
Fundamenta Informaticae 30 (1997) 23–41 1
IOS Press

Asking Questions versus Verifiability∗

William Gasarch
Department of Computer Science
University of Maryland at College Park
College Park, MD, 20742, USA
gasarch@cs.umd.edu

Mahendran Velauthapillai
Department of Computer Science
Georgetown University
Washington, DC, 20057, USA
mahe@cs.georgetown.edu

Keywords: Inductive inference, queries.

1. Introduction

Inductive inference is the study of learning in a recursion-theoretic framework. The basic
model is that the learner sees data f(0), f(1), . . ., makes conjectures e1, e2, . . . (these are
programs) and eventually always outputs the same program, which is a program for f .
This model was introduced by Gold [12]. This model, and several variants of it, have been
extensively studied by several people including [2, 3, 16]. See [1, 10, 8] for several surveys.

Case and Smith [3] studied learning machines whose conjectures are verifiable (i.e. the
conjectures are total programs). They discovered that such machines are weaker then ma-
chines that are allowed to conjecture non-total programs (in symbols PEX ⊂ EX).

Gasarch and Smith [9] studied machines that learn functions by asking questions about
the function (see [6, 7] for subsequent work). They discovered that machines that can ask
questions can usually learn more than machines that do not (in symbols EX ⊂ Q1EX[∗]).

These two adjustments on the original model, and the results about them, lead to the
following question: Can the weakness of verifiability be overcome by the strength of asking
questions? While studying this question several other issues arise, including a more detailed
study of verifiability.

2. Definitions

Throughout this paper, ϕ0, ϕ1, ϕ2, . . . denotes an acceptable programming system [17], also
known as a Gödel numbering of the partial recursive functions [15]. The function ϕe is said
to be computed by the program e.

∗First author supported in part by NSF grants CCR-9020079 and CCR-9301339



/ 2

An (standard, passive) inductive inference machine (IIM) is a total algorithmic device
that takes as input the graph of a recursive function (an ordered pair at a time) and outputs
(from time to time) programs intended to compute the function whose graph serves as input
[2, 3, 12]. An IIM M learns a recursive function f , if, when M is given the graph of f as
input, the resultant sequence of outputs converges (after some point there are no more mind
changes) to a program that computes f . This is denoted by M(f) ↓. Learning has occurred
since we can use the program output by the IIM to predict the value of f(x), for all x, after
having seen only finitely many examples. In this case we write f ∈ EX(M). (EX stands
for “explains” [3] since we think of the program as being an explanation of the data.) The
class EX is the collection of all sets EX(M) (or subsets thereof) of functions learned by
an IIM. We say that f ∈ PEX(M) if the IIM only outputs programs which compute total
recursive functions, and eventually converges to a single program which computes f . This
enables one to verify that the programs output by the IIM agrees with the data seen so far
and with later data as it comes in. The collection of all the sets PEX(M) is called PEX.
(See [3] for why it is called PEX.) If σ is an initial segment of some function f , then M(σ)
denotes the last conjecture about f made by M , after seeing all of σ as input, but prior to
requesting additional input.

Each time an IIM outputs a conjecture we say that another learning trial has been com-
pleted. Since it is never known if enough trials have been completed, it is sometimes desirable
to fix an a priori bound on the number of trials that will be permitted. If convergence is
achieved after only c changes of conjecture we write f ∈ EXc(M), ( f ∈ PEXc(M)) for
c ∈ N, where N denotes the set of natural numbers. The class of sets of functions identifiable
by IIMs restricted to c mind changes is denoted by EXc (PEXc).

