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2.1 Introduction

In this chapter we discuss issues about Level Of Detail (LOD)representations for
digital terrain models and, especially, we describe how to deal with very large terrain
datasets through out-of-core techniques that explicitly manage I/O operations be-
tween levels of memory. LOD modeling in the related context of geographical maps
is discussed in Chapters 3 and 4.

A dataset describing a terrain consists of a set of elevationmeasurements taken
at a finite number of locations over a planar or a spherical domain. In a digital terrain
model, elevation is extended to the whole domain of interestby averaging or interpo-
lating the available measurements. Of course, the resulting model is affected by some
approximation error and, in general, the higher the densityof the samples, the smaller
the error. The same arguments can be used for more general two-dimensional scalar,
or vector fields (e.g., generated by simulation), defined over a manifold domain, and
measured through some sampling process.

Available terrain datasets are becoming larger and larger,and processing them
at their full resolution often exhibits prohibitive computational costs, even for high-
end workstations. Simplification algorithms and multi-resolution models proposed
in the literature may improve efficiency, by adapting resolution on-the-fly, according
to the needs of a specific application [32]. Data at high resolution are preprocessed
once in order to build a multi-resolution model, which can bequeried on-line by the
application. The multi-resolution model acts as a black boxthat provides simplified
representations, where resolution is focused on the regionof interest, and at the level
of detail required by the application. A simplified representation is generally affected
by some approximation error, which is usually associated with either the vertices, or
the cells of the simplified mesh.

Since current datasets often exceed the size of main memory,I/O operations be-
tween levels of memory are often the bottleneck in computation. A disk access is
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about one million times slower than an access to main memory.A naive manage-
ment of external memory, e.g., with standard caching and virtual memory policies,
may thus highly degrades the. Indeed, some computations areinherently non-local
and require large amounts of I/O operations. Out-of-core algorithms and data struc-
tures explicitly control how data are loaded and how they arestored. Here, we review
methods and models proposed in the literature for simplification and multi-resolution
management of huge datasets that cannot be handled in main memory. We consider
methods that are suitable to manage terrain data, some of which have been developed
for more general kinds of data (e.g., triangle meshes describing the boundary of 3D
objects).

The rest of this chapter is organized as follows. In Section 2.2, we introduce the
necessary background about digital terrain models, focusing our attention on Trian-
gulated Irregular Networks (TINs). In Section 2.3, we review out-of-core techniques
for simplification of triangle meshes and discuss their application to terrain data in
order to produce approximated representations. In Section2.4, we review out-of-core
multi-resolution models specific for regularly distributed data, while, in Section 2.5,
we describe more general out-of-core multi-resolution models that can manage ir-
regularly distributed data. In Section 2.6, we draw some concluding remarks and we
discuss open research issues including extensions to out-of-core simplification and
multi-resolution modeling of scalar fields in three and higher dimensions, to deal, for
instance, with geological data.

2.2 Digital Terrain Models

There exist two major classes of digital terrain models, namely Digital Elevation
Models (DEMs) and Triangulated Irregular Networks (TINs).

A DEM consists of a regular tiling of a planar domain into rectangular cells,
called pixelswith elevation values attached to pixels, which provide a piecewise-
constant approximation of terrain surface. DEMs are most often defined over rectan-
gular domains encoded just as two-dimensional arrays of elevation values, which are
easily geo-referenced by defining an origin, an orientationand the extent of the cells
in the tiling.

A TIN consists of a subdivision of the domain into triangles (i.e., a triangle
mesh). Triangles do not overlap, and any two triangles are either disjoint or may
share exactly either one vertex or one edge. Elevation samples are attached to ver-
tices of triangles, thus each triangle in the mesh corresponds to a triangular terrain
patch interpolating measured elevation at its vertices. Linear interpolation is usually
adopted at each triangle, hence the resulting surface is piecewise-linear. More so-
phisticated interpolation models can also be used, withoutchanging the underlying
domain subdivision. Data structures used to encode TINs aremore sophisticated and
expensive than those used for DEMs, but TINs have the advantage of being adaptive.
High density of samples may be adopted over more irregular portions of a terrain,
while other portions, that are relatively flat, may be represented at the same accuracy
with a small number of samples.
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Multi-resolution DEMs usually consist of a collection of grids at different resolu-
tions. Well-known multi-resolution representations for DEMs are provided by region
quadtrees or pyramids [41]. One recent example in computer graphics is provided
by the work by Losasso and Hoppe [31], where fast rendering ofa large terrain is
supported through a compressed pyramid of images, which canbe handled in main
memory. Fast decompression algorithms and an effective useof a GPU (Graphics
Processing Unit) allow traversing the pyramid, by extracting data at the appropriate
resolution, and rendering them on the fly.

In most cases, however, multi-resolution models require using adaptive repre-
sentations in the form of TINs, even when full resolution data come in the form of
a DEM. For this reason, we consider here techniques that process and produce TINs
at all intermediate levels of resolution. If a DEM at high resolution is given as input,
most of the techniques developed in the literature considera TIN built as follows.
The DEM is interpreted as a regular grid, where elevation values are attached to the
vertices (usually placed at the center of pixels) and each rectangular cell is subdivided
into two triangles through one diagonal. This model carriesthe same information as
the DEM but is fully compatible with the structure of a TIN. Lower resolution mod-
els are TINs obtained adaptively from the full resolution model through some terrain
simplification procedure, as described in the following section.

