ym JNK
are those found in a), and before the sim-
ulation started. This information deter-
mines answers to all the queries, though
they may be incorrect. If this halts with a
0-1 output, then if the output is b output
0 (to signal no mindchange), else output
1 (to signal a mindchange).

Note that the value of b passed to the z;49
computation is not the value that z42 out-
puts; it is value that z; ;1 found the simulation
of MPARITY™ (z) to have.



For ¢ > 1 let b; be the output of z; if it
exists, and | otherwise. It is easy to see that
|[{b; : b; = 1}] is the number of mindchanges
from zg that give the correct answer.

For i > 1 let z] be the machine that runs z;
and (1) if its output is 1 then converge; (2) if
its output is 0 then diverge; (3) (by default) if
the z; diverges then diverge.

Let by be the output of zg. It is easy to see
that

MPARITY™ 0y — 0 @ PARITY® (2], ..., 2,).

rFm

Hence MPARITY™ (z) can be computed with
one query to PARITYX.
|

12 Do extra serial queries

to A help to decide
sets?

We improve the result of the last section by
showing that there exists a nonrecursive set A
such that for all 4, Q(i,A) = Q(1,A4). The
set A is already in the recursion-theoretic lit-
erature. Definition 12.1 and Lemma 12.2 are
from [38] but the interested reader may want
to consult [40].

Definition 12.1 A Turing degree a is hyper-
immune-free if for all A € a, for all
f <t A, there exists a recursive g such that
(Vz)[f(z) < g(x)]. (This definition is equiva-
lent to the classical one of a degree that has
no hyperimmune sets.)

Lemma 12.2 [38] Hyperimmune-free degrees
erist.

Lemma 12.3 * If B <t A and A is hyper-
immune-free then B <y A.

*Odifreddi [41] credits this theorem to Martin with
no reference.
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Proof:

Let MO be an oracle Turing machine such
that B is decided by M4. Let f(z) be the
number of steps taken by M4(z). Since f <t
A, and A is hyperimmune-free, there exists a
recursive g such that, for all z, f(z) < g(z).

Let NO be the following oracle Turing ma-
chine: on input x, on all query paths, shut off
the machine after g(z) steps. Tt is easy to see
that M4 and N4 decide the same language.
Since NO halts on all query paths, by an ob-
servation of [39, 49] (also see [40, 44]) B <i; A.

Theorem 12.4 [7] There exisis a set A such
that, for all B, if B <1 A then B € Q(1, A).

Proof: Let a be a hyperimmune-free de-
gree. Let C € a and let A = C*. Note
that A € a. If B <t A then since A is
in a hyperimmune-free degree, B <y A by
Lemma 12.3. Since A = C* it is easy to see

that B € Q(1,4). 1

Other examples of sets A such that
(V)[Q>i, A) = Q(1,A)] are known [7]. Tt is
an open problem to find a nice classification
for such sets, or to prove that no such classifi-
cation exists (e.g., show that the notion is not
definable in some language).

13 Classifying Problems

One of the motivations for developing the the-
ory of bounded queries was to classify prob-
lems in recursion theory in a manner finer than
the arithmetic hierarchy [26]. This point of
view has been most effective for determining
the complexity of finding the chromatic num-
ber of a recursive graph [12, 13].

Definition 13.1 A recursive graph is a graph
whose vertex set and edge set are recursive.



Let e; and ey be such that M., and M.,
are total 0-1 valued Turing machines. Let
e = (e1,e2). The recursive graph indezed by
e, denoted G, has vertex set decided by M.,
and edge set decided by M.,,.

We examine the problem of finding the chro-
matic number of a recursive graph, given an
index for that graph. We do not want to con-
sider the problem of determining if a number
is an index of a recursive graph. Hence we use
a variation of the notion of a promise problem,

as defined in [22, 23].

Definition 13.2 A promise problem is a set
A, called the promise and a function f, called
the problem that need only be defined on A.
A solution to (A, f) is a function g that is
an extension of f. The key point is that we
care about the complexity of g, but we do not
care what ¢ does when the input is not in A.
The promise problem (A, f) is in class C (e.g.,
FQ(3, K)) if there exists some solution to it
in C. The promise problem (A, f) is not in
class C if no solution of it is in C.