The requirement that M on input f converges to a program ϕe such that ϕe computes
f on every point is somewhat stringent. One relaxation of this to allow the the machine
to converge to a program that computes f on most points, but we will allow a (or less)
exceptions. f ∈ EXa

b (M) if and only if M on some initial segment of f will converge a
program e after at most b mind changes, and |{x : ϕe(x) 6= f(x)}| ≤ a. The notions of
EXa, PEXa and PEXa

b can be defined similarly. For PEXa
b (M) we require the errors to

be errors of commission.
Smith [16] motivated and defined the following notion of team inference. Let M1, . . . ,Md

be a set of d IIMs. Let f be a recursive function. If at least c of {M1, . . . ,Md} correctly EX-
infer f then f is [c, d]-inferred by {M1, . . . ,Md} . S ∈ [c, d]EX if there exists M1, . . . ,Md

such that, for every f ∈ S, f is [c, d]-inferred by {M1, . . . ,Md} . The set of machines
{M1, . . . ,Md} is referred to as a team. Teams of any type of inference machine can be
defined similarly. We will be using [c, d]PEXb

a.
A query inference machine (QIM), defined by Gasarch and Smith [9], is an algorithmic

device that asks a teacher questions about some unknown function and, while doing so,
outputs programs. In this way the QIM learns a recursive function by asking questions
about that function. We assume that the teacher always returns the correct answer to any
question asked by a QIM. The questions are formulated in some query language L. A variety
of different query languages are considered. The languages that we consider have different
expressive power. The more expressive the query language, the more types of questions the
QIM can ask. In a sense, giving a QIM a more expressive query language to use makes the
QIM more articulate. Formally, a QIM is a total algorithmic device which, if the input is a

string of bits ~b, corresponding to the answers to previous queries, outputs an ordered pair
consisting of a guess which is a (possibly null) program e, and a question ψ. For more details
and technical results about QIM’s see [6, 7, 9].

Define two functions g (guess) and q (query) such that if M(~b) = (e, ψ) then g(M(~b)) = e

and q(M(~b)) = ψ. By convention, all questions are assumed to be sentences in prenex normal
form (quantifiers followed by a quantifier-free formula, called the matrix of the formula) and
questions containing quantifiers are assumed to begin with an existential quantifier. This



/ 3

convention entails no loss of generality and serves to reduce the number of cases needed in
several proofs. A QIM M learns a recursive function f if, when the teacher answers M ’s
questions about f truthfully, the sequence of output programs (total programs) converges to
a program that computes f . In this case, we write f ∈ QEX[L](M) (f ∈ QPEX[L](M)).
For a fixed language L, the classQEX[L] (QPEX[L]) is the collection of all setsQEX[L](M)
(QPEX[L](M)) as M varies over all QIMs that use the query language L. Note in the case
of QPEX[L](M), even if the QIM M is given the wrong answers, it has to output total
programs. We choose this definition of QPEX because we want to make it analogous to
PEX: with both PEX and QPEX even with bad information, the conjecture must be
total.

All the query languages that we will consider allow the use of quantifiers. Restricting
the applications of quantifiers is a technique that we will use to regulate the expressive
power of a language. Of concern to us is the alternations between blocks of existential and
universal quantifiers. Suppose that f ∈ QEX[L](M) (f ∈ QPEX[L](M)) for some M
and L. If M only asks quantifier-free questions, then we will say that f ∈ Q0EX[L](M)
(f ∈ Q0PEX[L](M)). If M only asks questions with existential quantifiers, then we will say
that f ∈ Q1EX[L](M) (f ∈ Q1PEX[L](M)). In general, if M ’s questions begin with an
existential quantifier and involve a > 0 alternations between blocks of universal and existen-
tial quantifiers, then we say that f ∈ Qa+1EX[L](M) (f ∈ Qa+1PEX[L](M)). The classes
QaEX[L], QaPEX[L], QaEXc[L] and QaPEXc[L] are defined analogously. By convention,
if a QIM restricted to c mind changes actually achieves that bound, then it will ask no
further questions.