2.3 Out-of-core Terrain Simplification

Dealing with huge data is often a difficult challenge. An obvious workaround is
to reduce the dataset to a more manageable size. Simplification algorithms take as
input a terrain model and produce a simplified version of it, which provides a coarser
(approximated) representation of the same terrain, based on a smaller dataset.

Many simplification algorithms have been proposed in the literature (see, e.g., [16]
for a survey of specific methods for terrain, and [32] for a survey of more general
methods for polygonal 3D models). Most methods are based on the iterated, or si-
multaneous application of local operators that simplify small portions of the mesh
by reducing the number of vertices. Most popular techniquesare based on:

• Clustering: a group of vertices that lie close in space, and the sub-mesh that they
define, are collapsed to a single vertex, and the portion of mesh surrounding it is
warped accordingly.

• Vertex decimation: a vertex is eliminated, together with all its incident triangles,
and the hole is filled by a new set of triangles.

• Edge collapse: an edge is contracted so that its two verticescollapse to a single
point (which may be either one of them or a point at a new position computed
to reduce approximation error), and its two incident triangles collapse to edges
incident at that point; the portion of mesh surrounding suchtwo triangles is
warped accordingly.

Classical techniques require that the model is completely loaded in main mem-
ory. For this reason, such techniques cannot be applied to huge datasets directly.
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Simplification of huge meshes requires a technique that is able to load and process
at each step a subset of the data, which can fit in main memory. Existing out-of-core
techniques have been developed mainly for simplification oftriangle meshes bound-
ing 3D objects, and can be easily adapted to simplifying TINs, which are usually
simpler to handle. Out-of-core simplification algorithms can be roughly subdivided
into three major classes:

• Methods based on vertex clustering.
• Methods based on space partition.
• Streaming techniques.

In the following subsections, we review the main contributions in each class.

2.3.1 Algorithms based on clustering

Rossignac and Borrel [39] proposed an in-core method for thesimplification of tri-
angle meshes embedded in the three-dimensional Euclidean space. Their algorithm
subdivides the portion of 3D space on which the mesh is embedded into buckets by
using a uniform grid, and collapses all vertices inside eachbucket to a new vertex,
thus modifying the mesh accordingly. In [27], Lindstrom proposes an out-of-core
version of the above method that has a lower time and space complexity, and im-
proves mesh quality. The input mesh is kept in secondary memory, while only the
portion of the mesh within a single bucket is loaded in main memory. However, the
whole output mesh is assumed to fit in main memory. In [28], Lindstrom and Silva
propose further improvements over the method in [27] that increase the quality of ap-
proximation further and reduce memory requirements. The new algorithm removes
the constraint of having enough memory to hold the simplifiedmesh, thus supporting
simplification of really huge models. The work in [28] also improves the quality of
the mesh, preserving surface boundaries and optimizing theposition of the represen-
tative vertex of a grid cell.

Another extension of the Rossignac and Borrel’s approach isthe algorithm by
Shaffer and Garland [40]. This algorithm makes two passes over the input mesh.
During the first pass, the mesh is analyzed and an adaptive space partitioning, based
on a BSP tree, is performed. Using this approach, a larger number of samples can be
allocated to more detailed portions of the surface. However, their algorithm requires
more RAM than the algorithm by Lindstrom in order to maintaina BSP tree and
additional information in-core.

Garland and Shaffer in [17] present a technique that combines vertex clustering
and iterative edge collapse. This approach works in two steps: the first step performs
a uniform vertex clustering, as in the methods described above. During the second
step, edge collapse operations are performed iteratively to simplify the mesh further,
according to an error-driven criterion. The assumption is that the mesh obtained after
the first step is small enough to perform the second step in main memory.

Note that all these methods have been developed for simplifying triangle meshes
representing objects in 3D space. Adaptation to terrain data is straightforward: it is
sufficient to simplify the triangle mesh subdividing the domain which describes the



2 Out-of-core Multi-resolution Terrain Modeling 35

structure of the TIN, while elevation values are used just toperform error computa-
tion. Therefore, for terrains, it is sufficient to partitionthe domain of the TIN with a
2D grid subdividing its domain into buckets.

Methods based on clustering are fast, but they are not progressive. The resolution
of the simplified mesh is a priori determined by the resolution of the regular grid of
buckets and no intermediate representations are produced during simplification. For
this reason, the algorithms in this class are not suitable tosupport the construction of
multi-resolution models, that will be discussed in Section2.5.

2.3.2 Algorithms based on space partitioning

The approach to simplification based on space partitioning consists of subdividing
the mesh into patches, each of which can fit into main memory, and then simplifying
each patch with standard techniques. Attention must be paidto patch boundaries in
order to maintain the topological consistency of the simplified mesh.

The method proposed by Hoppe [20] starts from a regular grid and partitions the
domain by using a PR quadtree subdivision based on the data points. The quadtree
is built in such a way that data points in each leaf node fit in main memory. Simpli-
fied TINs are built bottom-up as described below. A full-resolution TIN is built by
connecting the vertices of the input grid inside each leaf, and this is simplified itera-
tively by applying edge collapse. Only internal edges can becollapsed, while edges
on the boundary of each patch are left unchanged. Once the meshes corresponding
to the four siblings of a nodeA in the quadtree are reduced to a manageable size,
they are merged into a mesh that will be associated with nodeA, and the simplifi-
cation process is repeated recursively. The fact that edgeson the boundaries of the
quadtree blocks are frozen leads to a somehow unbalanced simplification, because
data along boundaries between adjacent blocks are maintained at full resolution even
in the upper levels of the quadtree.

