
Low, Superlow, and Superduperlow Sets:
An Exposition of a Known But Not Well-Known Result

William Gasarch
University of Maryland

1 Introduction
We use the following standard notation.

Notation 1.1.

1. M0,M1, . . . is be a standard list of Turing Machines.

2. We is the domain of Me. Hence W0,W1, . . . is a list of all c.e. sets.

3. M ()
0 ,M

()
1 , . . . is a standard list of oracle Turing Machines.

4. K is the set {e : Me(e) ↓}.

5. If A is a set then A′ = {e : MA
e (e) ↓}.

We use the following definitions. Low and Superlow are standard; however,
Superduperlow seems to be a new term.

Def 1.2.

1. A set A is Low if A′ ≤T K.

2. A set A is Superlow if A′ ≤tt K.

3. A set A is Superduperlow if A′ ≤btt K.

By a finite injury priority argument one can construct a noncomputable su-
perlow c.e. set A (we include this proof in the appendix). This raises the question:
Is there a noncomputable superduperlow set A?

We asked about this at a logic conference and found out:

1. Four prominent computability theorists thought that there was no such set;
however, none knew of a proof or reference.

Melvin Fitting, Dov Gabbay, Massoud Pourmahdian, Adrian Rezuş, Ali Sadegh Daghighi (eds.)
« Research Trends in Contemporary Logic » College Publications, London 2020

William Gasarch

2. Carl Jockusch, also a prominent computability theorist, knew of unpublished
proofs by: (1) Bickford and Mills, (2) Phillips, (3) himself, and (4) Stephan.
He also knew of a more complicated published proof by Mohrerr [5]. She
actually proved the stronger result that if Att ≤btt B

′ then A ≤T B, as did
Bickford and Mills.

It is our opinion that the proofs of Jockusch and Stephan are beautiful and
should be better known. Hence we present them.

We will need the following two standard Lemmas. The first one is the Shoen-
field Limit Lemma.

Lemma 1.3. A ≤T K iff there exists a computable function h : N× N→ N such
that

A(x) = lim
s→∞

h(x, s).

Lemma 1.4. If A ≤T B then A ≤m B′.

2 Bi-immune and Hyperimmune Sets

Def 2.1.

1. A set C is immune if C is infinite and has no infinite c.e. subsets

2. A set C is bi-immune if both C and C are immune.

3. If B is an infinite set then the principal function of B, denoted pB, is defined
as

pB(s) = the sth element of B.

4. A function f is majorized by a function g if, for all x, f(x) < g(x).

5. A set B is hyperimmune if pB is not majorized by any computable function.
(There is an alternative definition of hyperimmune which is a variant of
immune, hence the name. We do not need that alternative definition.)

The following Lemma is due to Miller and Martin [4]. We include the proof
since the original article is behind a paywall.

Lemma 2.2. If ∅ <T A ≤T K then there exists a hyperimmune set B such that
B ≡T A. (We will only use the B ≤T A part.)

2

Low, Superlow, and Superduperlow Sets

Proof. Since A ≤T K there exists, by Lemma 1.3, a computable h such that

A(x) = lim
s→∞

h(x, s).

Let

f(x) = the least s ≥ max{x, f(x− 1)} such that (∀y ≤ x)[A(y) = h(y, s)].

Let s = f(x). Then, for all y ≤ x, h(y, s) = A(y). One might think that the
limit has settled down on all y ≤ x; however, it may be that there is some y ≤ x
and t > s such that h(y, t) 6= A(y). If so then there will be some t′ > t with
h(y, t′) = A(y). And h(y,−) may even change its mind again! But eventually it
will always be A(y).

Let B be the image of f . Clearly B ≤T A. We show B is hyperimmune.
Since f = pB is the principal function of B, it suffices to show that f cannot be
majorized by any computable function.

