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Abstract. We examine a number of results of infinite combinatorics using the techniques

of reverse mathematics. Our results are inspired by similar results in recursive combina-

torics. Theorems included concern colorings of graphs and bounded graphs, Euler paths, and
Hamilton paths.

Reverse mathematics provides powerful techniques for analyzing the logical content of

theorems. By contrast, recursive mathematics analyzes the effective content of theorems.

Theorems and techniques of recursive mathematics can often inspire related results in

reverse mathematics, as demonstrated by the research presented here. Sections 1 and

2 analyze theorems on graph colorings. Section 3 considers graphs with Euler paths.

Stronger axiom systems are introduced and applied to the study of Hamilton paths in

Section 4. We assume familiarity with the methods of reverse mathematics, as described in

[15]. Additional information, including techniques for encoding mathematical statements

in second-order arithmetic, can be found in [4] and [16].

1. Graph Colorings.
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In this section we will consider theorems on node colorings of countable graphs. A

(countable) graph G consists of a set of vertices V ⊆ N and a set of edges E ⊆ [N]2. We

will abuse notation by denoting an edge by (x, y) rather than {x, y}. For k ∈ N, we say

that χ : V → k is a k-coloring of G if χ always assigns different colors to neighboring

vertices. That is, χ is a k-coloring if χ : V → k and (x, y) ∈ E implies χ(x) 6= χ(y). If G

has a k-coloring, we say that G is k-chromatic. Using an appropriate axiom system, it is

possible to prove that a graph is k-chromatic if it satisfies the following local condition.

Definition 1 (RCA0). A graph G is locally k-chromatic if every finite subgraph of G is

k-chromatic.

The following theorem is a reverse mathematics analog of Theorem 1 of Bean [2]. To

prove that (1) implies (2), a tree is constructed in which every infinite path encodes a

k-coloring. The proof of the reversal uses a graph whose k-colorings encode separating

sets for a pair of injections. This implies (1) by a result of Simpson [14]. For a detailed

proof, see Theorem 3.4 in [9].

Theorem 2 (RCA0). For every k ≥ 2, the following are equivalent:

(1) WKL0.

(2) If G is locally k-chromatic, then G is k-chromatic.

In [2], Bean proved that there is a recursive 3-chromatic graph with no recursive col-

oring, regardless of the number of colors allowed. We now present a related theorem of

reverse mathematics.

Theorem 3 (RCA0). For each k ≥ 2, the following are equivalent:

(1) WKL0.

(2) If G is locally k-chromatic, then G is (2k − 1)-chromatic.

Proof. Whenever k ≥ 2, we have that 2k − 1 > k, so every k-coloring is automatically a

(2k − 1)-coloring. Consequently, (1) implies (2) follows immediately from Theorem 2.
2



We will now prove that (2) implies (1) when k = 2, and then indicate how the argument

can be generalized to any k ∈ N. By a result of Simpson [14], WKL0 can be proved by

showing that the ranges of an arbitrary pair of disjoint injections can be separated. Let

f : N → N and g : N → N be injections such that for all m,n ∈ N, f(n) 6= g(m). We will

construct a 2-chromatic graph with the property that any 3-coloring of G encodes a set S

such that y ∈ Range(f) implies y ∈ S, and y ∈ S implies y /∈ Range(g).

The graph G contains an infinite complete bipartite subgraph consisting of upper ver-

tices {bu
n : n ∈ N}, lower vertices {bl

n : n ∈ N}, and connecting edges {(bu
n, bl

m) : n, m ∈ N}.

Also, G contains an infinite collection of pairs of vertices, denoted by nu and nl for n ∈ N.

Each such pair is connected, so the edges {(nu, nl) : n ∈ N} are included in G. Additional

connections depend on the injections f and g. If f(i) = n, add the edges (bu
m, nl) and

(bl
m, nu) for all m ≥ i. If g(i) = n, add the edges (bu

m, nu) and (bl
m, nl) for all m ≥ i.

Naively, if n is in the range of f or g, then the pair (nu, nl) is connected to the complete

bipartite subgraph. If n is in the range of G, the pair is “flipped” before it is connected.

The reader can verify that G is ∆0
1 definable in f and g, and thus exists by the recur-

sive comprehension axiom. Every finite subgraph of G is clearly bipartite, so G is locally

2-chromatic. Thus, by (2), G has a 3-coloring; denote it by χ : G → 3.