The previous technique has been later generalized by Prince[37] to arbitrary
TINs, whose vertices do not necessarily lie on a regular grid. While conceptually
simple, the time and space overhead of partitioning the TIN and of later stitching the
various pieces together leads to an expensive in-core simplification process, making
such method less suitable for simplifying very large meshes.

El-Sana and Chiang [12] propose an algorithm that works on irregularly distrib-
uted data. They partition the mesh at full resolution into patches, where each patch
is bounded by chains of edges of the triangle mesh. Patches are sized in such a way
that a few of them can be loaded in main memory if necessary. Simplification of a
single patch is performed by iteratively collapsing the shortest internal edge of the
corresponding triangle mesh. Simplification of a patch is interrupted when its short-
est edge lies on its boundary in order to preserve matching between adjacent patches.
Once all patches have been simplified independently, the shortest edge of the mesh
lies on the common boundary between two patches. Such two patches are merged in
main memory and edge collapse is restarted. In this way, the result of simplification
is consistent with that obtained in-core by collapsing eachtime the shortest edge of
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the mesh. This method has been used to build a multi-resolution model as described
in Section 2.5.

Magillo and Bertocci [33] present a method specific for a TIN.It subdivides
the TIN into patches that are small enough to be simplified individually in-core.
They take a different approach to preserve inter-patch boundaries. The skeleton of
edges that defines the boundary of the patches in the decomposition is simplified first
through an algorithm for line simplification based on vertexremoval. This maintains
the consistency of patch boundaries through different levels of detail. The history of
simplification of each chain of edges forming a boundary lineis maintained. Then the
interior of each patch is also simplified independently through vertex removal. Re-
moval of internal and boundary vertices can be interleaved to obtain a more uniform
simplification process.

Cignoni et al. [3] propose a simplification method for triangle meshes in 3D space
based on a hierarchical partition of the embedding space through the use of octrees.
Octree subdivision stops when the set of triangles associated with a leaf fits in a disk
page. The portion of the triangle mesh contained in each octree leaf is independently
simplified through iterative edge collapse. Once the leavesare simplified, they can
be merged and simplified further. The problem caused by avoiding performing edge
collapses on the boundary of the patches, as in [19], is overcome. Vertices and edges
of the mesh do not lie on faces of quadtree blocks, while only edges that cross the
boundary between adjacent blocks may exist. Such inter-block edges cannot be col-
lapsed while independently simplifying the patches, but they can be either stretched
or identified in pairs, because of other edge collapses occurring inside the patches.
Thus, the independent simplification of the interior of one patch is interleaved with
some simplification on the strip of triangles joining it to its adjacent patches, thus
preserving inter-patch consistency. This method can be easily adapted to the special
case of terrain data by using quadtrees instead of octrees topartition the domain of
the TIN. Note that the input data do not need to be regularly distributed. In general,
the vertices of the mesh will not lie on the boundary of quadrants of the quadtree.

2.3.3 Streaming algorithms

The philosophy underlying streaming techniques is that a strictly sequential process-
ing order is followed, where each datum is loaded only once tomain memory and
such that the result is written to secondary memory as soon aspossible.

Isenburg et al. [23] present a simplification technique for triangle meshes that
takes as input a sequential indexed representation of the mesh in which vertices
and triangles are suitably interleaved. This representation may be also built from
more common mesh data structures, such as triangle soups or indexed data struc-
tures, through pre-processing techniques also based on streaming [22]. The algorithm
streams very large meshes through main memory, but, at each step, only a small por-
tion of the mesh is kept in-core. Mesh access is restricted toa fixed traversal order,
but full connectivity and geometry information is available for the active elements
of the traversal. The simplification step is performed only on the portion of the mesh
loaded in main memory.
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Note that streaming algorithms, as those based on clustering, are not progressive
and cannot be used to build multi-resolution models.

2.3.4 Comparison

Table 2.1 summarizes the main features of out-of-core simplification techniques.
For each method, we list: the type of input (Dataset); the type of space partition
adopted (Partitioning); the type of approach (Simplification); the possibility to build
a multi-resolution model based on the specific simplification technique (Multi-res);
and the space requirements in main memory (Space). The algorithms by Hoppe [20],
Prince [37] and Magillo and Bertocci [33] are designed for either regular or irreg-
ular terrain data, while all the other technique can handle arbitrary triangle meshes
describing the boundary of 3D objects. When applied to terrain simplification, al-
gorithms based on space partitioning should be modified by replacing the octree
which partitions 3D space with a simpler quadtree partitionof the 2D domain of
the TIN. Note that only methods based on space partitioning are suitable to build
multi-resolution models.

