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I. Introduction

Computer scientists have become interested in inductive inference as a form of ma-

chine learning primarily because of artificial intelligence considerations, see [2,3] and the

references therein. Some of the vast body of work in inductive inference by theoretical

computer scientists [1,4,5,6,10,12,22,25,28,29] has attracted the attention of linguists (see

[20] and the references therein) and has had ramifications for program testing [7,8,27].
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To date, most (if not all) the theoretical research in machine learning has focused on

machines that have no access to their history of prior learning efforts, successful and/or

unsuccessful. Minicozzi [19] developed the theory of reliable identification to study the

combination and transformation of learning strategies, but there is no explicit model of

an agent performing these operations in her theory. Other than that brief motivation for

reliable inference there has been no theoretical work concerning the idea of “learning how

to learn.” Common experience indicates the people get better at learning with practice.

That learning is something that can be learned by algorithms is argued in [13].

The concept of “chunking” [18] has been used in the Soar computer learning system

in such a way that chunks formed in one learning task can be retained by the program for

use in some future tasks [15,16]. While the Soar system demonstrates that it is possible to

use knowledge gained in one learning effort in a subsequent inference, this paper initiates

a study in which it is demonstrated that certain concepts (represented by functions) can

be learned, but only in the event that certain relevant subconcepts (also represented by

functions) have been previously learned. In other words, the Soar project presents empirical

evidence that learning how to learn is viable for computers and this paper proves that doing

so is the only way possible for computers to make certain inferences.

We consider algorithmic devices called inductive inference machines (abbreviated:

IIMs) that take as input the graph of a recursive function and produce programs as output.

The programs are assumed to come from some acceptable programming system [17,23].

Consequently, the natural numbers will serve as program names. Program i is said to

compute the function ϕi. M identifies (or explains) f iff when M is fed longer and longer

initial segments of f it outputs programs which, past some point, are all i, where ϕi = f .

The notion of identification (originally called “identification in the limit”) was introduced

formally by Gold [12] and presented recursion theoretically in [5]. If M does identify f we

write f ∈ EX(M). The “EX” is short for “explains,” a term which is consistent with the

philosophical motivations for research in inductive inference [6]. The collection of inferrible
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sets is denoted by EX, in symbols EX = {S (∃M)[S ⊆ EX(M)]}. Several other variations

of EX inference have been investigated [2].

The new notion of inference needed to show that, in some sense, machines can learn

how to learn is one of inferring sequences of functions. Suppose that 〈f1, f2, . . . , fn〉 is a

sequence of functions andM is an IIM.M can infer 〈f1, f2, . . . , fn〉 (written: 〈f1, f2, . . . , fn〉

∈ SnEX(M)) iff

1. M can identify f1 from the graph of f1, with no information and

2. for 0 < i < n, M can identify fi+1 from the graph of fi+1 if it is also provided

with a sequence of programs e1, e2, . . . , ei, such that φe1 = f1, . . ., ϕei = fi.

SnEX = {S (∃M)[S ⊆ SnEX(M)]}.

A more formal definition appears in the next section. One scenario for conceptualizing

how an IIM M can SnEX infer some sequence like 〈f1, f2, . . . , fn〉 is as follows. Suppose

that M simultaneously receives, on separate input channels, the graphs of f1, f2, . . . , fn.

M is then free to use its most current conjectures for f1, f2, . . . , fi in its calculation of a

new hypothesis for fi+1. If M changes its conjecture as to a program for fi, then it also

outputs new conjectures for fi+1, . . . , fn. If fi+1 really somehow depends on f1, f2, . . . , fi,

then no inference machine should be able to infer fi+1 without first learning f1, f2, . . . , fi.

The situation where an inference machine is attempting to learn each of f1, f2, . . . , fi

simultaneously is discussed in the section on parallel learning below.

Another scenario is to have a “trainer” give an IIM M some programs as a preamble

to the graph of some function. Our results on learning sequences of functions by single

IIMs and teams of IIMs use this approach. In this case there is no guarantee that M has

learned how to learn based on its own learning experiences. However, if the preamble is

supplied by using the output of some other IIM, then perhaps M is learning based on some

other machine’s experience. If we restrict ourselves to a single machine and rule out magic,

then there is no other possible source for the preamble of programs, other than what has

been produced by M during previous learning efforts. In this case, M is assuming that
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its preamble of programs is correct. The only way for M to know for certain that the

programs it is initially given compute the functions it previously tried to learn is for M to

be so told by some trainer.

Two slightly different models are considered below, one for each of the above scenarios.

A rigorous comparison of the two notions reveals that the parallel learning notion is more

powerful than learning with a training sequence.

For all n, SnEX is nonempty (not necessarily a profound remark). Consider any IIM

M for which EX(M) is not empty. Let S = EX(M). Then S×S ∈ S2EX, S×S×S ∈ S3EX,

etc. The witness is an IIM M ′ that ignores the preamble of programs and simulates M .

These are not particularly interesting members of SnEX since it is not necessary to learn a

program for the first function in each sequence in order to learn a program for the second

function, etc. One of our results is the construction of an interesting member of SnEX.

We construct an S ∈ SnEX, uniformly in n, containing only n-tuples of functions

〈f1, f2, . . . , fn〉 such that for each IIM M there is an 〈f1, f2, . . . , fn〉 ∈ S such that, for

1 ≤ i ≤ n, M cannot infer fi if it is not provided with a preamble of programs that

contains programs for each of f1, f2, . . . , fi−1.