If χ is a 2-coloring, we can define the separating set, S, by

S = {y ∈ N : χ(yu) = χ(bu
0 ) ∨ χ(yl) = χ(bl

0)}.

When χ uses all 3 colors, we must modify the construction of S. In particular, we must

find a j ∈ N such that

(a) ∀y(∃n(n ≥ j ∧ f(n) = y) → (χ(yu) = χ(bu
j ) ∨ χ(yl) = χ(bl

j))), and

(b) ∀y(∃n(n ≥ j ∧ g(n) = y) → (χ(yl) 6= χ(bl
j) ∧ χ(yu) 6= χ(bu

j ))).

Suppose, by way of contradiction, that no such j exists. The for some m and y, either

f(m) = y ∧ χ(yu) 6= χ(bu
0 ) ∧ χ(yl) 6= χ(bl

0) or g(m) = y ∧ (χ(yl) = χ(bl
0) ∨ χ(yu) = χ(bu

0 )).

If f(m) = y, since χ is a 3-coloring, either χ(yu) = χ(bl
0) or χ(yl) = χ(bu

0 ). By the
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construction of G, for every n > m, χ(bu
m) = χ(bu

n) and χ(bl
m) = χ(bl

n). Similarly, the

case g(m) = y also yields a point beyond which the complete bipartite subgraph of G is

2-colored. By the negation of (a) and (b), there is an m′ > m and a z ∈ N such that either

f(m′) = z∧χ(zu) 6= χ(bu
m)∧χ(zl) 6= χ(bl

m) or g(m′) = z∧(χ(zl) = χ(bl
m)∨χ(zu) = χ(bu

m)).

If f(m′) = z, then since χ is a 3-coloring, either χ(zu) = χ(bl
m) or χ(zl) = χ(bu

m). Since

m′ > m, χ(bl
m) = χ(bl

m′) and χ(bu
m) = χ(bu

m′), so either χ(zl) = χ(bu
m′) or χ(zu) = χ(bl

m′).

But (zl, bu
m′) and (zu, bl

m′) are edges of G, so χ is not a 3-coloring. Assuming g(m′) = z

yields a similar contradiction. Thus, a j satisfying (a) and (b) exists.

Given an integer j satisfying (a) and (b), the separating set S may be defined as the

union of {y ∈ N : ∃n < j f(n) = y} and

{y ∈ N : (∀n < j g(n) 6= y) ∧ (χ(yu) = χ(bu
j ) ∨ χ(yl) = χ(bl

j))}

S is ∆0
1 definable in χ and j, so the recursive comprehension axiom assures the existence

of S. If f(n) = y and n < j, then y ∈ S. If f(n) = y and n ≥ j, then by (a) and the fact

that f and g have disjoint ranges, y ∈ S. Thus Range(f) ⊆ S. If g(n) = y, and n < j,

then since the ranges of f and g are disjoint we have y /∈ S. If g(n) = y and n ≥ j, by (b)

y /∈ S. Thus S is the desired separating set. This completes the proof for k = 2.

For k > 2, the preceding proof requires the following modifications. Replace the com-

plete bipartite subgraph of G by a complete k-partite subgraph with vertices {bp
m : p <

k∧m ∈ N}. Each pair (nu, nl) is replaced by a complete graph on the vertices {np : p < k}.

If f(i) = n, add the edges (bp
m, np′

) for all m ≥ i and all p 6= p′ less than k. If g(i) = n,

twist the subgraph before attaching it. That is, add the edges (bp
m, np′

) for all m ≥ i and

all p and p′ less than k such that p 6≡ p′ + 1 (mod k). The argument locating the integer

j is similar, except that m and m′ must be replaced by a sequence m1, . . . ,mk. Beyond

the point mk−1, the complete k-partite subgraph of G is k-colored by χ. The definition

of S is very similar, except that a bounded quantifier should be used to avoid the k-fold

conjunction. �
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Because Bean [2] constructed a recursive graph with no recursive coloring, the following

conjecture seems reasonable. Unfortunately, even the case where k = 2 and m = 4 remains

open.

Conjecture 4 (RCA0). For each k ≥ 2 and each m ≥ k the following are equivalent:

(1) WKL0.

(2) If G is locally k-chromatic, then G is m-chromatic.

2. Bounded graphs and sequences of graphs.

As noted above, a locally k-chromatic recursive graph may not have a recursive coloring,

regardless of the number of colors used. By contrast, highly recursive graphs always have

recursive colorings. A proof theoretic analog of a highly recursive graph is a bounded

graph.