Dataset Partitioning Simplification Multi-res Space
Lindstrom [27] tri mesh regular grid vertex clustering NOO(out)

Lindstrom et al. [28] tri mesh regular grid vertex clustering NO O(1)

Shaffer et al. [40] tri mesh BSP tree vertex clustering NOO(out)

Garland et al. [17] tri mesh regular grid clust.+collapse YES O(out)

Hoppe [20] DEM space part. edge collapse YESO(1)

Prince [37] TIN space part. edge collapse NO O(1)

El-Sana et al. [12] tri mesh greedy dec. edge collapse YESO(1)

Magillo et al. [33] tri mesh user defined vertex removal YESO(1)

Cignoni et al. [3] tri mesh space part. edge collapse YESO(1)

Isenburg et al. [23] tri mesh streaming various NO

Table 2.1. Comparison among simplification algorithms for triangle meshes

2.4 Out-of-core Representation of Regular Multi-resolution
Models

Multi-resolution terrain models have been proposed in the literature that work on
data regularly distributed on a grid [10, 13, 18, 25, 26, 35].Such models are based
on a nested subdivision that starts from a simple regular tiling of the terrain domain
into regular triangles and is generated through a refinementprocess defined by the
uniform subdivision of a triangle into scaled copies of it. The two most common
refinement operators used for generating regular multi-resolution models aretriangle
quadrisectionandtriangle bisection.
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Fig. 2.1.The quadrisection of a triangle oriented (a) tip-up, and (b)tip-down. (c) An example
of a triangle quadtree

The quadrisection of a trianglet consists of inserting a new vertex on each edge
of t in such a way that the original trianglet is split into four sub-triangles (see Fig-
ure 2.1 (a,b)). The resulting (nested) hierarchy of triangles is encoded as a quadtree,
called atriangle quadtree(see Figure 2.1 (c)). A triangle quadtree is used for both
terrain data distributed on the plane, or on the sphere. In this latter case, the idea
is to model (i.e., to approximate) the sphere with a regular polyhedron, namely one
of the five Platonic solids (i.e., tetrahedron, hexahedron,octahedron, dodecahedron,
and icosahedron, which have 4, 6, 8, 12, and 20 faces, respectively), and then to
subdivide the surface of the polyhedron using regular decomposition. In the case of
the tetrahedron, octahedron, and icosahedron, the individual faces of the solid are
triangles and they are in turn represented by a triangle quadtree which provides a
representation that has both a variable and multiple resolution variant. Clearly, the
fact that the icosahedron has the most faces of the Platonic solids means that it pro-
vides the best approximation to a sphere and consequently has been studied the most
(e.g., [14, 15, 25]). The goal of these studies has been primarily to enable a way to
rapidly navigate between adjacent elements of the surface (termedneighbor finding).
However, the methods by Lee and Samet [25] are not limited to the icosahedron and,
in fact, are also applicable to the tetrahedron and octahedron. In particular, neighbor
finding can be performed in worst-case constant time on triangle quadtrees.

Most of regular multi-resolution terrain models are based on triangle bisection.
The square domain is initially subdivided in two right triangles. The bisection rule
subdivides a trianglet into two similar triangles by splittingt at the midpoint of its
longest edge (see Figure 2.2 (a)). The recursive application of this splitting rule to the
subdivided square domain defines a binary tree of right triangles, in which the chil-
dren of a trianglet are the two triangles obtained by splittingt. The multi-resolution
model generated by this subdivision rule is described by a forest of triangles, called
a triangle bintree. Each node in a triangle bintree represents a trianglet generated
in the recursive subdivision, while the children of nodet describe the two triangles
arising from the subdivision oft (see Figure 2.2 (b)).



2 Out-of-core Multi-resolution Terrain Modeling 39

(a) (b)

Fig. 2.2.(a) The bisection of a triangle. (b) An example of a triangle bintree

If vertices are available at all nodes of the supporting regular grid, then a tri-
angle bintree consists of two full trees, which can be represented implicitly as two
arrays [10, 13]. On the contrary, if data are available at different resolutions over
different parts of the domain, then the binary forest of triangles is not complete, and
dependencies must be represented explicitly, thus resulting in a more verbose data
structure [18].

When extracting adaptive TINs from a triangle bintree, we need to guarantee that
whenever a trianglet is split, the triangle adjacent tot along its longest edge is also
split at the same time. In this way, the extracted mesh will beconforming, i.e., it will
contain no cracks. This can be achieved through the application of neighbor finding
techniques to the hierarchy. In [13], an algorithm for neighbor finding is proposed,
which works in worst-case constant time. An alternative approach consists of using
an error saturation technique, which through manipulationof the errors associated
with the triangles in the hierarchy, allows for extracting conforming meshes (but
not with a minimal number of triangles) without the need for neighbor finding [34].
Other representations for multi-resolution models generated through triangle bisec-
tion have been proposed which encode the model as a Directed Acyclic Graph (DAG)
of atomic updates, each of which is called adiamond, formed by pairs of triangles
which need to be split at the same time [26, 35, 38].

The space requirements of a hierarchical representation can be reduced through
the use of pointerless tree representations, also known ascompressed representa-
tions. There are a number of alternative compressed representations for a binary tree,
and, in general, for a tree with fanout equal to2d (i.e., a quadtree ford = 2 and
an octree ford = 3). One simple method, known as a DF-expression [24], makes
use of a list consisting of the traversal of the tree’s constituent nodes, where a one
bit code is used to denote if the corresponding node is a non-leaf or a leaf node.
This method is very space-efficient but does not provide for random access to nodes
without traversing the list from the start for each query. Thus, most implementations
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make use of structures that are based on finding a mapping fromthe cells of the
domain decomposition to a subset of the integers (i.e., to one dimension)

In the case of a triangle bintree or triangle quadtree, this mapping is constructed
by associating alocation codewith each node that corresponds to a triangle element
(i.e., noblock) in the tree. A location code for a node implicitly encodes the node as
a bit string consisting of the path from the root of the tree tothat node, where the
path is really the binary (1 bit) or quaternary (2 bits) representation of the transitions
that have been made along the path. If the node is at level (i.e., depth)i in the tree,
a string of lengthdi binary digits is associated with the node where each step in
the descent from the root is represented byd bits. In a triangle bintree, each step
is encoded as 0(1) depending on whether the corresponding arc in the tree leads to
the left (right) child of its parent, while in a triangle quadtree, a labeling scheme is
applied which extends the one used for region quadtrees. In particular, in a region
quadtree where the blocks are square, the 2-bit string patterns 00, 01, 10, and 11
are associated with the NW, NE, SW, and SE transitions, respectively. In the case
of a triangle quadtree, the same 2-bit string patterns are used with the difference
that they correspond to different triangles in the hierarchy depending on the triangle
orientation (i.e., whether it is tip-up as in Figure 2.1 (a) or tip-down as in Figure
2.1 (b)).