Let S ∈ SnEX be a set of n-tuples of functions. Suppose 〈f1, f2, . . . , fn〉 ∈ S.

f1, f2, . . . , fn−1 are the “subconcepts” that are needed to learn fn. In a literal sense,

f1, f2, . . . , fn−1 are encoded into fn. The encoding is such that f1, f2, . . . , fn−1 can not

be extracted from the graph of fn. (If f1, f2, . . . , fn−1 could be extracted from fn then

an inference machine could recover programs for f1, f2, . . . , fn−1 and infer fn without any

preamble of programs, contradicting our theorem.) The constructed set S contains se-

quences of functions that must be learned in the presented order, otherwise there is no

IIM that can learn all the sequences in S. Here f1, f2, . . . , fi−1 is the “training sequence”

for fi, motivating the title for this paper.

II. Definitions, Notation, Conventions and Examples

In this section we formally define concepts that will be of use in this paper. Most of our

definitions are standard and can be found in [6]. Assume throughout that ϕ0, ϕ1, ϕ2, . . . is
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a fixed acceptable programming system of all (and only all) the partial recursive functions

[17,23]. If f is a partial recursive function and e is such that ϕe = f then e is called a

program for f . N denotes the natural numbers, which include 0. N+ denotes the natural

numbers without 0. Let 〈·, ·, . . . , ·〉 be a recursive bijection from
⋃∞
i=0 Ni to N. We will

assume that the empty sequence maps to 0.

Definition: Let f be a recursive function. An IIM M converges on input f to program i

(written: M(f)↓= i) iff almost all the elements of the sequence M(〈f(0)〉), M(〈f(0), f (1)〉),

M(〈f(0), f (1), f(2)〉), . . . are equal to i.

Definition: A set S of recursive functions is learnable (or inferrible or EX-identifiable) if

there exists an IIM M such that for any f ∈ S, M(f)↓= i for some i such that ϕi = f .

EX is the set of all subsets S of recursive functions that are learnable.

In the above we have assumed that each inference machine is viewing the input func-

tion in the natural, domain increasing order. Since we are concerned with total functions,

we have not lost any of the generality that comes with considering arbitrarily ordered enu-

merations of the graphs of functions as input to IIM’s. An order independence result that

covers the case of inferring partial (not necessarily total) recursive functions can be found

in [5]. The order that IIM sees its input can have dramatic effects on the complexity of

performing the inference [9] but not on what can and cannot be inferred.

We need a way to talk about a machine learning a sequence of functions. Once the

machine knows the first few elements of the sequence then it should be able to infer the

next element. We would like to say that if the machine “knows” programs for the previous

functions then it can infer the next function. In the next definition we allow the machine

to know a subset of the programs for previous functions.

Definition: M(〈e1 . . . , em〉, f)↓= e means that the sequence of outputs produced by M

when given programs e1, . . . , em and the graph of f converges to program e.
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Definition: Let n > 1 be any natural number. Let J = 〈J1, . . . , Jn−1〉, where Ji (1 ≤ i ≤

n − 1) is a subset of {1, 2, . . . , i − 1}. (J1 will always be ∅.) Let Ji = {bi1, bi2, . . . , bim}.

A set S of sequences of n-tuples of recursive functions is J-learnable (or J-inferrible,

or J-SnEX-identifiable) if there exists an IIM M such that for all 〈f1, . . . , fn〉 ∈ S, for

all 〈e1, . . . , en〉 such that ej is a program for fj (1 ≤ j < n), for all i (1 ≤ i ≤ n),

M(〈ebi1 , ebi2 , ebi3 , . . . , ebim〉, fi)↓= e where e is a program for fi.

Note that f1 has to be inferrible. Intuitively, if the machine knows programs for a

subset of functions (specified by Ji) before fi, then the machine can infer fi. M is called

a Sequence IIM (SIIM) for S. SnEX is the set of n-tuples of recursive functions that

are J-learnable with J = 〈J1, . . . , Jn−1〉, Ji = {1, 2, . . . , i − 1} (1 ≤ i ≤ n), i.e. the set of

sequences such that any function in the sequence can be learned if all the previous ones

have already been learned.

Convention: If an SIIM machine is not given any programs, but is given σ (σ is a subset

of the input function) then we use the notation M(⊥, σ). If an SIIM machine is given

one program, e, and is given σ then we use the notation M(e, σ) instead of the (formally

correct) M(〈e〉, σ).

We are interested in the case where inferring the ith function of a sequence requires

knowing all the previous ones and some nonempty portion of the graph of the ith function.

The notion that is used in our proofs is the following.

Definition: A set S of sequences of n-tuples of recursive functions is redundant if there is

an SIIM that can infer all fn with a preamble of fewer than n− 1 programs for f1, f2, . . .,

fn−1. Every set S is either nonredundant or redundant.
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Example: A set in S3EX which is redundant.

S = {〈f1, f2, f3〉 f1(0) is a program for f1,

f2(2x) = f1(x)(for x 6= 0),

f2(2x+ 1) is 0 almost everywhere ,

f3(2x) = f1(2x) + f2(2x+ 1),

f3(2x+ 1) = 0 almost everywhere, and

f1, f2, f3 are all recursive }

To infer f2 a machine appears to need to know a program for f1; to infer f3 a machine

appears to only need a program for f1. Formally the set S is 〈∅, {1}, {1}〉-learnable.