Definition 5 (RCA0). A graph G = 〈V,E〉 is bounded if there is a function h : V → N

such that for all x, y ∈ V , (x, y) ∈ E implies h(x) ≥ y.

Schmerl [11] proved that every highly recursive k-chromatic graph has a recursive (2k−

1)-coloring. (This result was independently rediscovered by Carstens and Pappinghaus

[3].) Formalizing Schmerl’s proof in RCA0 yields the following result.

Theorem 6 (RCA0). For k ∈ N, if G is a bounded locally k-chromatic graph, then G is

(2k − 1)-chromatic.

In [11], Schmerl also showed that for each k ≥ 2, there is a highly recursive k-chromatic

graph which has no recursive 2k − 2 coloring. Using the constructions from his proof, one

can easily prove the following theorem.

Theorem 7 (RCA0). For every k ≥ 2, the following are equivalent:

(1) WKL0.

(2) If G is a bounded locally k-chromatic graph, then G is (2k − 2)-chromatic.
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Proof. Whenver k ≥ 2, we have 2k−2 ≥ k, so every k-coloring is automatically a (2k−2)-

coloring. Consequently, (1) implies (2) follows immediately from Theorem 2. To prove that

(2) implies (1), we imitate Schmerl’s [11] construction of a bounded locally k-chromatic

graph for which any (2k − 2)-coloring separates the ranges of a pair of disjoint injections.

An application of a theorem of Simpson [14] yields WKL0. �

We will close this section with a theorem concerning sequences of graphs and its recur-

sion theoretic corollary. We say that a graph G is colorable if there exists an integer k such

that G is k-chromatic.

Theorem 8 (RCA0). The following are equivalent:

(1) ACA0.

(2) Given a countable sequence of graphs, 〈Gi : i ∈ N〉, there is a function f : N → 2

such that f(i) = 1 if Gi is colorable and f(i) = 0 otherwise.

Proof. To prove that (1) implies (2), assume ACA0 and let 〈Gi : i ∈ N〉 be a sequence

of graphs. Define f : N → N by setting f(i) = 1 if there exists a k ∈ N such that Gi is

locally k-chromatic, and setting f(i) = 0 otherwise. Since “Gi is locally k-chromatic” is

an arithmetical sentence with parameter Gi, f exists by the arithmetical comprehension

axiom. Since ACA0 implies WKL0, we may apply Theorem 2 to show that f(i) = 1 if

and only if Gi is colorable.

To prove the converse, assume RCA0 and (2). To prove ACA0 it suffices to show that

for every injection g, Range(g) exists [14]. Define the sequence of graphs 〈Gi : i ∈ N〉 as

follows. Let {vj : j ∈ N} be the vertices of Gi. If j < k and ∀m ≤ k(g(m) 6= i), add the

edge (vj , vk) to Gi. RCA0 can prove that 〈Gi : i ∈ N〉 exists, and Gi is colorable if and

only if i ∈ Range(g). Thus, the function f supplied by (2) is the characteristic function

for Range(g). By the recursive comprehension axiom, Range(g) exists. �

Corollary 9. There is a recursive sequence of recursive graphs 〈Gi : i ∈ N〉 such that 0′

is recursive in {i ∈ N : Gi is colorable}.
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Proof. In the proof of the reversal for Theorem 8, let g be a recursive function such that 0′

is recursive in Range(g). The sequence of graphs constructed in the proof has the desired

properties. �

3. Euler paths.

Now, we will turn to the study of Euler paths. A path in a graph G is a sequence of

vertices v0, v1, v2, . . . such that for every i ∈ N, (vi, vi+1) is an edge of G. A path is called

an Euler path if it uses every edge of G exactly once.

The following terminology is useful in determining when a graph has an Euler path. A

graph G = 〈V,E〉 is locally finite if for each vertex v, the set {u ∈ V : (v, u) ∈ E} is finite.

If H is a subgraph of G, G−H denotes the graph obtained by deleting the edges of H from

G. Using this terminology, we can describe a condition which, from a naive viewpoint, is

sufficient for the existence of an Euler path.

Definition 10 (RCA0). A graph G is pre-Eulerian if it is

(1) connected,

(2) has at most one vertex of odd degree,

(3) if it has no vertices of odd degree, then it has at least one vertex of infinite degree,

and

(4) if H is any finite subgraph of G then G − H has exactly one infinite connected

component.