Note that the location codes in a square quadtree are equivalent to the Z order
(or Morton order) (e.g., see [42]) which is an ordering of theunderlying space in
which the result is a mapping from the coordinate values of the upper-left corneru
of each square quadtree block to the integers. The Morton order mapping consists of
concatenating the result of interleaving the binary representations of the coordinate
values of the upper-left corner (e.g.,(a, b) in two dimensions) andi of each block
of size2i so thati is at the right. In the case of a triangle quadtree, the analogof a
Z or Morton order can still be constructed but there is no interpretation in terms of
bit interleaving as can be seen by examining the three level labeling of the triangle
quadtree in Figure 2.3, that is three levels deep. If we record the depth of the tree at
which the node is found and append it to the right of the numbercorresponding to
the path from the root to the node thereby forming a more complex location code,
then the result of sorting the resulting location codes of all the nodes in increasing
order yields the equivalent of a depth-first traversal of thetree. If we vary the format
of the resulting location codes so that we record the depth ofthe tree at which the
node is found on the left (instead of on the right), and the number corresponding
to the path from the root to the node is on the right, then the result of sorting the
resulting location codes of all the nodes in increasing order yields the equivalent of a
breadth-first traversal of the tree access structure [2]. These depth-first and breadth-
first traversal characterizations are also applicable to triangle quadtrees.

Location codes are used for performing neighbor finding efficiently as well as
to retrieve the vertices of a triangle, the value of the field associated with a vertex,
etc. An efficient implementation involving arithmetic manipulation and a few bit
operations allows performing such computations in constant time [13, 25].
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Fig. 2.3.Labeling of a triangle quadtree which is three levels deep

Out-of-core representations of triangle quadtrees and bintrees are based on en-
coding the location codes of both internal and leaf nodes in an external memory index
such as a B-tree, as done for encoding a quadtree or an octree in external memory.

In [18], Gerstner presents a compressed representation of atriangle bintree, that
works in main memory, but it could be implemented to provide an effective out-of-
core representation. One of the most interesting features of this approach is that the
triangle bintree is not necessarily a forest of two full trees as in the implicit in-core
representations commonly used for triangle bintrees [10, 13].

In [29], Lindstrom and Pascucci present an implementation of a triangle bintree
in external memory with the purpose of visualizing huge setsof terrain data at uni-
form and variable resolutions. The triangle bintree is represented by using two inter-
leaved quadtrees, which appear at alternating levels. The first quadtree is aligned with
the domain boundary, while the other one is rotated of 45 degrees. The two quadtrees
are encoded level-by-level, and the resolution increases with the level. Then, the out-
of-core handling of data is left to the file paging system of the operating system (data
are simply loaded through ammap system call). Two different data layouts are pro-
posed: the first one corresponds to a row by row traversal, while the second one is
based on the Z-order. The latter appears to be more efficient even though it is more
complex. In this approach, a version of the triangle bintreewith error saturation is
encoded to avoid neighbor finding in order to extract topologically consistent TINs.
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2.5 Out-of-core Multi-resolution Models based on Irregular
Meshes

Many multi-resolution models based on irregular triangle meshes have been pro-
posed for both terrain and arbitrary 3D shapes (see [9, 32] for surveys). The basic
elements of a multi-resolution model are: abase mesh, that defines the coarsest avail-
able representation; a set of localupdatesU refining it; and adependency relation
among updates [38]. In general, anupdateu defines two sets of trianglesu− and
u+, representing the same portion of a surface at a lower and a higher level of detail,
respectively. An update can be applied locally either to refine or to coarsen a mesh.
The direct dependencyrelation is defined as follows. An updateu2 depends on an
updateu1 if it removes some cells inserted byu1, i.e., if the intersectionu2

−

∩ u1
+

is not empty. The transitive closure of the dependency relation is a partial order,
and the direct dependency relation can be represented as a Directed Acyclic Graph
(DAG). Any subset of updates, which is closed with respect tothe partial order, i.e.,
which defines a cut of the DAG, can be applied to the base mesh inany total order
extending the partial one, and gives a mesh at an intermediate (uniform or variable)
resolution. In Figure 2.4 we show a simple multi-resolutionmodel composed by a
base mesh and three updates, red line represents a cut of the DAG encoding the de-
pendecy relation and the mesh on the right represents the extracted mesh, associated
to the depicted cut. In [8], we have shown that all existing multi-resolution models
are captured by this framework, which can be extended to higher-dimensions and to
cell complexes.

In some cases, when a multi-resolution model is built through some specific
local modification operators (such as vertex removal, edge collapse, or vertex-pair
contraction), an implicit, procedural, encoding of the updates can be used and the
dependency relation can be encoded in a more compact form than a DAG, such as
the view-dependent tree proposed in [11].