Assume, by way of contradiction, that there is a computable g such that, for
all x, f(x) < g(x). We use this to obtain an algorithm for A. Given x, we want
to determine A(x).

Note that, for all y,
y ≤ f(y) < g(y)

Let y ≥ x. Imagine what would happen if

h(x, y) = h(x, y + 1) = · · · = h(x, f(y)) = · · · = h(x, g(y)) = b.

We would have:

A(x) = h(x, f(y)) = b.

Hence we would know A(x). Therefore we need to find such a y. If we knew
that one existed we could just look for it.

One does exist! Let y be such that

h(x, y) = h(x, y + 1) = · · · =

Such a y exists since h reaches a limit. This y clearly suffices. We cannot find
this particular y but we do not need to. We need only find some y such that

h(x, y) = h(x, y + 1) = · · · = h(x, g(y)) = b.

Here is the formal algorithm for A.

3

William Gasarch

1. Input(x)

2. Find a y ≥ x such that

h(x, y) = h(x, y + 1) = · · · = h(x, g(y)) = b

3. Output the value b.

Thus A is computable— a contradiction. Hence f cannot be majorized by any
computable function.

Therefore we have a set B ≤T A such that B is hyperimmune.
We leave the proof that A ≤T A to the reader.

The following is a result of Carl Jockusch [2].

Lemma 2.3. For every hyperimmune B there exists a bi-immune C ≤T B.

Proof. Let B be hyperimmune. Since B is hyperimmune, pB is not majorized by
any computable function. We use this to construct a bi-immune C ≤T B. To
ensure that C is bi-immune we make sure that C satisfies the following require-
ments:

Re : We infinite → (We ∩ C 6= ∅ ∧We ∩ C 6= ∅).

CONSTRUCTION
Stage 0: For all e, Re is not satisfied.

Stage s: Find the least e ≤ s, if it exists, such that Re is not satisfied and
We,pB(s) has at least two elements x1, x2 ≥ s which have not yet been put into C
or C. Put x1 into C, x2 into C, and declare Re satisfied. (it will never become
unsatisfied). We also say that Re has acted. If there is no such e, do nothing.
END OF CONSTRUCTION

We have C ≤T B since (1) the only noncomputable part of the construction
is computing pB ≤T B, and (2) C(n) is decided by stage n . (For definiteness, a
number is in C iff the construction puts it into C.)

We show that C is bi-immune by showing that it satisfies each requirement.
We assume that R1, . . . , Re−1 are satisfied and show that Re is satisfied. There
are two cases.

1. We is finite. Then clearly Re is satisfied.

4

Low, Superlow, and Superduperlow Sets

2. We is infinite. Assume, by way of contradiction, that We is not satisfied.
From this we will construct a computable function g that majorizes f which
will be the contradiction. Let s0 be such that by state s0 all of R1, . . . , Re−1
that are going to act have acted. So for all s ≥ s0 Re is not satisfied yet
fails to act! Why!?
Let g(s) be the least t ≥ s0 such that We,t has at least 2s + 2 elements
≥ s. Note that g is computable. Lets look at the construction at a stage
s ≥ s0. Re did not act. Why? It must be that there is no x1, x2 such
that (1) x1, x2 ∈ We,pB(s), (2) x1, x2 ≥ s, and (3) x1, x2 were not used by
any of P0, . . . , Pe−1. By the definition of g there is x1, x2 such that (1)
x1, x2 ∈ We,g(s), (2) x1, x2 ≥ s, and (3) x1, x2 were not used by any of
P0, . . . , Pe−1. Hence we have that,

(∀s ≥ s0)[pB(s) < g(s)].

Recall that g is computable. We want to say g majorizes pB but this is
not quite true; however, a finite variant of g majorizes pB and is clearly
computable. Hence there is a computable function that majorizes pB. This
contradicts B being hyperimmune.

Lemma 2.4. Let ∅ ≤T A ≤T K.