Now we introduce the query languages that will be used. Every language allows the use
of ∧, ¬, =, ∀, ∃, symbols for the natural numbers (members of N ), variables that range over
N, and a single unary function symbol F which will be used to represent the function being
learned. Inclusion of these symbols in every language will be implicit. The base language
contains only these symbols. If L has auxiliary symbols, then L is denoted just by these
symbols. For example, the language that has auxiliary symbols for plus and less than is
denoted by [+, <]. The language that has auxiliary symbols for plus and times is denoted
by [+,×]. The language with extra symbols for successor and less than is denoted by [S,<],
where S indicates the symbol for the successor operation.

We will often want to state that a theorem is true for any language one might consider.

Definition 2..1 A language L is reasonable if all the symbols in it denote recursive opera-
tions.

Notation 2..2 Let A be some inference class. We define the notation QEX[?] in terms of
how it is used. The analogous definitions for QPEX and other variants of QEX can easily
be defined.

1. QEX[?] ⊆ A means that if L is a reasonable language then QEX[L] ⊆ A.
2. A ⊆ QEX[?] means that for any L (including L = ∅) A ⊆ QEX[L].
3. QEX[?]−A 6= ∅ means that for any L (including L = ∅) QEX[L]−A 6= ∅ means
4. A−QEX[?] 6= ∅ means that for any reasonable L. A−QEX[L] 6= ∅ means

The symbol “?” will be used to denote an arbitrary language that includes all the symbols
common to all the languages we consider and some (possibly empty) subset of operational
symbols denoting computable operations.

3. Technical Summary

Before comparing PEX to QPEX it is necessary to examine PEX in more detail. In Sec-
tion 4. we look at the four parameter problem for PEX, namely, ‘for what values of a, b, c,



/ 4

an d does PEXa
b ⊆ PEXd

c ?’ It turns out that, unlike the case for EX, there are interest-
ing tradeoffs. In Section 5. we look at how PEX compares to QPEX[∗]. We show that
QPEX[∗] = PEX, which answers the motivating question of this paper: The strength
of asking questions does not make up for the weakness of outputting verifiable conjec-
tures. In Section 6. we reexamine this question with bounded mind changes. We show
that QPEX0[∗] − PEXa 6= ∅. In Sections 7. and 8. we look at the particular languages
[+,×], [+, <], and [S,<].

4. PEX Learning

The first result shows the mindchange-anomaly trade-offs for PEX machines. The next two
results extends this to certain teams. The moral of the story will be that mindchanges are
the most important parameter. The theorems proved in this section uses techniques from
[3, 16].

Theorem 4.1. Let a, b, c, d ∈ N. Then

PEXa
b ⊆ PEXc

d if and only if d+ 1 ≥
(
b+ 1

)( ⌊
a

c+ 1

⌋
+ 1

)
.

Proof:

(⇐=) Let a, b, c, d ∈ N such that

d+ 1 ≥
(
b+ 1

)( ⌊
a

c+ 1

⌋
+ 1

)
.

Let S ∈ PEXa
b via M . We will construct an IIM M ′ such that S ∈ PEXc

d via M ′.
M ′ operates as follows: keep outputing a guess that M output until either c + 1 anomalies
are spotted (this can be tested since M only outputs total functions) or M outputs a new
guess. In the former case M ′ outputs a patched version of the program that corrects the
c+ 1 anomalies (unless a+ 1 anomalies to this program have already been spotted in which
case output the same program that was output before). In the latter case merely output the
new index.

For each guess that M outputs M ′ will output at most
⌊

a
c+1

⌋
+ 1 guesses. Since M

outputs at most b + 1 guesses we have that M ′ outputs at most (b + 1)(
⌊

a
c+1

⌋
+ 1) guesses.

Hence M ′ makes at most (b + 1)(
⌊

a
c+1

⌋
+ 1)− 1 ≤ d mindchanges. The final guess must be

correct on all but at most c places since c+ 1 anomalies would have caused a new program
with those points patched up to be output.

(=⇒)

We show that if d <
(
b+ 1

)( ⌊
a

c+1

⌋
+ 1

)
− 1 then PEXa

b − PEXc
d 6= ∅. Let Bs =

{{b+ 1, b+ 2}c+1 ∪ s∗}b
a

c+1c. Let S be the union of the following sets.