Examples of nonredundant sets are more difficult to construct. In sections III and IV

examples of nonredundant sets will be constructed.

The notion of nonredundancy that we are really interested in is slightly stronger. The

definition is given below. It turns out to be easy to pass from the technically tractable

definition to the intuitively interesting one.

Definition: A set S of sequences of n-tuples of recursive functions is strictly redundant

if it is J-learnable for J = 〈J1, . . . , Jn−1〉 where there exists an i such that Ji is a proper

subset of {1, 2, . . . , i− 1}.

The following technical lemma shows that the existence of certain nonredundant sets

implies the existence of a strictly nonredundant set. This means that we can prove our

theorems using the weaker, technically tractable definition of nonredundancy and our

results will also hold for the more interesting notion of strict nonredundancy.

Lemma 1. If there exists sets Si (2 ≤ i ≤ n) of nonredundant i-tuples of functions, then

there exists a set S of n-sequences that is strictly nonredundant.

Proof:
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Take S to be

n⋃

i=1

{〈f1, . . . , fn〉 ∃〈g1, . . . , gi〉 ∈ Si

fj (x) = 〈j, gj(x)〉 (1 ≤ j ≤ i)

fj (x) = 0 (i + 1 ≤ j ≤ n)}

Suppose by way of contradiction that S is not strictly nonredundant. Then there

exists i, J and M such that J ⊂ {1, . . . , i − 1} and M can infer fi from the indices of fj ,

for j ∈ J , and the graph of fi. The machine M can easily be modified to infer gi from the

indices of gj , for j ∈ J , and the graph of gi. Since J is a proper subset of {1, . . . , i − 1},

this contradicts the hypothesis. X

The following definitions are motivated by our proof techniques.

Definition: Suppose f is a recursive function and n ∈ N. For j < n, the j th n-ply of f is

the recursive function λx[f(n · x + j)].

n-plies of partial recursive functions were used in [25]. Clearly, any recursive function

can be constructed from its n-plies. For the special case of n = 2 we will refer to the even

and odd plies of a given function.

Often, we will put programs for constant functions along one of the plies of some

function that we are constructing. For convenience, we let ci denote the constant i function,

e.g. λx[i]. Also, pi denotes a program computing ci, e.g. ϕpi = ci.

As a consequence of the above lemma, we will state and prove our results in terms

of redundancy with the implicit awareness that the results also apply with “redundancy”

replaced by “strict redundancy” everywhere. This slight of notation allows us to omit what

would otherwise be ubiquitous references to Lemma 1.

III. Learning Pairs of Functions

In this section we prove that there is a set of pairs of functions that can be learned se-

quentially by a single IIM but cannot be learned independently by any IIM. The technique

used in the proof is generalized in the next section.
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Theorem 2. S = {〈ci, ϕi〉 ϕi is a recursive function} is a nonredundant member of S2EX.

Proof: First, we give the algorithm for an SIIM M which witnesses that S ∈ S2EX. M will

view two different types of input sequences: one with an empty preamble of programs and

one with a single program in the preamble. On input sequences with an empty preamble,

M reads an input pair (x, y) and outputs a program for cy and stops. Suppose M is

given an input sequence with a preamble consisting of “i.” Before reading any input other

than the preamble, M evaluates ϕi(0), outputs the answer (when and if the computation

converges) and stops. Suppose 〈f0, f1〉 ∈ S. Then f0 is a constant function and will be

inferred by M from its graph. Suppose f0 = λx[e]. By membership in S, ϕe = f1. Hence,

M will infer f1, given a program for f0.

To complete the proof we must show that S is not redundant. Suppose by way of

contradiction that S is redundant. Then there is an IIM that can infer R = {f ∃g such

that 〈g, f〉 ∈ S}. Note that R is precisely the set of recursive functions, which is known to

be not inferrible [12]. Hence, no such IIM can exist. X

Note that the SIIM M defined above outputs a single program, independent of its

input. For a discussion of inference machines and the number of conjectures they make,

see [6]. We could modify the SIIM M above to make it reliable on the recursive functions

in the sense that it will not converge unless it is identifying [5,19]. The notion of reliability

used here is as follows: A SIIM M reliably identifies S if and only if for all k > 0, whenever

〈e1, . . . , ek〉 is such that for some 〈f1, . . . , fn〉 ∈ S, ϕei = fi for i = 1, . . . , k, and g is any

recursive function, then M(〈e1, . . . , ek〉, g) converges to a program j iff ϕj = g.

The modification to make M of the previous theorem reliable is as follows. After M

outputs its only program, it continues (or starts) reading the graph of the input function

looking for a counterexample to its conjecture. If M is given an empty preamble, the

program produced as output computes a constant function, which is recursive. If M is

given a nonempty preamble then, M assumes the program in the preamble computes some
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constant function λx[i] where ϕi is a recursive function. Hence, the modified M will always

be comparing its input with a program computing a recursive function. If a counterexample

is found, M proceeds to diverge by outputting the time of day every five minutes.

A stronger notion of reliability would be to require that M converge correctly whenever

its preamble contains only programs for recursive functions and the function whose graph

is used as input is also recursive. Run time functions can be used to derive the same result

for the stronger notion of reliability.