1. If A is not computable then there exists C bi-immune such that C ≤T A.

2. If there is no bi-immune set C ≤T A then A is computable (this is the
contrapositive of Part 1).

Proof. 1) By Lemma 2.2 there is a hyperimmune set B ≤T A. By Lemma 2.3 there
is a bi-immune set C ≤T B. Hence there is a bi-immune set C ≤T B ≤T A.

3 Superduperlow implies Decidable: Proof One

Def 3.1. Let n ≥ 0. A set D is weakly n-c.e. if there exists a function h such
that

• D(x) = lims→∞ h(x, s)

• |{s : h(x, s) 6= h(x, s+ 1)}| ≤ n.

5

William Gasarch

Note 3.2. Let D be weakly n-c.e. and x ∈ N. Our view: initially x thinks
D(x) = h(x, 0); however, it can change its mind ≤ n times.

The following easy lemma we leave to the reader.

Lemma 3.3. If ∅ <T D ≤btt K then there exists an n ≥ 1 such that D is n-c.e.
but not (n− 1)-c.e.

The following is an unpublished Theorem of Jockusch.

Theorem 3.4. If A is superduperlow then A is decidable.

Proof. Since A is superduperlow A′ ≤btt K.
Let D ≤T A. We will show that D is not bi-immune then apply Lemma 2.4 to

deduce that A is computable. If D is decidable then D is not bi-immune; hence
we assume D is undecidable.

Since D ≤T A, by Lemma 1.4, D ≤m A′. Since A′ ≤btt K we have

D ≤m A′ ≤btt K.

Hence D ≤btt K. Since D is not decidable, by Lemma 3.3, there exists n ≥ 1
such that D is weakly n-c.e. but not weakly (n− 1)-c.e. Let h be such that

• D(x) = lims→∞ h(x, s)

• |{s : h(x, s) 6= h(x, s+ 1)| ≤ n.

Let

E = {x : |{s : h(x, s) 6= h(x, s+ 1)| = n}}.

E is infinite, else D is weakly (n− 1)-c.e. Let

E0 = {x : h(x, 0) = 0 ∧ |{s : h(x, s) 6= h(x, s+ 1)| = n}}.

E1 = {x : h(x, 0) = 1 ∧ |{s : h(x, s) 6= h(x, s+ 1)| = n}}.

Clearly both E0 and E1 are c.e: Clearly at least one of E0 or E1 is infinite.
There are four cases depending on (1) which of E0, E1 is infinite, and (2) the
parity of n. For all four cases keep in mind that E0 and E1 are c.e.
Case E0 infinite, n even: Every x ∈ E0 starts out thinking it’s not in D and
changes its mind an even number of times. Hence E0 is an infinite c.e. subset of
D, so D is not bi-immune.

6

Low, Superlow, and Superduperlow Sets

Case E0 infinite, n odd: Every x ∈ E0 starts out thinking it’s not in D and
changes its mind an odd number of times. Hence E0 is an infinite c.e. subset of
D, so D is not bi-immune.
Case E1 infinite, n even: Every x ∈ E1 starts out thinking it’s in D and
changes its mind an even number of times. Hence E1 is an infinite c.e. subset of
D, so D is not bi-immune.
Case E1 infinite, n odd: Every x ∈ E1 starts out thinking it’s in D and changes
its mind an odd number of times. Hence E1 is an infinite c.e. subset of D, so D
is not bi-immune.

The upshot is that, for every set D ≤T A, D is not bi-immune. By Lemma 2.4,
A is computable.

4 Superduperlow implies Decidable: Proof Two
In this section we present a proof by Frank Stephan that uses concepts from
Bounded Queries in Computability Theory. We will provide all that you need;
however, for more information, see the survey by Gasarch [1].

Def 4.1. Let A ⊆ N and n ∈ N.

1. χA
n : Nn → {0, 1}n is the following function:

χA
n (x1, . . . , xn) = A(x1) · · ·A(xn).