{0≥a+1B00
ω}

{0≥a+1B01
≥a+1B11

ω}
{0≥a+1B01

≥a+1B12
≥a+1B22

ω}
{0≥a+1B01

≥a+1B12
≥a+1B23

≥a+1B33
ω}

...
{0≥a+1B01

≥a+1B12
≥a+1B2 · · · Bb−2(b− 1)≥a+1Bb−1b

≥a+1Bbb
ω}.

The following algorithm shows that S ∈ PEXa
b .



/ 5

1) Look for sa+1 where s ∈ {0, . . . , b} and s has not been seen in the range of f yet.
2) Output an index for a program which has an initial segment of all the values M has

seen so far and the rest with the constant value seen in step (1).
3) Go to step (1).

The inference procedure clearly changes its mind at most b times. Assume that the
final index output thinks the function is almost all s. Hence no s + 1’s are ever seen. The
number of errors possible are just those that occur in the Bs that are not s. This is at most

(c+ 1)(
⌊

a
c+1

⌋
) ≤ a. Hence this procedure shows S ∈ PEXa

b .

We show S /∈ PEXd
c . Assume, by way of contradiction, that S ∈ PEXd

c via M ′. We will
construct an f ∈ S such that f 6∈ PEXc

d(M
′). The construction of f will proceed in stages.

At stage s f s will denote the initial segment of f that has been constructed so far. We will
use s to indicate the values by which the functions is extended. Initially set s = 0 and σ = λ

For s = 0 to b do begin

1) Extend σ with at least a+ 1 values of s until M ′ on σ outputs a new guess. (This has
to happen since we will see later that σsω ∈ S.)

2) Let M ′(σ) = e. Extend σ to στ where τ ∈ {b+ 1, b+ 2}c+1 and ϕe is wrong on every
point of τ . This can be done since ϕe is total. This extension makes the current guess
wrong on an additional ≥ c+ 1 places.

3) Extend by s’s until a new guess is made. this must happen since the current guess is
wrong on c+ 1 places.

4) Repeat steps 2 and 3
⌊

a
c+1

⌋
− 1 times.

It is easy to show inductively that after stage s of the construction we have

σ ∈ {0≥a+1B01
≥a+1B12

≥a+1B · · · s≥a+1Bs}.

Hence σsω ∈ S so step 1 of the construction always terminates. Hence we succeed in
constructing f b. We now estimate how many mindchanges occur when we feed f b into

M . Every iteration of the loop yields
⌊

a
c+1

⌋
+ 1 guesses. There are b + 1 iterations of the

loop, so (b+ 1)(
⌊

a
c+1

⌋
+ 1) guesses are made, so there are at most (b+ 1)(

⌊
a

c+1

⌋
+ 1)− 1 > d

mindchanges. Hence M cannot PEXc
d-infer S.

Theorem 4.2. Let a, b ∈ N and n ≥ 1. Then [1, n]PEXa
b = PEXa

n(b+1)−1.

Proof:

Let S ∈ PEXa
n(b+1)−1 viaM . Note thatM makes at most n(b+1) guesses on each function

it infers. We exhibit machines M1, . . . ,Mn such that S ∈ [1, n]PEXa
b via M1, . . . ,Mn. Mi

behaves as follows: when M outputs its jth guess, (i − 1)b + i ≤ j ≤ ib + i, Mi outputs
that guess. Note that Mn outputs guesses from (n − 1)b + n to nb + n = n(b + 1). Clearly
each Mi makes at most b+ 1 guesses and one of them uses the last guess (hence the correct
guess) made by M . This last guess will differ from the function to be inferred by at most b.

Let S ∈ [1, n]PEXa
b viaM1, . . . ,Mn. We exhibit a programM ′ such that S ∈ PEXa

n(b+1)−1

via M ′.

1) Output the lexicographically least program output by the by the team (which has not
been previously output by M ′).