Note that the formula “G is pre-Eulerian” is arithmetical in the set parameter G. RCA0

suffices to prove that every graph with an Euler path is pre-Eulerian. However, RCA0

can only prove that bounded pre-Eulerian graphs have Euler paths. (Bounded graphs are

defined in Section 3.) This result is just a formalization of Bean’s [1] proof that every

highly recursive pre-Eulerian graph has a recursive Euler path.

Theorem 11 (RCA0). If G is a bounded pre-Eulerian graph, then G has an Euler path.
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If G is not bounded, additional axiomatic strength is required to prove the existence of

an Euler path.

Theorem 12 (RCA0). The following are equivalent:

(1) ACA0.

(2) If G is a pre-Eulerian graph, then G has an Euler path.

(3) If G is a locally finite pre-Eulerian graph, then G has an Euler path.

Proof. To prove that (1) implies (2), assume ACA0 and let G be a pre-Eulerian graph.

Let 〈Ei : i ∈ N〉 be an enumeration of the edges of G. Let v0 be the vertex of G of odd

degree, or a vertex of infinite degree if no odd vertex exists. Imitating the proof of Theorem

3.2.1 of Ore [10], there is a finite path P containing the edge E0 such that

• P starts at v0,

• G− P is connected, and

• P ends at the odd vertex of G − P , or at an infinite vertex of G − P if no odd

vertex exists.

Furthermore, since the finite paths of G can be encoded by integers, we can pick the unique

path P0 satisfying the conditions above and having the least code. Similarly, any path Pi

satisfying the three conditions can be extended to a unique path Pi+1 which contains the

edge Ei+1, satisfies the three conditions, and has the least code among all paths with these

properties. Note the Pi+1 extends Pi by including Pi as an initial segment. The reader

may verify that the sequence of paths 〈Pi : i ∈ N〉 is arithmetically definable in G, and

so exists by arithmetical comprehension. Let vi denote the ith vertex of Pi. Then the

sequence 〈vi : i ∈ N〉 exists by recursive comprehension and includes each Pi as an initial

segment. Consequently, 〈vi : i ∈ N〉 defines an Euler path through G.

Since (3) is a special case of (2), showing that (3) implies (1) will complete the proof of

the theorem. Assume RCA0 and fix an injection f : N → N. We will construct a locally

finite pre-Eulerian graph G such that every Euler path through G encodes Range(f).
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Define the vertices of G by

V = {an, bn, cn : n ∈ N}.

For each n, include the edges (an, an+1) and (bn, cn) in G. Additionally, for each i and

n, if f(i) = n then include the edges (an, bi) and (ci, an) in G. RCA0 suffices to prove

that G exists, and is both locally finite and pre-Eulerian. By (3), G has an Euler path.

Note that n ∈ Range(f) if and only if the first occurrence of an in the Euler path is not

followed immediately by an+1. By the recursive comprehension axiom, Range(f) exists.

Since f was an arbitrary injection, this suffices to prove ACA0 [14]. �

Corollary 13. There is a recursive pre-Eulerian graph G such that 0′ is recursive in every

Euler path through G.

Proof. Let f be a recursive function such that 0′ is recursive in Range(f). Construct the

graph G as in the proof of the reversal in Theorem 12. Then G is recursive, and Range(f)

is recursive in every Euler path through G. �

ACA0 also suffices to address the problem of determining which elements of a sequence

of graphs have Euler paths. This contrasts sharply with the situation for Hamilton paths,

as described in Theorem 20.

Theorem 14 (RCA0). The following are equivalent:

(1) ACA0.

(2) Given a countable sequence of graphs, 〈Gi : i ∈ N〉, there is a set Z ⊆ N such that

i ∈ Z if and only if Gi has an Euler path.

Proof. To prove that (1) implies (2), note that {i ∈ N : Gi is pre-Eulerian} is arithmetically

definable, and by the previous results contains only those i such that Gi has an Euler path.

To prove the converse, one constructs a sequence of graphs so that the set provided by

(2) encodes the range of a given injection. �

Theorem 14 can be used to establish rough upper and lower bounds for the complexity
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of the problem of determining which graphs in a sequence have Euler paths. Sharper

bounds can be found in the work of Beigel and Gasarch (see [6]).