2. #A
n : Nn → N is the following function:

#A
n (x1, . . . , xn) = |{x1, . . . , xn} ∩A|.

We give an intuition for the next definition. Given 3 numbers a, b, c we want
to know χK

3 (a, b, c). We could just output (0,0,0), (0,0,1), . . ., (1,1,1) and be
happy that one of them is χK

3 (a, b, c). Can we output ≤ 7 tuples, one of which is
χK

3 (a, b, c)? Yes if we are willing to not know when the process has output its last
candidate1. We can do the following: Output (0,0,0) since it is certainly possible
that χK

3 (a, b, c) = (0, 0, 0). Then run Ma(a), Mb(b), and Mc(c) at the same time
until (if it happens) one of them halts: (1) if it’s a then output (1, 0, 0), (2) if
it’s b then output (0, 1, 0), (3) if it’s c then output (0, 0, 1). Then run all those
that haven’t halted until (if it happens) one of them halts. We leave it to the
reader to finish this up. Throughout this process you will output at most 4 tuples
one of which is χK

3 (a, b, c). We do not know when the process has output its last
candidate. This motivates the next definition:

1It is known that there is no algorithm that will, on input (a, b, c), always output 7 3-tuples
one of which is χK

3 (a, b, c). The proof uses the recursion theorem.

7

William Gasarch

Def 4.2. A function f is in EN(m) if there exists a Turing machine M that will,
on input x, over time, output at most m numbers, one of which is f(x).

Clearly, for all A, #A
n ∈ EN(n+ 1). Kummer [3] (see Gasarch [1] for an

alternative proof) showed that, for undecidable sets, this is the best one can do.

Theorem 4.3. For all A, if there exists n such that #A
n ∈ EN(n), then A is

computable.

We use Theorem 4.3 to show that all superduperlow sets are decidable.
We need a known lemma. We give the proof for completeness.

Lemma 4.4. χK
n ∈ EN(n+ 1).

Proof. On input (x1, . . . , xn):

1. Output (0, . . . , 0) as a possible answer. We call (0, . . . , 0) the current tuple.

2. Run Mx1(x1), . . . ,Mxn(xn) at the same time. If the ith one halts then
change the ith bit of the current tuple to 1, output the new current tuple,
and keep running the machines until another one halts (which may never
happen).

If j of them halt then this process will output j + 1 tuples, of which the last
one is χK

n (x1, . . . , xn). Hence this process outputs at most n + 1 tuples, one of
which is χK

n (x1, . . . , xn).

Theorem 4.5. If A is superduperlow then A is decidable.

Proof. Assume that A is superduperlow. Let k be such that A′ ≤k-tt K. We show
that, for some (large enough) n, #A

2n−1 ∈ EN(2n − 1), hence A is decidable.
Let A1, . . . , An be the following sets.

Ai = {(x1, . . . , x2n−1) : the ith bit of #A
2n−1(x1, . . . , xn) is 1 }.

For each i, Ai ≤T A (actually Ai ≤tt A but we do not need this). Hence, by
Lemma 1.4, Ai ≤m A′. Since A′ ≤k-tt K we get Ai ≤k-tt K. We use this to obtain
a procedure for

#A
2n−1 ∈ EN(kn+ 1).

1. Input (x1, . . . , x2n−1).

2. For 1 ≤ i ≤ n do the following: Using Ai ≤k-tt K find k numbers yi1, . . . , yik

such that if we knew χK
ik(yi1, . . . , yik) then we would know if (x1, . . . , x2n−1)

is in Ai.

8

Low, Superlow, and Superduperlow Sets

3. We now have kn numbers (y11, . . . , y1k, y21, . . . , y2k, . . . , yn1, . . . , ynk) such
that if we knew χK

kn(y11, . . . , y1k, y21, . . . , y2k, . . . , yn1, . . . , ynk) we would, for
1 ≤ i ≤ n, know if (x1, . . . , x2n−1) ∈ Ai.