2) Run the program output in step (1) on data as it comes in. If (a+ 1) errors are found
then go to step (1).

END M ′

The maximum number of programs that can be output is clearly n(b + 1). Hence M ′

changes its mind at most n(b+ 1)− 1 times.



/ 6

Theorem 4.3. Let a, b, c, d, n,m ∈ N. Then

[1, n]PEXa
b ⊆ [1,m]PEXc

d if and only if m(d+ 1) ≥ n
(
b+ 1

)( ⌊
a

c+ 1

⌋
+ 1

)
.

Proof:
This is obtained by combining Theorems 4.1. and 4.2..

5. QPEX Learning with Any Language

In [9] we saw that the ability to ask questions did increase the set of classes learnable. In
that paper the machines were allowed to output non-total programs. We now consider what
happens if the machine must output total programs. In the case of unbounded mindchanges
there is no increase in power.

Theorem 5.1. QPEX[?] = PEX.

Proof:
Clearly PEX ⊆ QPEX[?]. Now we will show that QPEX[?] ⊆ PEX. Let S ∈ QPEX[?].
Then there exists a QIM M such that S ⊆ QPEX[?](M). Now we will construct an IIM
M ′ such that S ∈ PEX(M). The proof of the theorem is based on the fact that if QIM M
infers any f ∈ S then there exists a sequence of answers which will eventually lead to the
correct program. M ′ executes the following algorithm for any f ∈ S.

0) Let BITSTRINGS = {0, 1}∗.
1) Let ~b be the lexicographically least string in BITSTRINGS.

2) Let e = g(M(~b)), output e. Note that e is a total program.
3) Check more and more values of f with ϕe, until an error is found (this may never

happen).

4) If an error is found in step (3) delete ~b from BITSTRINGS and go to step (1).

Let ~b be the least (lexicographically) element of {0, 1}? that leads to a program that
computes f . Such exists since the sequence of correct answers leads to a program that

computes f . M ′ will eventually find ~b and use if forever more since all strings ~c that are less

than ~b lead to incorrect programs and will hence be eliminated. Once ~b is being used, M ′

will output the correct program forever more.
We now show that part of Theorem 4.1. and all of Theorem 4.2. hold for QPEX as well

as PEX.

Theorem 5.2. Let a, b, c, d ∈ N. If

d+ 1 ≥
(
b+ 1

)( ⌊
a

c+ 1

⌋
+ 1

)
then QPEXa

b ⊆ QPEXc
d.

Proof:
The proof of this theorem is similar to the proof of the first part of Theorem 4.1..

Theorem 5.3. Let a, b ∈ N and n ≥ 1. Then [1, n]QPEXa
b = QPEXa

n(b+1)−1.

Proof:
The proof of this theorem is similar to the proof of the Theorem 4.2..



/ 7

6. Bounded Mindchanges

In Theorem 5.1. we proved that when unbounded mind changes are allowed the ability to
ask questions does not increase power. However in the next theorem we will show that if the
mind changes are bounded the ability to ask questions with just one quantifier will increase
power. To state the theorem we need one more definition.

Definition 6..1 EX? is similar to EX except that we allow the final program to have a
finite number of errors. One can define such a notion for PEX and all other inference classes
as well.

Theorem 6.1. (∀a ∈ N)[Q1PEX0[?]− PEX?
a 6= ∅.]

Proof:
Let

S =
a⋃

i=0

{0n01n1 · · · ini(i+ 1)ω : n0, . . . , ni ∈ N}.

The following QIM algorithm shows S ∈ Q1PEX0[?].

1) Ask (∃x)[f(x) = a + 1]. If the answer is NO then ask (∃x)[f(x) = a]. Continue these
questions for less and less values until the answer is YES for some constant c, c ≤ a+1
.

2) Find the value of f(0) by asking questions of the form ”is f(0) = 0?”, f(0) = 1? and
so on. Similarly find the values of f(1),f(2),· · · f(x− 1). Stop when a b is found such
that f(b) = c.