Definition 13.3 Let ¢ > 1 be a constant. Let
X. be the following promise problem. The
promise is the set of e such that G, exists and
has chromatic number < ¢. The problem 1is to
find the chromatic number of G,.

We have sharp bounds for the complexity of
Xe-

Theorem 13.4

[12] x. € FQ([log(c+1)],K). For any set
X, xe ¢ FQ([log(c+ 1)] — 1, X). For any set
A such that K £1 A, x. £1 A.

The upper and lower bounds are tight in
two ways: The number of queries cannot be
reduced no matter what oracle is used, and the
Turing degree of the oracle cannot be lowered
no matter how many queries are allowed.
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Many variations of this problem are in [12,
13]. These include looking at the unbounded
case (no bound on the chromatic number),
recursive chromatic number, parallel queries,
and being allowed to ask queries ‘for free’ to a
weaker oracle. Just as the bounded case uses
binary search, and is optimal as such, the un-
bounded case uses unbounded search, and is
optimal as such; in fact, this research inspired
some work on unbounded search [8].

Several other graph parameters could be ex-
amined in this light. This has been carried out
for finding the number of components of a re-
cursive graph [27]. One area outside of graph
theory has been studied in this light: well
quasi ordering theory. The interested reader
is directed to [14].

14 Comparisons to Com-
plexity Theory

Several people have studied bounded queries
in a polynomial-bounded framework. In this
section we compare and contrast several re-
sults stated in this paper with results on the
same theme in that framework.

Definition 14.1 Let m € N and A C N. A
function f isin FPAM™ if J <% A via an algo-
rithm that make at most m queries. A func-
tion fisin FPIAILif ¢ <P A viaan algorithm
that makes at most m queries.

Definition 14.2 Let m € N and A C N. A
set B is in PAI™] if its characteristic function
is in FPA[™ pllAlm] ig defined similarly.

We list results from recursion theory and
complexity theory in pairs, and discuss them.
Some of the results are stated informally.

K SAT
1) F;; versus Fo4+.



FX can be computed with substantially less
than m queries to K, but such is not the case
for SAT:

(Theorem 5.1):

(n)FE_, € FQ(n, K)]

From [1]:

[(3X, m)[F3AT ¢ FPXIM-1]) = 58 = 105,

The often stated analogy between K and
SAT breaks down here. The major difference
is that from #X (21,..., 2,,) one can (in time)
find FX(zy,...,2,), but it appears to be the
case that from #527(z1,...,%,,) one cannot
(in polynomial time) find F4T (z1, ..., 2m).
This i1s because, for any set A, the follow-
ing two are equivalent (1) Fa <b #4 (2) A
is p-selective. (See [46] for a definition of p-
selective; the equivalence stated here is easy).
Hence, if F54T were easily computable from
#5AT then SAT would be p-selective which
implies P=NP.

2) Limits on savings for F4.

In recursion theory there is a limit on how
much fewer than m queries are needed to com-
pute F4 if A is nonrecursive. In complexity
theory the situation is more complicated.

Theorem 5.2:

[(3X,m)F{. € FQ(m, X)] = A recursive

From [1]:

[(3X,m)F#. e FPAX™) = A e EL,
(where F'L; is the ith level of the extended
low hierarchy: A € EL; iff 24 C E?_’TP [3).

[(3X,m)FA € FQ(m — 1,X)] = A €
P/poly

This cannot be improved to placing sets in P
since there exists arbitrarily hard sets A such
that (VYm)[F4 € FQ(1, A)] [2].

The first three theorems say that if some
savings can be achieved in the computation
of FA then A has to be ‘easy.’” The proof
of the second and third theorems points to
P/poly being a plausible analogy of recursive.
In many proofs that a set is recursive (includ-
ing the proof of Theorem 5.2) some noncon-
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structive finite information is coded into the
Turing machine; in many proofs that sets are
in P/poly(including the second result stated
above) some nonconstructive polynomial size
information is needed for each n.