IV. Learning Sequences of Functions

In this section we will generalize the proof of the previous section to cover sequences

of an arbitrary length. We start be defining an appropriate set of n-tuples of recursive

functions. Intuitively, all but the last program in the sequence computes a constant func-

tion where the constant computed is a program for one of the plies of the last function in

the sequence. Suppose n ∈ N+. Then

Sn+1 = {〈f0, f1, . . . , fn〉 fn is any recursive function and for each

i < n, fi is the constant ji function where ϕji is the ith

n-ply of fn}

Theorem 3. For all n > 0, Sn is a nonredundant member of SnEX.

Proof: First we will show that there is an SIIM Mn+1 such that if 〈f0, f1, . . . , fn〉 ∈ Sn+1

and i0, . . . , in−1 are programs for f0, . . . , fn−1, then Mn+1(〈i0, . . . , in−1〉, fn) converges to

a program for fn. Mn+1 first reads the preamble of programs i0, . . . , in−1 and runs ϕij(0)

to get a value ej for each j < n. Mn+1 then outputs a program for the following algorithm:

On input x, calculate i such that i ≡ x mod n and let x′ = (x − i)/n. Output

the value ϕei(x
′).

If i0, . . . , in−1 are indeed programs for f0, . . . , fn−1 then Mn+1 will output a program for

fn. As in the previous proof, we could make Mn+1 reliable on the recursive functions.
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Let J = {i1, . . . , ir} be any proper subset of {0, . . . , n−1}. Suppose by way of contra-

diction that there is an SIIM M such that whenever 〈f0, f1, . . . , fn〉 ∈ Sn+1 and ei1 , . . . , eir

are programs for fi1 , . . . , fir then M(〈ei1 , . . . , eir 〉, fn) converges to a program for fn. We

complete the proof by showing how to transformM into M ′, an IIM that is capable of infer-

ring all the recursive functions, a contradiction. Choose j ∈{0, 1, . . . , n− 1}−J . Suppose

the graph of f , a recursive function, is given to M ′ as input. Assume without loss of gener-

ality that the input is received in its natural domain increasing order (0, f(0)), (1, f (1)), . . ..

¿From the values of f received as input it is possible to produce, again in domain increasing

order, the graph of the following recursive function g:

g(x) =

{
f(i) if x = ni+ j;
0 if x 6≡ j mod n.

Notice that the jth n-ply of g is f and all the other n-plies of g are equal to λx[0]. Let z

be a program for the everywhere zero function (λx[0]). M ′ now simulates M feeding M

the input sequence:

〈z, z, . . . , z〉︸ ︷︷ ︸
r copies

, g(0), g(1), . . .

Whenever M outputs a conjectured program k, M ′ outputs a program s(k) such that

ϕs(k) = λx[ϕk(nx + j)]. s(k) is a program for the jth n-ply of ϕk.

In summary, M ′ takes its input function and builds another function with the given

input on the jth n-ply and zeros everywhere else. M ′ then feeds this new function, with

a preamble of r programs for the constant zero function, to M , which supposedly doesn’t

need the jth n-ply. When M returns the supposedly correct program, M ′ builds a program

that extracts the jth n-ply. By our suppositions about the integrity of M , this program

output by M ′ correctly computes f , its original input function. Since f was chosen to be

an arbitrary recursive function, M ′ can identify all the recursive functions in this manner,

a contradiction. X
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The above proof is a kind of reduction argument. We know of no other use of re-

duction techniques in the theory of inductive inference. A set was constructed such that

its redundancy would imply a contradiction to a known result. An alternate proof, using

a direct construction, was discovered earlier by the authors [11]. The direct proof of the

above theorem is more constructive but considerably more complex. The proof given above

has the additional advantage of being easier to generalize.

V. Team Learning

Situations in which more than one IIM is attempting to learn the same input function

were considered in [25]. In general, the learnable sets of functions are not closed under

union [5]. For team learning, the team is successful if one of the members can learn the

input function. The power of the team comes from its diversity as some IIMs learn some

functions and others learn different functions, but when considered as a team, the team can

learn any function that can be learned by any team member. This notion of team learning

was shown to be precisely the same as probabilistic learning [21]. The major results from

[25] and [21] are summarized, unified and extended in [22].

In some cases, teams of SIIMs can be used to infer nonredundant sets of functions

from less information than a single SIIM requires. For example, consider the set S3 from

Theorem 3. Suppose 〈ci, cj , f〉 ∈ S3. In this case, the even ply of f is just ϕi and the odd

ply is ϕj. Let M1 be a SIIM that receives program pi (computing ci) prior to receiving

the graph of f and M2 is a similar SIIM that has pj as its preamble. Each of these two

SIIMs then uses its preamble program as an upper bound for the search for a program

to compute the even ply of f and simultaneously as an upper bound for the search for

a program to compute the odd ply of f . Since natural numbers name all the programs,

one of the two preambles must contain a program (natural number) that bounds both pi

and pj . The SIIM that receives the preamble with the larger (numerically) program will

succeed in its search for a program for both the even and odd plies of f . Hence, the team

of two SIIMs just described can infer, from a preamble containing a single program, all of
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S3. A stronger notion of nonredundancy is needed to discuss the relative power of teams

of SIIMs.

In this section, for each n > 1, a nonredundant Ŝn ∈ SnEX will be constructed with

the added property that {fn 〈f1, . . . , fn〉 ∈ Ŝn} is not inferrible by any team of n−1 SIIM’s

that see a preamble of at most n − 2 programs. This appears to be a stronger condition

than nonredundancy, and, in fact, we prove this below. Not only can’t Ŝn be inferred by

any SIIM that sees fewer than n− 1 programs in its preamble, it can’t be inferred by any

size n− 1 team of such machines. Such sets Ŝn are called super nonredundant.