4. By Lemma 4.4 χK
kn ∈ EN(kn+ 1). Run this enumeration algorithm on

(y11, . . . , y1k, y21, . . . , y2k, . . . , yn1, . . . , ynk). Every time a candidate is enu-
merated, use it to obtain a candidate for #A

2n−1. Output that candidate and
continue.

By the above enumeration algorithm #A
2n−1 ∈ EN(kn+ 1). Take n large

enough so that kn + 1 ≤ 2n − 1 to obtain that #A
2n−1 ∈ EN(2n − 1). By Theo-

rem 4.3 A is computable.

5 Acknowledgment
We thank Carl Jockusch and Frank Stephan for supplying most of the material
for this paper and for helpful discussions.

A There exists an undecidable c.e. Superlow Set
We give the standard construction of a noncomputable low c.e. set A; however,
we analyze the construction carefully to show that A is actually superlow.

Theorem A.1. There exists an undecidable c.e. superlow set.

Proof. We construct a c.e. set A that satisfies the following requirements:

Pe : We infinite =⇒ We ∩A 6= ∅.

These are called positive requirements since they act by putting numbers into
A. It is easy to show that, if A is co-infinite and all of the Pe’s are satisfied, then
A is undecidable. (We will also make A co-infinite, though we do not state it as
a formal requirement.)

Ne : (∃∞s)[MAs
e,s (e) ↓] =⇒ MA

e (e) ↓ .

These are called negative requirements since they act by keeping numbers out
of A. We will show that, if all Ne are satisfied, then A is superlow. These
requirements protect a computation from being injured. By this we mean that,
if MAs

e,s (e) ↓ then this requirement will try to make sure that no numbers enter
A that might make this computation diverge (Ne will try to keep all numbers ≤
the max number queried from going into A). Associated to every Ne will be a
restraint function r(e, s). This is Ne saying you cannot put an element into A

9

William Gasarch

that is ≤ r(e, s). This restraint will be respected by the lower priority positive
requirements (Pe, Pe+1, etc.) but not by the higher priority positive requirements
(P0, P1, . . . , Pe−1).

The requirements are in the following priority ordering

N0, P0, N1, P1, . . .

CONSTRUCTION
Stage 0: A0 = ∅. (∀e)[r(e, 0) = 0]. For all e, Pe is not satisfied.
Stage s: Visit each requirement in turn, via the priority ordering, up to Ps.
Case 1: A positive requirement Pe. If (a) Pe is not satisfied, and (b) there exists
x ∈We,s such that x ≥ 2e and x > maxi≤e r(e, s), then Pe acts by putting x into
A. Pe is declared satisfied. We say that Ni is injured. Note that Pe will never
become unsatisfied.
Case 2: A negative requirement Ne. IfMAs

e,s (e) ↓ then set r(e, s) to be the largest
number that is queried in this computation. Note that if no number ever enters
A that is ≤ r(e, s) then MA

e (e) ↓.
END OF CONSTRUCTION

Claim 1: Every Pe acts finitely often.
Proof of Claim 1: If Pe never acts then clearly Pe acts finitely often.

If Pe ever acts then it is satisfied, will never be injured, and will never acts
again. Hence Pe acts finitely often.
End of Proof of Claim 1:

Claim 2: For all e, Ne is satisfied and lims→∞ r(e, s) <∞.
Proof of Claim 2: Let s0 be such that, for all i < e, Pe will never act past stage
s0. Note that s0 exists by Claim 1.

If (∀∞s)[MAs
e,s (e) ↑] then Ne is satisfied since its premise is false. Past some

point Ne will never act, hence its restraint changes only finitely often, so
lims→∞ r(e, s) <∞.