3) Output an index for the function f(0)f(1) · · · f(b)cω.

We show that S 6∈ PEX?
a . Let M be any IIM. We construct f ∈ S such that f is not in

PEX?
a via M . The construction of f will proceed in stages. f s denotes the initial segment

of f constructed at stage s. Set f 0 = λ. Extend f 0 with more and more values of zero until
M outputs a program on f 0.

For s = 0 to a do

1) Look for i ∈ N and t ∈ {s, s+1} such that M(f sti) 6= M(f s). This must happen since
both f ssω and f s(s+ 1)ω are in S, and the current index cannot be ∗-correct for both
of them.

2) Set f s+1 to f sti.

Clearly the loop must terminate. Let the maximum domain value at which fa+1 is defined
be b. Now set f = fa · bω Clearly the IIM M will change its mind a + 1 times on f . It is
only allowed a mind changes

Theorem 6.2. (∀a, b, c ∈ N ∪ {?}) [QPEXa
b [?] ⊆ PEXc if and only if c = ?].

Proof:
(⇒) Let (∀a, b, c ∈ N∪{?}). Suppose c 6= ?, then by Theorem 6.1. QPEXa

b [?]−PEXc 6= ∅.
Hence if QPEXa

b [?] ⊆ PEXc implies that c = ?. (⇐) Let c = ?, then by Theorem 5.1. the

result follows.



/ 8

7. PEX Learning with [+,×]

In this section we will show that if L = [+,×] then going from Q0PEX0 to Q1PEX0 causes
a large increase in learning power.

Theorem 7.1. Q0PEX0[+,×] = PEX0.

Proof:
By definitions.

Theorem 7.2. Q1PEX0[+,×] = PEX.

Proof:
By Theorem 5.1. Q1PEX0[+,×] ⊆ PEX. We show the reverse inclusion.

Let S ∈ PEX via M . We show S ∈ Q1PEX0[+,×]. Let 〈., .〉 denote a recursive pairing
function from N × N → N . For e ∈ N let Ae = {〈x, y〉 : ϕe(x) ↓6= y}. Clearly Ae is r.e.
By work done in solving Hilberts 10th problem [4, 14] ( also Theorem 8 in [9]) there is an
effective list of polynomials p0,p1,· · · such that for all i,

〈x, y〉 ∈ Ai ⇔ ∃~z[pi(~z, 〈x, y〉) = 0].

That is

ϕi(x) ↓6= y ⇔ ∃~z[pi(~z, 〈x, y〉) = 0].

We Q1PEX0[+,×]-infer S as follows. Let f ∈ S. Finds the values of f(0), f(1),f(2),· · ·
and feeds them into M . When M outputs a guess e, we ask the following question.

∃x∃~z[pe1(~z, 〈x, f(x)〉) = 0]

Note that the above question is equivalent to ∃x[ϕe(x) ↓6 f(x)].
If the answer is NO, then output e and stop. Note that since ϕe is total an answer of NO

means that ϕe computes f . If the answer is YES then it waits for a new guess and repeats
the procedure. Eventually, when the correct index is output by M , we will receive an answer
of NO and output this correct index.

8. Learning with [+, <] and [S,<]

If L = [+, <] or L = [S,<], and mindchanges are bounded, then QPEXa[L] is strictly
weaker than PEX. The following theorem formalizes this. It was originally proven in an
earlier version of this paper [11], using k-good sets (from [7]). There is now a new proof
using ω-automata that is much simpler; it appears in [5].

Theorem 8.1. If L = [+, <] or L = [S,<] and a ∈ N then PEXa −QPEXa−1[L] 6= ∅.

9. Open Problems

We have determined (in Theorem 4.3.) exactly when [1, n]PEXb
a ⊆ [1,m]PEXd

c . The gen-
eral problem of determining exactly when [e, f ]PEXb

a ⊆ [g, h]PEXd
c is open. The case of

[e, f ]PEX0 ⊆ [g, h]PEX0 has been solved by Kummer [13] and independently by Kalyana-
sundaram. It is quite complicated. That is, there is no formula for the condition, just a
recursive algorithm to determine when the condition holds.