The fully general result involves some combinatorics that obscure the main idea of

the proof. Consequently, we will present the n = 3 case first. We make use of the sets Tm

constructed in [25] such that Tm is inferrible by a team of m IIMs but by no smaller team.

Theorem 4. There is a set Ŝ3 ∈ S3EX that is super nonredundant.

Proof: Let M1, . . . ,M6 be the IIMs that can team identify T6. Fix some coding C from

{1, 2} × {1, 2, 3} 1-1 and onto {1, . . . , 6}. We can now define Ŝ3.

Ŝ3 = {〈f1, f2, f3〉 f1 ∈ {c1, c2}, f2 ∈ {c1, c2, c3}, and f3 ∈ T6

where C(f1(0), f2(0)) is the least index of an IIM in M1,

. . ., M6 that can infer f3}
It is easy to see that Ŝ3 ∈ S3EX. The first two functions in the sequence are always

constant functions which are easy to infer. Given programs for f1 and f2 the SIIM figures

out what constants these functions are computing and then uses the coding C to figure

out which one of M1, . . . ,M6 to simulate.

Suppose that 〈f1, f2, f3〉 ∈ Ŝ3, e1 a program for f1, and e2 a program for f2. Suppose

by way of contradiction that M ′1 and M ′2 are SIIMs and either M ′1(e1, f3) or M ′2(e2, f3)

identifies f3. The case where both M ′1 and M ′2 both see e1 (or e2) is similar. Let [M,e]

denote the IIM formed by taking an SIIM M and hard wiring its premable of programs to

be “e”. Recall that program pi computes the constant i function ci, for each i. One of the

five machines [M ′1, p1], [M ′1, p2], [M ′2, p1], [M ′2, p2], or [M ′2, p3] will infer each f3 such that

〈f1, f2, f3〉 ∈ Ŝ3. This set is precisely T6, contradicting the choice of T6. X
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Theorem 5. For each n ∈ N, there is a set Ŝn ∈ SnEX that is super nonredundant.

Proof: For n ≤ 2 the theorem holds vacuously. Choose n > 2. Let gi = 2i, for all i. Let P be

the product of g1, g2, . . . , gn−1. Let C be a fixed coding from {1, . . . , g1}×· · ·×{1, . . . , gn−1}

1-1 and onto {1, . . . , P}. Let M1, . . . ,MP be the IIMs that can team identify TP , the set

of recursive functions that is not identifiable by any team of size P −1. Now we can define

Ŝn.

Ŝn = {〈f1, . . . , fn〉 fj ∈ {c1, . . . , cgj}, for 1 ≤ j < n and fn ∈ TP
where C(f1(0), . . . , fn−1(0)) is the least index of an IIM in

M1, . . . ,MP that can infer fn}

It is easy to see that Ŝn ∈ SnEX. The first n− 1 functions in the sequence are always

constant functions which are easy to infer. Given programs for f1, . . . , fn−1 the SIIM

figures out what constants these functions are computing and then uses the coding C to

figure out which one of M1, . . . ,MP to simulate.

Suppose 〈f1, . . . , fn〉 ∈ Ŝn and e1, . . . , en−1 are programs for f1, . . . , fn−1, respectively.

Suppose by way of contradiction that M ′1, . . . ,M
′
n−1 are SIIMs such that if M ′j (0 < j < n)

is given the preamble of programs e1, . . . , en−1, except for program ej , and the graph of

fn, then one of M ′1, . . . ,M
′
n−1 will identify fn. Actually, we need to suppose that the

team M ′1, . . . ,M
′
n−1 behaves this way on any n-tuple of functions in Ŝn. This way we are

considering the most optimistic choice for a collection of n−1 SIIMs. Any other association

of machines to indices is similar.

As with the n = 3 case, we proceed by hard wiring various preambles of programs

into the SIIMs M ′ to form a team of IIMs that can infer TP . As long as the size of this

team is strictly less than P , we will have a contradiction to the team hierarchy theorem of

[25]. The remainder of this proof is a combinatorial argument showing that P was indeed

chosen large enough to bound the number IIMs that could possibly arise by hard wiring

in a preamble of n− 2 programs into one of the M ′’s.
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Since M ′j sees e1, . . . , ej−1, ej+1, . . . , en−1 and there are gi choices for ei there are P/gj

different ways to hard wire in programs for relevant constant functions into M ′j . Hence,

the total number of IIM’s needed to form a team capable of inferring every fn in Ŝn is:

n−1∑

i=1

P

gi
.

The size of this team will be strictly bounded by P as long as:

n−1∑

i=1

1

gi
< 1.

This inequality follows immediately from the definition of the gi’s. Hence, the theorem

follows. X

Note that the formula in the general case suggests using the set T8 as a counterexample

for the n = 3 case. In Theorem 4, the set T6 was used. What this means is that the choice

of the constants g1, g2, . . . was not optimal. We leave open the problem of finding the

smallest possible values of the constants that suffices to prove the above result.

VI. Parallel Learning

In previous sections we examined the problem of inferring sequences of functions by

SIIMs and teams of SIIMs. In this section, we show that there are sets of functions that

are not inferrible individually, but can be learned when simultaneously presenting to a

suitable IIM. First, we define identification by a Parallel IIM.