2

3

1

0

(a) (b)

Fig. 2.4.(a) A simple multi-resolution model composed by a base mesh and three updates, red
line represents a cut. (b) The mesh corresponding to the front represented by the bold red line
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Various techniques have been recently proposed in the literature for out-of-core
multi-resolution modeling of large irregular datasets. The general strategy in the de-
sign of out-of-core data structure consists of organizing information in disk pages in
such a way that the number of page loads/swaps is minimized when traversing the
model. In this respect, the basic queries on a multi-resolution model are instances of
selective refinement, which consists of extracting adaptive meshes of minimal size
according to application-dependent requirements. The idea is to select and apply
to the base mesh all and only those updates that are necessaryto achieve a given,
user-defined, level of detail in a user-defined region of interest. Figure 2.5 shows the
beaviour of a selective refinement with a top-down depth-first approach. The update
without label denotes the dummy modification correspondingto creating the base
mesh. White updates satisfy the user criterion, gray updates do not. The dashed line
encloses the current set of updates.
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Fig. 2.5. Selective refinement with a top-down depth-first approach

There are two main strategies to organize data into clustersthat fit disk pages.
The first approach consists of clustering nodes of the hierarchy, corresponding to
atomic updates. The second approach consists of clusteringdata by spatial proximity.
We will follow this classification to describe the various methods in the following
subsections.

2.5.1 Methods based on clustering of atomic updates

In [12], El-Sana and Chiang build an out-of-core multi-resolution model based on
edge collapse, which is generated through the simplification algorithm described in
Section 2.3, and targeted to support view-dependent rendering. The dependency re-
lation among updates is represented as a binary forest of vertices, called aview-
dependent tree. If an edgee = (v1, v2) is collapsed into a vertexv, then the node
corresponding tov will be the parent of the two nodes corresponding to verticesv1

andv2, respectively. There is a one-to-one relation between vertices in the forest and
nodes in the DAG of the general model. Arcs of the binary tree are not sufficient to
encode all dependencies in the DAG. However, a vertex enumeration mechanism is
associated with the vertices in the binary forest, in order to correctly represent the
dependency relation among updates, as described in [11].

The binary vertex forest is clustered in subtrees of heighth, and, thus, each sub-
tree contains at most2h − 1 nodes of the tree. The valueh is selected in order to
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maximize disk page filling. The selective refinement algorithm keeps in memory the
set of subtrees that store the vertices belonging to the extracted mesh, and keeps in
cache also their parents and children. If pre-fetched subtrees exceed cache size, the
first pre-fetched page, not used by the extracted mesh, is removed from the cache.
Figure 2.6 shows a simple binary vertex forest clustered in subtrees of height 2.

B

A

A

D E

B C D E

C

Fig. 2.6. Clustering of a binary vertex forest in subtrees of height 2

Pajarola in [36] proposes a compact representation for multi-resolution models,
built through half-edge collapse, i.e., by contracting an edgee = (v1, v2) to one of
its extreme vertices, let us sayv1. The multi-resolution model encodes a binary forest
of half-edge collapses. This forest is obtained from the forest of binary vertices by
replacing the subtree formed by verticesv1, v2 and by their parent, which will be
againv1 for a half-edge collapse with a pointer to the correspondinghalf-edgee

in the data structure describing the currently extracted mesh. In [7], DeCoro and
Pajarola propose an out-of-core representation of the samemodel, to support view-
dependent rendering of large 3D meshes. The proposed technique starts from the
binary forest and computes almost balanced subtrees, that can fit in a disk page.
Pointers to empty children are removed, thus reducing the storage cost by a25%.
This, together with a compact encoding of the information associated with the nodes
of the binary forest of edges, results in a compact data structure that requires less
disk accesses. On the other hand, computation of the disk blocks requires two depth-
first traversals of the binary forest. The objective is to perform selective refinement
out-of-core efficiently, while both the simplification stepand the construction of the
multi-resolution model are assumed to be performed in-core.

The strategies described above apply only to models based onedge collapse, in
which the dependency relation is represented as a binary forest. In [6] we propose
and analyze clustering techniques which work on the full DAGof dependency rela-
tions. Such techniques are general and can be applied to any multi-resolution model,
regardless of the way it is generated. An important assumption is that the updates in
the multi-resolution model are atomic, i.e., each update involves a relatively small
number of triangles. Conversely, the DAG may have a very large number of nodes.
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On the basis of an analysis of selective refinement queries and of the shape of the
DAG describing the MT, we have defined and implemented the following techniques
for grouping the updates in an MT according to sorting criteria:

• Approximation error (Err).
• Layer: shortest path from the root (Lyr).
• Level: longest path from root (Lev).
• Distance: average path length from the root (Ly2).
• Depth-first (DFS) and Breadth-first (BFS) DAG traversal.
• Multi-resolution depth-first traversal (GrD) and Multi-resolution breadth-first

traversal (GrB): similar to depth-first or breadth-first DAG traversal, respec-
tively, but before performing an updateu on the currently extracted mesh, all
ancestors ofu are visited recursively if they have not been visited before. These
criteria simulate the strategies used in a selective refinement algorithm.

We have also defined and implemented two spatial grouping strategies. The first
strategy is based on theR*-tree [1], while the second strategy is based on aPoint
Regionk-d (PR k-d) treefor partitioning in space combined with aPK-tree[44] as a
grouping mechanism.