3) Behavior of Fi4 for various A in a degree.

Theorems 5.4 and 5.7 imply that within
each Turing degree a wide variety of behav-
iors for the hardness of F/4 are possible. This
is not the case for polynomial-Turing degrees:
within the poly-Turing degree of SAT we have
the following.

From [1]:

For all sets A Eg SAT,

(Vm, X)[FA ¢ FPX™=1) unless 8 = 5.

There may be some polynomial-Turing de-
grees that contain sets that act very differently
in terms of computing F4 with queries to some
X. Tt is an open problem to find which types
of pT-degrees have such sets.

4) Cardinality. There does not seem to be any
analog of the cardinality theorem for complex-
ity theory.

Theorem 7.3:

(Am, X)[#4= € FQ(m, X)] = A is rec.

From [2]:

BA)(Im)A € PAN,

The set A 1s extremely sparse. A possible
upper bound might be that if #2 can be com-
puted ‘easily’ then A is in P/poly.

5) Verifying K versus verifying SAT.

Theorem 8§.1:

(vm > VX € Q2. K) - Q(1, K)

From [24]: If PH does not collapse then

(Vm Z 2)[VT§AT c P||SAT[2] _ PSAT[I]].

The second result can be stated more pre-
cisly:  V,°AT ¢ PSATOL if BHyp[2] =
PSATOI[24] (BHyp[2] is the second level of
the boolean hierarchy, [17]). This conse-
quence of V4T ¢ PSATI] implies that
BHyp[2] = co-BHNp[2], which by [11] im-
plies that pNPYPISNP — pr7



The proofs of both upper bounds are similar
and easy. The lower bounds were easier to
obtain in recursion theory than in complexity
theory.

6) Behavior of V2 for various A in a degree.

Theorems 8.2, 8.3, and 8.4 imply that within
each Turing degree a wide variety of behaviors
for the hardness of V2 is are possible. Not
much is known for this problem in complexity
theory.

7) Function Hierarchies.

Theorem 9.1:

(F)FQ(i, A) = FQ(i+1, A) = A recursive.

From [1]:

(3)FPAL] = FPAI+ = A € P/poly.

Much like subsection 2, we see that P/poly
might be an analog for recursive.
8) Q(i, K) versus PKUI

The main theorem in Section 10 is an exact
statement of how Q(7, K), Q(i, K) and D; re-
late. The same theorem holds with Q(7, K)
replaced by PSATE] Q) (i, SAT) replaced by
PIISATE] and D; replaced with BHnp(i).

Both the proof in recursion theory and the
proof in complexity theory used the mind-
change technique (see Theorem 11.2 for its
use in recursion theory.) The proof in com-
plexity theory was far harder since the mind-
change technique is much subtler there. See
[10, 51, 52] for an explanation of the mind-
change technique in complexity theory.

9) Collapsing Set hierarchies.
Theorem 12.4 is that there exists a nonre-
cursive A such that

(V)R A) = Q(1, 4)

In [2] it is shown that there exists A ¢P such
that
(vi)pAll = pADT,

There are two ways to obtain the first re-
sult, one of which was presented in this paper.
Nothing is known about what type of sets A
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have the property (Vi)Q(1, A) = Q(i, A). The
question of which types of sets have the prop-
erty (Vi)PAll = PA is better understood as
the following is known:

If PALl = PA[N] then there exists a sparse
set S such that A <NP5 A [36]

(The definition of X <N¥5 7 is that there
exists an NP oracle Turing machine MO such
that z € X iff some path of M*(z) produces
a string from 7.)

10) Classifying Problems.

In recursion theory bounded queries are
used to classify functions from recursive graph
theory (section 13). The usual method of clas-
sification in recursion theory, the arithmetic
hierarchy, is not appropriate for two reasons:
(1) it is used to classify sets, and (2) it is not
fine enough.