Definition: An n-PIIM is an inference machine that simultaneously (or by dovetailing)

inputs the graphs of an n-tuple of functions 〈f1, f2, . . . , fn〉 and from time to time, out-

puts n-tuples of programs. An n-PIIM M converges on input from 〈f1, f2, . . . , fn〉 to

〈e1, e2, . . . , en〉 if at some point while simultaneously inputting the graphs of f1, f2, . . . , fn,

M outputs 〈e1, e2, . . . , en〉 and never later outputs a different n-tuple of programs. An n-

PIIMM identifies 〈f1, f2, . . . , fn〉 iffM on input 〈f1, f2, . . . , fn〉 converges to 〈e1, e2, . . . , en〉
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and ϕei = fi for all 1 ≤ i ≤ n. PnEX = {〈f1, f2, . . . , fn〉 ∃M an n-PIIM such that M

identifies 〈f1, f2, . . . , fn〉}.

Notice that P1EX =EX. In order to somehow compare the classes PnEX as n varies,

we need a way of compressing PnEX into PmEX for m < n. This will be accomplished

via an m-projection. An m-projection of 〈f1, f2, . . . , fn〉 is given by an m-tuple 1 ≤ i1 <

i2 < . . . < im ≤ n such that the determined m-projection is 〈fi1 , fi2 , . . . , fim〉. Let
(
n
m

)

denote “n choose m” (n!/m!(m − n)!). For a given m and n with m < n there are
(
n
m

)

different m-projections possible. An m-projection of a set of n-tuples of recursive functions

is the set of m-projections of all the tuples. The general theorem that we will prove below

asserts that for every m < n there is a set of n-tuples of recursive functions such that

every m-projection of that set is in PmEX but no (m − 1)-projection is in Pm−1EX. To

illustrate the basic proof technique, without the combinatorics necessary for the general

case, we prove the following special case.

A recursive function that is useful in the following proofs is one that computes two

functions simultaneously. Define ply to be a program such that for all programs i and j:

ϕply(i,j)(x) =

{
ϕi(x/2) if x is even
ϕj((x − 1)/2) if x is odd.

So ply(i, j) is a program that computes ϕi on its even ply and ϕj on its odd ply.

Theorem 6. There is a set S ∈ P2EX such that neither 1-projection of S is in EX.

Proof: First we define S.

S = {〈f1, f2〉 the even ply of f1 is any recursive function and

the odd ply of f1 is the constant e2 function where ϕe2 is

the even ply of f2, and the even ply of f2 is any recursive

function and the odd ply of f2 is the constant e1 function

where ϕe1 is the even ply of f1}
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The 2-PIIM M witnessing S ∈ P2EX is described as follows. M inputs values from f1

and f2 until it has received f1(1) and f2(1). Let j = f1(1) and k = f2(1). M then outputs

〈ply(k, pj ), ply(j, pk)〉 and converges. Clearly, M suffices.

Suppose by way of contradiction that M is a 1-PIIM (an IIM) that can identify

S′ = {f ∃g such that 〈f, g〉 ∈ S}. The case of the other 1-projection of S is similar.

Suppose ϕi is an arbitrary recursive function. Let k = ply(i, pp0 ) and j = ply(p0, pi).

Then 〈ϕk, ϕj〉 ∈ S and ϕk ∈ S′. So every recursive function is the even ply of some

member of S ′. We now construct M ′ an IIM that can identify all the recursive functions,

a contradiction. On input (x0, y0), (x1, y1), . . . M ′ simulates M with input (2 · x0, y0),

(1, p0), (2 · x1, y1), (3, p0), · · ·. In other words, M ′ takes an arbitrary recursive function as

input and transforms it into a member of S ′ that M can identify. If M outputs p, then M ′

outputs a program for the even ply of ϕp. M ′ then infers all the recursive functions. X

The general result is proven using a set of n-tuples of recursive functions whose even

plies are arbitrary recursive functions and whose odd plies encode some information about

the other functions in the n-tuple. Some combinatorial difficulty arises because complete

information about the other functions in the n-tuple must be divided into enough pieces

and distributed. This distribution will take place along the k-plies of the odd plies of the

functions in the n-tuple, for some k. Some more notation is needed to conveniently describe

the encoding. Let f1, f2, . . . , fn be an n-tuple of functions. For 0 < i ≤ n and j < k, let

PRkj (fi) denote a program that computes the jth k-ply of fi. PR
k
j (〈f1, f2, . . . , fn〉) denotes

the n-tuple of programs where each program computes the jth k-ply of the corresponding

f .

Theorem 7. Suppose 0 < m < n. Then there is a set of n-tuples of recursive functions

such that every m-projection of that set is in PmEX but no (m − 1)-projection is in

Pm−1EX.
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Proof: Choose k =
(

n
m−1

)
. Let C0, C1, . . . , Ck−1 be all the sizem−1 subsets of {1, 2, . . . , n}.

Now, we can define S, the desired set of n-tuples of recursive functions.

S = {〈g1, . . . , gn〉 ∃ recursive functions f1, f2, . . . , fn such that

for each i (1 ≤ i ≤ n) the even ply of gi is fi and the odd

ply is a constant function for some constant encoding the

values PRkj (〈f1, f2, . . . , fn〉) for all j such that i 6∈ Cj}.
Notice that if some PIIM receives the graph of gi1 then it will have information about

all the jth k-plies of each of the f ’s for each j such that Cj does not contain i1. Similarly,

if this PIIM simultaneously receives the graphs of gi1 and gi2 then it will have information

about all the jth k-plies of each of the f ’s for each j such that Cj does not contain both

i1 and i2. Consequently, if some PIIM simultaneously receives the graphs of gi1 , gi2 , . . . ,

gim then it will have information about all the jth k-ply of each of the f ’s for each j such

that Cj does not contain each of i1, i2, . . . , im.