Finally, we have designed and implemented a class of strategies which combine
space grouping with DAG traverals (according to depth). At alower resolution, we
are interested to have clusters that span the whole domain, while, as the resolution
increases, we are looking for clusters associated with finerspace subdivisions. In
order to achieve this goal, we have developed techniques that interleave the effect of
a sorting rule and the effect of a space partitioning rule similar to a PRk-d tree. A
description of such techniques can be found in [6].

In all our experiments, theGrB outperforms the other clustering techniques. It
is interesting to note that, even with a small cache (about1% the size of the whole
model), a clustering technique based onGrB exhibits a very limited overhead, com-
pared to loading the whole model just once in main memory.

2.5.2 Methods based on domain partitioning

In [20], Hoppe describes an out-of-core multi-resolution model generated through
edge collapse, called a PM (Progressive Mesh) quadtree, which is built through the
simplification method described in Section 2.3. The model works on gridded data
(DEM). The input grid is triangulated and then partitioned into square blocks in such
a way that the content of each block fits in main memory. Simplification is performed
bottom-up, and a quadtree is built, where every quadrant contains a simplified repre-
sentation of the terrain represented by its four children. The resulting data structure
is a sort of pyramid, where each block contains a sequence of vertex splits, which
inverts the sequence of edge collapses that produced the mesh associated with that
block. When selective refinement is performed, only the blocks of the quadtree that
are interested in the query are transferred to main memory. Also this model was
designed specifically for visualization.
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In [4], Cignoni et al. propose an out-of-core multi-resolution model based on
the decomposition of the domain into a nested triangle mesh described as a trian-
gle bintree. Each triangle in the bintree, which we call amacro-triangle, contains
an irregular mesh, formed by a relatively large number of triangles (typically be-
tween 256 and 8k triangles). Leaves of the triangle bintree are associated with por-
tions of the mesh at full resolution, while internal nodes are associated with simpli-
fied meshes. This multi-resolution representation is created during a fine-to-coarse
simplification process, based on Hoppe’s method [21] and adapted in order to keep
boundary coherence among adjacent macro-triangles. The meshes associated with
the macro-triangles are carefully created during the simplification process, so that,
when assembled together, they form a conforming triangle mesh. As in Hoppe’s ap-
proach, this multi-resolution model is targeted at out-of-core terrain visualization.
In order to enhance rendering performances, each mesh associated with a macro-
triangle is organized into triangle strips. The out-of-core organization in this case is
very simple, thanks to the approach that acts on the different levels of granularity of
nodes in the hierarchy. The triangle bintree is relatively small, even for huge models,
and can be easily kept in main memory. The mesh associated with a macro-triangle
is stored in a disk page through a compact data structure.

In [5], the same approach is extended to work on Multi-Tessellations, i.e. the
general model, in which the hierarchy is represented by a DAG. Also in this case,
every node of the DAG contains a patch of a few thousands of triangles, and is stored
in secondary memory, while the DAG describing the dependency relation among
updates is small enough to be kept in core. As for the standardMulti-Tessellation,
this model can be used for both terrains and 3D shapes.

The model is constructed by computing a partition of the input mesh into patches
of almost equal size. Such patches are computed by uniformlydistributing on the
mesh a set of seed points. The number of such points must be proportional to the
mesh size. Then, an approximated Voronoi diagram of the seedpoints is computed,
so that the Voronoi cells define the patches of the subdivision. Each patch is then
independently simplified, without modifying its boundary.Simplification of a patch
usually reduces the number of triangles by a factor of two. The same process de-
scribed above is applied again to the simplified mesh by starting with a new, smaller,
set of seed points. The process is repeated until the resulting mesh satisfies some size
constraint. It has been shown that the number of steps is usually logarithmic in the
size of the mesh. The DAG describing the dependency relationis built during this
process.

During selective refinement, the DAG is traversed, and only those patches that
are needed in order to achieve the resolution required by theuser are loaded into
memory. Each patch is stored as a compressed triangle strip,in order to improve
rendering performances.

Lindstrom [30] and Shaffer and Garland [43] have proposed two similar out-
of-core multi-resolution models for massive triangle meshes describing 3D scenes
generated through vertex clustering. The purpose is in bothcases view-dependent
rendering of very large 3D meshes. The multi-resolution model is an octree in which
the leaves store the vertices of the mesh at full resolution,or of an already simplified
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mesh (in the case of Lindstrom’s approach), while the internal octree cells represent
vertices obtained as result of the vertex clustering process and triangles are associated
with cells containing their vertices.

Lindstrom’s approach is based on the out-of-core simplification technique re-
ported in Section 2.3. The construction of the multi-resolution model is performed
in two steps. During the first step, the mesh is regularly sampled. Each side of the
sampling grid is composed by2n cells, wheren is a user defined quantity. After that,
vertices are sorted in external memory according to their position in the grid. This
guarantees local access during the construction of the hierarchy. The second step
considers the simplified mesh, composed of the list of vertices, error information,
and the list of triangles, and produces an octree having the simplified mesh stored in
its leaves. Starting from a group of sibling vertices, position, normal and error of the
parent are computed. Note that a leaf cell stores just the vertex and its normal, while
an internal cell stores a vertexv and the triangles removed from the representation
whenv is collapsed.

The mesh indexed in the leaves of the resulting multi-resolution model is the
mesh generated by the first simplification step. Thus, the original full-resolution
mesh cannot be reconstructed. The multi-resolution model is completely built on
disk. View-dependent refinement is performed by two threads: one extracts the
variable-resolution mesh, according to an approximate breadth-first octree traversal
of the tree, while the other thread renders the mesh. Disk paging is left to the oper-
ating system. This is a reasonable choice, since data are sorted in a cache coherent
way, but the technique could be further improved by an explicit paging scheme.