Remark. A two-way or endless Euler path is a bijection between the integers (both positive

and negative) and the set of edges of G such that each edge shares one vertex with its

predecessor and its other vertex with its successor. Theorems 11, 12, and 14 can be

modified to address the existence of two-way Euler paths.

4. Hamilton paths.

Now we will consider theorems on the existence of Hamilton paths. A path through

a graph G is called a (one way) Hamilton path if it uses every vertex of G exactly once.

There is no arithmetical analog of the characterization “pre-Eulerian” for graphs containing

Hamilton paths. Consequently, all the results of this section concern sequences of graphs.

The proofs of the theorems in this section are all reasonably straightforward, and have

been omitted for the sake of brevity. The proofs of the graph theoretic statements from

the axiom systems require only formalization, followed by direct application of the axioms.

Each reversal relies on the construction of a sequence of graphs from a sequence of trees,

coupled with an application of Lemma 3.14 of [5]. The existence of the desired construc-

tions follows from the following lemma, which can be proved by imitating the proof of

Theorem 1 of Harel [5].

Lemma 15 (RCA0). Given a sequence of trees 〈Ti : i ∈ N〉, there is a sequence of graphs

〈Gi : i ∈ N〉 such that

(1) for each i ∈ N, Ti has a (unique) path if and only if Gi has a (unique) Hamiltonian

path, and

(2) if there is a sequence 〈Pi : i ∈ N〉 such that Pi is a Hamiltonian path through Gi

for each i ∈ N, then there is a sequence 〈P ′
i : i ∈ N〉 such that P ′

i is a path through

Ti for each i ∈ N.

The next three theorems analyze the following tasks:
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(1) finding Hamilton paths through graphs known to have such paths,

(2) determining whether graphs that have at most one Hamilton path have such a

path, and

(3) determining whether arbitrary graphs have Hamilton paths.

Using proof theoretic strength as a measure of difficulty, we shall see that these tasks are

strictly increasing in order of difficulty.

Theorem 16 (RCA0). The following are equivalent:

(1) Σ1
1−AC0.

(2) If 〈Gi : i ∈ N〉 is a sequence of graphs such that each Gi has a Hamilton path, then

there is a sequence 〈Pi : i ∈ N〉 such that for each i, Pi is a Hamilton path through

Gi.

From Theorem 16, together with the fact that ω together with the hyperarithmetical

sets is a model of Σ1
1−AC0 [16], we can draw the following recursion theoretic conclusion.

Corollary 17. If 〈Gi : i ∈ N〉 is a hyperarithmetical sequence of graphs, each of which has

a hyperarithmetical Hamilton path, then there is a hyperarithmetical sequence 〈Pi : i ∈ N〉

such that for each i, Pi is a Hamilton path through Gi.

Using Theorem 5.2 of [16] to provide an appropriate characterization of ATR0, it is

easy to prove:

Theorem 18 (RCA0). The following are equivalent:

(1) ATR0.

(2) If 〈Gi : i ∈ N〉 is a sequence of graphs each of which has at most one Hamilton

path, then there is a set Z ⊆ N such that for all i ∈ N, i ∈ Z if and only if Gi has

a Hamilton path.

The following corollary is a recursion theoretic consequence of Theorem 18, together

with the fact that ω together with the hyperarithmetical sets is not a model of ATR0 [16].
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Corollary 19. There is a hyperarithmetical sequence of graphs 〈Gi : i ∈ N〉, each of which

has at most one hyperarithmetical Hamilton path, such that the set

{i ∈ N : Gi has a hyperarithmetical Hamilton path} is not hyperarithmetical.

Now we will analyze the third and most difficult task. Theorem 20 is closely related to

Harel’s proof [7] that the problem of finding a Hamiltonian path is Σ1
1 complete.

Theorem 20 (RCA0). The following are equivalent:

(1) Π1
1−CA0.

(2) If 〈Gi : i ∈ N〉 is a sequence of graphs, then there is a set Z ⊆ N such that i ∈ Z if

and only if Gi has a Hamilton path.

Theorem 20 contrasts nicely with Theorem 14. Since Π1
1−CA0 is a much stronger

axiom system than ACA0, we can conclude that it is more difficult to determine if certain

graphs have Hamilton paths than to determine if they have Euler paths. Determining

which finite graphs have Hamilton paths is an NP-complete problem, while determining

which finite graphs have Euler paths is polynomial time computable. It would be nice to

know if this sort of parallel is common, and exactly what it signifies.
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