Since each of the Cj’s has cardinality exactly m − 1, no Cj contains each of i1, i2,

. . . , im. Hence, a PIIM receiving the graphs of gi1 , gi2, . . . , gim will be able to recover

programs for each of the k-plies of each of the f ’s. ¿From the k-plies of the f ’s, not

only can programs for the f ’s be constructed (the even ply of the g’s), but the encodings

of PRkj (〈f1, f2, . . . , fn〉) for all subsets of j’s from {0, . . . , k − 1} as well. This latter

information is all that is needed to figure out the constants that go on the odd ply of the

g’s. Hence, a program for each of the g’s is constructible via the ply function. We have

just informally described a m-PIIM that can infer any m-projection of S. Furthermore,

this PIIM can actually infer the n-tuples of functions in S from any m-projection of S.

Suppose by way of contradiction that i1, i2, . . . , im−1 is an m-projection of S that

is in Pm−1EX. Let M be the witnessing PIIM. Let j be such that Cj = {i1, . . . , im−1}.

Then M , after seeing as input gi1(1), . . . , gim−1(1), will know programs for all the k-plies

of all the f ’s except the jth ply. We will now show how to construct an IIM M ′ that, by

simulating M , will be able to infer all the recursive functions.
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Let h be an arbitrary recursive function. Let h′ be another recursive function that

has h as its jth k-ply and has value zero everywhere else. h′ can be constructed uniformly

and effectively from h. Let f1 = h′, f2 = h′, . . . , fn = h′. For these f ’s there is

a corresponding 〈g1, . . . , gn〉 ∈ S such that, for 1 ≤ i ≤ n, the even ply of gi is fi and

suitable constants are on the odd ply. M ′, when given input from the graph of h constructs

the m-projection (given by i1, i2, . . . , im−1) of g1, . . . , gn described above and simulates

M on that input. Recall, that M , without direct knowledge of the j th k-ply of its input,

can, by assumption, infer each function in the m-projection. If M conjectures a tuple of

programs 〈e1, . . . , em−1〉, then M effectively finds a program e′ that computes the even ply

of ϕe1 . ¿From e′, M effectively constructs, and outputs, a program that computes the j th

k-ply of ϕe′. By our construction, this program will compute the recursive function h that

we started with. Since h was chosen arbitrarily, all the recursive functions can be inferred

in this manner, a contradiction. X

VII. A Comparison of SnEX and PnEX

In this section we show that parallel learning is strictly more powerful than sequence

learning. Although this is generally true, our theorems will not hold for the n = 1 case

since S1EX = EX = P1EX.

Theorem 8. For all n ≥ 2, SnEX ⊂ PnEX.

Proof: Suppose n ≥ 2. First we show inclusion. SupposeM is a SIIM witnessing S ∈ SnEX.

Let 〈f1, . . . , fn〉 ∈ S. We will uniformly and effectively transform M into an n-PIIM

M ′ than simultaneously learns each of f1, . . . , fn. To produce a conjecture for f1, M ′

simulates M(⊥, f1) and outputs whatever guesses M outputs. To produce a conjecture

for f2, M ′ chooses e1 to its most recent guess as to a program for f1 and then simulates

M(〈e1〉, f2). In general, for i < n, M ′ produces conjectures for fi+1 by choosing e1, . . . , e1

its most recent conjectures for f1, . . . , fi and then simulating M(〈e1, . . . , ei〉, fi+1). Since
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M will eventually succeed in inferring f1, the choice of e1 will eventually be sound allowing

M(〈e1〉, f2) to eventually produce a correct program for f2. After that point, e2 will be

chosen correctly, enabling the inference of f3. Continuing this line of argument verifies

that M ′ will simultaneously learn f1, . . . , fn. Hence, S ∈ PnEX.

Next we show that the inclusion is proper. By Theorem 7, choose S, a set of n-tuples

of functions, such that every n projection of S is in PnEX but no (n − 1)-projection of

S is in Pn−1EX. Let 〈f1, . . . , fn〉 ∈ S and S′ be the (n − 1)-projection of S formed by

omitting the last function of every n-tuple. For example, 〈f1, . . . , fn−1〉 is a member of

S′. By Theorem 7, S ′ 6∈ Pn−1EX. By Theorem 8, S ′ 6∈ Sn−1EX. If no SIIM can learn

the sequence 〈f1, . . . , fn−1〉, then it follows that no SIIM can learn the longer sequence

〈f1, . . . , fn〉. Thus S 6∈ SnEX. X

Notice that the PIIM M ′ constructed in the above proof was aware of which function

was the first one of the sequence, and which was the second, etc. The above argument

breaks down (and indeed the theorem is false) without the assumption that the PIIM is

cognizant of the position of each input function in in the original sequence. For example,

let Z be the functions of finite support, e.g. the set of functions that map to 0 on all but

finitely many arguments and I be the {0, 1} valued self-describing functions, e.g. the set

of functions f such that if n is the least number such that f(n) 6= 0 then ϕn = f . Each of

Z and I is in EX, but Z ∪ I is not [5].