Shaffer and Garland’s approach [43] is to develop a design for a data struc-
ture that offers explicit access to the original mesh. On theother hand, Lindstrom’s
method has the benefit of working completely out of core, while Shaffer and Gar-
land’s method keeps a hash table that refers only to non-empty cells of the grid in
memory. This could be a problem for very dense meshes filling the space. More-
over, hash keys are stored in 32 bits, and each key is composedof the three vertex
coordinates. This bounds the size of the uniform grid to10243. For out-of-core ter-
rain modeling, both approaches can be simplified by using a quadtree to describe the
vertex clustering. In this scenario, Lindstrom’s approachcould be definitely more
efficient, since its performances are not affected by the percentage of full cells in the
domain decomposition.

In [45], Yoon et al. propose an out-of-core multi-resolution model for view-
dependent rendering of massive triangle meshes describing3D scenes. The multi-
resolution model is called a Clustered Hierarchy of Progressive Meshes (CHPMs),
and consists of a hierarchy of clusters, which are spatiallylocalized mesh regions,
and of linear sequences of edge collapses, each associated with a cluster, that simplify
the corresponding meshes. Each cluster consists of a mesh formed by a few thou-
sand of triangles. The clusters are used to perform coarse-grained view-dependent
refinement of the model, while the linear sequences of edge collapses are used for
fine-grained local refinement. The cluster hierarchy is enhanced with dependencies
among clusters which act as constraints in order to be able togenerate crack-free
meshes. A CHPM is computed in three steps. First, the vertices of the mesh at full
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resolution are organized into clusters containing almost the same number of vertices.
A regular grid is superimposed to the set of vertices and a graph G = (N, A) is
computed, in which the nodes correspond to the non-empty cells of the grid, while
any arc inA connects a node inN and itsk-nearest neighboring cells. GraphG is
partitioned into clusters, and a new graph is computed in which nodes are associated
with clusters, and two nodes are connected by an arc if the corresponding clusters
share vertices or are within a threshold distance of each other. Then, the cluster hier-
archy is generated top-down by recursively partitioning the cluster graph into halves,
thus producing a binary hierarchy. Finally, the triangles of the full-resolution mesh
are associated with the clusters in the hierarchy and a mesh simplification process
is applied bottom up on the hierarchy of clusters by performing half-edge collapses.
During each pass of simplification only the cluster being simplified and the clus-
ters with which it shares vertices must be resident in memory. When performing
view-dependent refinement, the cluster hierarchy is kept inmain memory, while the
sequences of edge collapses are fetched from disk. Also, vertices and triangles cor-
responding to the active clusters are stored in GPU memory. This approach has been
developed for 3D meshes, but can be easily adapted to TINs by using a 2D grid built
on the projection of the data points in the plane.

2.5.3 Comparison

Table 2.2 summarizes the various multi-resolution techniques, that we have pre-
sented, by highlighting the approach used to organize the out-of-core data structure,
the data that can be represented, and the size of updates. Overall, models based on
the clustering of nodes in the hierarchy are more general, but also more complex
to manage. They have the advantage that the meshes extractedfrom them have the
same granularity and, thus, the same accuracy of the meshes extracted from the cor-
responding in-core multi-resolution models. On the other hand, dealing with large
sets of atomic updates can become a bottleneck in some visualization tasks.

On the contrary, methods that use large patches highly simplify the management
of secondary memory and result more efficient, but they trade-off this advantage by
being coarser-grained, hence less smooth in the transitionbetween different levels
of detail. In particular, the method by Yoon et al. [45] seemsto be more suitable for
large scenes than terrains, and also the dependencies amongclusters are not easily
managed.

2.6 Conclusions

We have analyzed and compared out-of core approaches for simplification of trian-
gle meshes and for out-of-core multi-resolution modeling of TINs, both for regularly
and irregularly distributed data sets. Most of the mesh simplification algorithms and
of the out-of-core multi-resolution representations havebeen developed for visual-
ization purposes. Most of the techniques for irregular meshes have been developed
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Approach Data Update size in RAM
El-Sana and Chiang [12] clustering dep. free form atomic clusters of C.M.
DeCoro and Pajarola [7] clustering dep. free form atomic binary forest
Danovaro et al. [6] clustering dep. nD atomic a few clusters
Hoppe [20] partitioning scalar field atomic cluster hierarchy
Cignoni et al. [4] partitioning scalar field large binary tree
Yoon et al. [45] partitioning free form large cluster hierarchy
Lindstrom [30] partitioning free form medium a few MB
Shaffer and Garland [43] partitioning free form medium cluster indices
Cignoni et al. [5] partitioning free form large cluster hierarchy

Table 2.2. Comparison among multi-resolution approaches

for triangle meshes describing the boundary of a 3D object, or a 3D scene. These
techniques, however, either can be applied directly or can be easily adapted to TINs.

While there are several techniques able to deal with huge triangle meshes,
or regular tetrahedral meshes, there is no technique for simplification and multi-
resolution modeling of tetrahedral meshes. We are currently developing an out-of-
core multi-resolution modeling system for scalar fields based on the out-of-core
Multi-Tessellation, able to handle both triangle and tetrahedral meshes, as well as
simplicial meshes in higher dimensions.
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