If (∃∞s)[MAs
e,s (e) ↓] then there is some s1 ≥ s0 such that MAs

e,s1(e) ↓. When
that happens Ne will act and a restraint r(e, s1) will be set. Since no higher
priority positive requirement ever acts, Ne is never injured, and hence is satisfied.
Since Ne never acts again, lims→∞ r(e, s) = r(e, s1) <∞.
End of Proof of Claim 2:

Claim 3: Every Pe is satisfied.
Proof of Claim 3: If We is finite then Pe is satisfied. Hence we assume that
We is infinite. Let s0 be such that for all i < e lims→∞ r(i, s) = r(i, s0). Let

10

Low, Superlow, and Superduperlow Sets

R(e) = maxi≤e r(i, s0). Since We is infinite there will be an x > max{2e,R(e)}
that is enumerated intoWe at some stage s > max{s0, e}. If Pe is not yet satisfied
then Pe will act at stage s and be satisfied.
End of Proof of Claim 3:

Claim 4: A is co-infinite.
Proof of Claim 4: Look at the numbers Se = {1, 2, . . . , 2e, 2e+ 1}. Since Pe+1
only uses numbers ≥ 2e+ 2, the only positive requirements that will use elements
of Se are P0, . . . , Pe. Hence at most e+1 of the elements of Se will enter A. Hence
at least e of the elements of Se will not enter A. Since this is true for all e, A is
co-infinite.
End of Proof of Claim 4:

Claim 5: A is superlow.
Proof of Claim 5:

Note that the only requirements that can injure Ne are P0, P1, . . . , Pe−1. These
requirements act at most once. Hence Ne is injured at most e times. We can
determine e ∈ A′ by asking the following questions at the same time (which is
why we get A′ ≤tt K). For each i ≤ e we have the following two questions to K.

• Is Ne injured at least i times?

• Is there a stage s that occurs after Ne is injured i times where MAs
e,s (e) ↓?

From the answers (1) determine the largest i0 such that Ne is injured exactly
i0 times, and (2) determine if there is some stage s after the i0 injuries such
that MAs

e,s (e) ↓. If the answer to (2) is YES then e ∈ A′ since that computation
will never be injured. If the answer is NO then e /∈ A′ since for almost all s,
MAs

e,s (e) ↑.

References
[1] W. Gasarch. Gems in the field of bounded queries. In Cooper and Goncharov,

editors, Computability and Models, 2003. http://www.cs.umd.edu/~gasarch/
papers/papers.html.

[2] C. Jockusch. The degrees of bi-immune sets. Zeitschrift für logik and Grundlagen
d. Math (Has changed its name to Math Logic Quarterly), 15, 1986, pp.135–140.
The article is behind a paywall.

[3] M. Kummer. A proof of Beigel’s cardinality conjecture. Journal of Sym-
bolic Logic, 57(2), June 1992, pp.677–681. http://www.jstor.org/action/
showPublication?journalCode=jsymboliclogic.

11

http://www.cs.umd.edu/~gasarch/papers/papers.html
http://www.cs.umd.edu/~gasarch/papers/papers.html
http://www.jstor.org/action/showPublication?journalCode=jsymboliclogic
http://www.jstor.org/action/showPublication?journalCode=jsymboliclogic

William Gasarch

[4] W. Miller and D. A. Martin. The degree of hyperimmune sets. Zeitschrift für logik
and Grundlagen d. Math (Has changed its name to Math Logic Quarterly), 14, 1968,
pp. 159–166. The article is behind a paywall.

[5] J. Mohrherr. A refinement of lown and highn for the r.e. degrees. Zeitschrift für
logik and Grundlagen d. Math (Has changed its name to Math Logic Quarterly), 32,
1986, pp.5–12 The article is behind a paywall.

	Introduction
	Bi-immune and Hyperimmune Sets
	Superduperlow implies Decidable: Proof One
	Superduperlow implies Decidable: Proof Two
	Acknowledgment
	There exists an undecidable c.e. Superlow Set