Suppose by way of contradiction thatM is a 2−PIIM that can identify (Z×I)∪(I×Z)

(pairs of functions, one from I, one from Z, in any order). By the recursion theorem [14]

there is a program e such that:

ϕe(x) =
{

1 if e = x;
0 otherwise.

Let f = ϕe, then f ∈ Z ∩ I. A contradiction is obtained by constructing an M ′ that can

EX identify Z ∪I. Suppose g ∈ Z ∪I. M ′, on input from g, simulates M(f, g) and outputs
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M ’s guesses for g. We have assumed M will infer 〈f, g〉. Consequently, M ′ will infer g,

the desired contradiction.

VIII. Anomalies and Open Problems

The Blums [5], considered a form of inference by IIMs permitting the inference machine

to converge to a program that only computed the input function correctly on all but finitely

many arguments. More sets of recursive functions become inferrible under this relaxed

criterion of correctness. Still, there is no single inference machine capable of inferring all

the recursive functions. This notion was refined in [6] to give an upper bound on the

number of points of disagreement (anomalies) between the function being used as input

and the one computed by the final program produced by the inference machine. A version

of the team hierarchy theorem used in the proofs above also holds for the inference of

programs with anomalies [25].

The definitions of inference by SIIMs and PIIMs can easily be extended to consider

the inference of sequences of programs with a few anomalies and the parallel inference

of programs with some number of anomalies. Since our proofs are all by reduction to

another inference problem and analogues of the problems we reduce to exist for anomalous

inference, all of our results will “relativize” to the case of suitable inference with anomalies.

The exact form of this relativization is an open problem. Consider a sequence 〈f1, f2〉 and

a program e1 that computes f1 everywhere except on 2 anomalous inputs. Can the SIIM

learn f2 with respect to 2 anomalies, given e1? Maybe the SIIM should be allowed 4

anomalies when trying to learn f2?

The consideration of anomalies raises several interesting questions. In [25] the trade-

offs between the number of anomalies allowed and the size of the team performing the

inference were investigated. What are the relationships between the number of anomalies

and the number of SIIMs performing some inference? Between the number of anomalies

and the number of functions that a PIIM sees?
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Team inference by IIMs was equated with probabilistic inference [21]. The trade-

offs found in [25] were generalized to include trade-offs with probabilities [22]. All the

definitions in this paper and the ones alluded to above can be made with respect to

probabilistic inference. There is probably a trade-off between the team size for sequence

inference and the probability of the inference being successful. Similarly, we suspect there

is a trade-off between probability and the number of functions a PIIM sees as input.

The notion of J-learnable can be used to cover much more general situations of using

past knowledge to aid in the acquisition of new knowledge. Our discussion of sequence

learning considered only cases where a programs for the first i functions were required to

infer the i+ 1st function. A graph of the dependencies for a length 6 sequence of functions

of the type considered above would look like:

f1 → f2 → f3 → f4 → f5 → f6

Here an arc x→ y means “knowledge of x is necessary in order to learn y.” The notion

of J-learnability can also be used to discuss more complicated learning dependencies, for

example:
f2

↗ ↘
f1 −−−−−−−→ f4

↘ ↘
f3 −−−−−−−→ f6

↘ ↗
f5

In the situation depicted above, programs for f1 and f2, but not f3, are needed to

learn f4. We believe the techniques employed in this paper should be enough to answer

questions concerning a finite, acyclic dependency structure.

IX. Conclusions

We have shown that, in some sense, computers can be taught how to learn how to

learn. The mathematical result constructed sequences of functions that were easy to learn,

provided they were learned one at a time in a specific order. Furthermore, the sequences
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of functions constructed above are impossible to learn, by an algorithmic device, if the

functions are not presented in the specified order. This result was extended to consider

teams of inference machines, each trying to learn the same sequences of functions.

As with any mathematical model, there is some question as to whether or not our

result accurately captures the intuitive notion that it was intended to. The types of models

discussed were not intended to be an exhaustive list of models of learning how to learn.

A fruitful avenue of research would be to clarify what are the most appropriate models

with which to discuss the issues raised in this paper. Independently of how close our proof

paradigm is to the intuitive notion of learning how to learn, if there were no formal analogue

to the concept of machines that learn how to learn, then our result could not possibly be

true. Our proof indicates not only that it is not impossible to program computers that

learn based, in part, on their previous experiences, but that it is sometimes impossible to

succeed without doing so.

The conclusion reached in [15,16] was that retaining knowledge learned in one learning

effort could make the next learning effort less time consuming. Our result shows that

sometimes first learning one function is a necessary step in order to infer some other

function. A next step is to incorporate complexity theoretic concepts with our proof

techniques to get theoretical results ontologically establishing the conclusions of Laird et

al. It may also be possible to define similar notions of using knowledge from one learning

effort in the next for Valiant’s model of learning [26]. Techniques used in non-complexity

theoretic inductive inference have played a fundamental role in subsequent studies of the

complexity of inductive inference [9,24].

Also considered were inference machines that input several functions simultaneously

with the hope that input from one function will help in the inference of another. Sets of

n tuples of functions were constructed such that if a suitable inference machine saw any

group of m of the functions from the tuple (m < n) then each of the m functions would

be inferrible. Furthermore, no group of m − 1 functions from the tuple was sufficient to
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admit the inference of those m − 1 functions. Another view of this results is that there

is some concept that is presented in n pieces such that any m < n pieces are enough to

figure out the concept, but no collection of m− 1 pieces is sufficient. This is analogous to

secret sharing in cryptography.
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