In complexity theory Krentel [32] and
Gasarch [25] have used bounded queries to
used to classify functions that are optimiza-
tion problems usually related to NP-complete
problems. The usual method of classification
in complexity theory, the polynomial hierar-
chy (and PSPACE), is not appropriate for two
reasons: (1) it is used to classify sets, and (2)
it is not fine enough.

In both recursion theory and complexity
theory bounded queries have been useful as
a measure of the difficulty of functions that is
better suited to the task than prior methods.

15 Appendix

Proof of Theorem 5.7.
Proof:

We construct a set A € a such that (1)
(Ym)F4 ¢ FQ(k ﬂog o4 1] ,A), but also
(2) (Ym)(YX[FA ¢ FQ((k — 1) [log ™ |, X)].
The first we achieve by constructing A to be
the disjoint union of k41 semirecursive sets (as
defined by Jockusch [29]). One of the semire-

cursive sets is used to code a set A € a. The



second we achieve by diagonalization.

We need (Ym)Fa € FQ(k[log™ + 1], A).
We describe a type of set that will always have
this property. Let IIy,...,II; be a recursive
partition of N. We view Iy, ..., II3_; as being
isomorphic to the rationals. Let <; be the
ordering on II; viewed this way. We denote
this ordering by < when 7 is clear. i

Let A € a be such that, for all n, Fi{i_, €
FQ(n,fl) (such exists by Theorem 5.4). We
construct A such that

1. For 7, 1 <i< k-1 AnT; is closed
downward under =;.

2. AN [y 1s recursively isomorphic to fi;
A N 1y is recursively isomorphic to N—A.
(We denote this fact by ANTl, = A))

S

~7Im>7

For any such A, for all m, FA
FQ(k ﬂog =4 1] ,A).  Given (z1,..
assume without loss of generality that

ry =12, €10

Ty Rp o So g, €14

Tip ol ko1 Spo1 T, €
Tip 141, %4, € I (ik = n)
By using binary search on the first £ —
1 groups, and A N I A on the last
T With

group, one can determine FA(zq, . ..,
E;Il Mog(i; + 1)] < k [log 2 + 1] queries to
A

Since ANT; = A, we have A <t A.
We construct an A of this type that satisfies
the following requirement:

R .m) : For all X

[ if (V)MZX () makes < (k — 1) [log 2|
queries then

MZX does not compute FA4].

The cgnstruction will b~e recursive~ in A®
K =7 A, hence A <t A. Since A <7 A,

A €a.
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The construction is carried out in stages..
At the end of stage s + 1 we have parame-
ters L1,Uq,..., Lr_1,Ur_1 such that for all ¢
L;,U; € Il; and L; <; U;. We define A such
that for all i the elements of {z | z <; L;} are
in A and the elements of {z | U; < z} are not
in A (and never will be), the elements between
L; and U; are not yet determined at the end
of stage s + 1. Since =<; is dense the number
of elements of II; that are not determined is
infinite.

CONSTRUCTION

Stage 0: Set ANIly = A. Set Ly =-..=
Lk—l = —00, and U1 == Uk—l = 0.
Stage s+1: TLet s = (e,m). We satisfy
R(e,m)~ Let p = % . Let zq1,...,2m

be picked such that, for 7z, 1 < 7 < k£ — 1,
Li < ®i_1pq1 < - < xp < Uiy and
Lr_1 < Z(p—2)p+1 < 0 =< Ty, < Ur_1. Run
M(S)(l‘l, ..., Zpy) pursing all query paths. If
a query path asks more than (k — 1) Llog %J
queries or diverges then it can be ignored (or-
acle K is used to check this). Let wy,...,wn
be all possible answers that are output. Note
that N < 9b=Dlos ] Also note that by
increasing L; and-or decreasing U; there are
(p+1)*~2(m—(k—2)p+2) possible ways to de-
termine the membership of z1,..., 2. Since
2tk=Dllee ] < (p 4+ 1)F=2(m — (k — 2)p + 2)
there exists a way to adjust the L; and U; to
make all possible answers incorrect. Adjust L;

and U; as such. ||
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