Let L be some language. We have a condition that implies QPEXb
a[L] ⊆ QPEXd

c [L]
(Theorem 5.2.). Is the converse true? More generally, it is open to determine exactly



/ 9

when QPEXb
a[L] ⊆ QPEXd

c [L]. By Theorem 5.3. the solution to this problem will yield a
solution to the problem of when [1, n]QPEXb

a[L] ⊆ [1,m]QPEXd
c [L]. The general problem

of determining when [e, f ]QPEXb
a ⊆ [g, h]QPEXd

c is open.
Let [S,<, 2] denote the query language where we allow quantification over sets (second

order quantification, hence the ‘2’). There is a connection between queries in [S,<, 2] and
ω-automata which has made it possible to prove theorems about [S,<, 2] [9, 5]. Once results
about [S,<, 2] are obtained it is often possible to use reduction techniques [5] to obtain
results about many other languages. This may help resolve some of our open problems.

References

[1] D. Angluin and C. H. Smith. A survey of inductive inference: Theory and methods.
ACM Comput. Surv., 15(3):237–269, Sept. 1983.

[2] L. Blum and M. Blum. Towards a mathematical theory of inductive inference. Infor-
mation and Control, 28:125–155, 1975.

[3] J. Case and C. H. Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Comput. Sci., 25:193–220, 1983.

[4] M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential diophan-
tine equations. Annals of Mathematics, 74:425–436, 1961.

[5] W. Gasarch and G. Hird. Automata techniques for query inference machines. Annals
of pure and applied logic. to appear. Earlier version in COLT 1995.

[6] W. Gasarch, E. Kinber, M. Pleszkoch, C. H. Smith, and T. Zeugmann. Learning via
queries, teams, and anomalies. Fundamenta Informaticae, 23:67–89, 1995. Shorter
version in Third Annu. Conference on Computational Learning Theory, 1990, pages
327-337, published by Morgan Kaufman.

[7] W. Gasarch, M. Pleszkoch, and R. Solovay. Learning via queries to [+, <]. Journal of
Symbolic Logic, 57(1):53–81, Mar. 1992.

[8] W. Gasarch and C. Smith. A survey of inductive inference with an emphasis on learning
via queries. In A. Sorbi, editor, Complexity, Logic, and Recursion Theory. M. Dekker,
1997.

[9] W. Gasarch and C. H. Smith. Learning via queries. Journal of the ACM, 39(3):649–675,
July 1992. A shorter version is in 29th FOCS conference, 1988, pp. 130-137.

[10] W. Gasarch and C. H. Smith. Recursion theoretic models of learning: some results and
intuitions. Annals of Mathematics and Artificial Intelligence, 15:151–166, 1995.

[11] W. Gasarch and M. Velauthapillai. Asking questions versus verifiability. In Interna-
tional Workshop on Analogical and Inductive Inference, volume 642 of Lecture Notes in
Computer Science, pages 197–213. Springer-Verlag, 1993.

[12] E. M. Gold. Language identification in the limit. Information and Control, 10(10):447–
474, 1967.

[13] M. Kummer. The strength of noninclusions for teams of finite learners. In Proc. 7th
Annu. ACM Workshop on Comput. Learning Theory, pages 268–277. ACM Press, New
York, NY, 1994.

[14] Y. Matijasevic. Enumerable sets are diophantine (Russian). Doklady Academy Nauk,
SSSR, 191:279–282, 1970. Translation in Soviet Math Doklady, Vol 11, 1970.

[15] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw
Hill, New York, 1967.

[16] C. H. Smith. The power of pluralism for automatic program synthesis. Journal of the
ACM, 29(4):1144–1165, October 1982. Was also in FOCS 1981.

[17] R. I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical
Logic. Springer-Verlag, Berlin, 1987.


