
Hierarchical Representations of Collections of Small Rectangles

HANAN SAMET

Computer Science Department, Center for Automation Research, and Institute for Advanced Computer Studies,
University of Maryland, College Park, Maryland 20742

A tutorial survey is presented of hierarchical data structures for representing collections
of small rectangles. Rectangles are often used as an approximation of shapes for which
they serve as the minimum rectilinear enclosing object. They arise in applications in
cartography as well as very large-scale integration (VLSI) design rule checking. The
different data structures are discussed in terms of how they support the execution of
queries involving proximity relations. The focus is on intersection and subset queries.
Several types of representations are described. Some are designed for use with the plane-
sweep paradigm, which works well for static collections of rectangles. Others are oriented
toward dynamic collections. In this case, one representation reduces each rectangle to a
point in a higher multidimensional space and treats the problem as one involving point
data. The other representation is area based-that is, it depends on the physical extent of
each rectangle.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids--layout;
placement and routing; E.l [Data]: Data Structures-trees; E.5 [Data]: Files-
organization/structure; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems-geometrical problems and computations; routing
and layout; H.2.2 [Database Management]: Physical Design-access methods; H.3.2
[Information Storage and Retrieval]: Information Storage-file organization; 1.2.10
[Artificial Intelligence]: Vision and Scene Understanding-representations, data
structures, and transforms; 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling-curve, surface, solid, and object representations; geometric algorithms,
Languages, and systems; J.6 [Computer Applications]: Computer-Aided Engineering-
computer-aided design (CAD)

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Cartography, geographic information systems,
interval trees, hierarchical data structures, multidimensional data structures, plane-sweep
methods, priority search trees, quadtrees, R-trees, rectangle intersection problem,
rectangles, representative points, segment trees, VLSI design rule checking

INTRODUCTION minimum enclosing object. Of course, the
exact boundaries of the object are also

The problem of how to represent collec- stored; but usually they are only accessed
tions of small rectangles arises in many if a need for greater precision exists. For
applications. The most common example is example, bounding rectangles can be used
when a rectangle is used to approximate in cartographic applications to approxi-
other shapes for which it serves as the mate objects such as lakes, forests, and

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1988 ACM 0360-0300/88/1200-0271$01.50

ACM Computing Surveys, Vol. 20, No. 4, December 1988

272 ’ Hanan Samet

CONTENTS

INTRODUCTION
1. CHOOSING A REPRESENTATION
2. PLANE-SWEEP METHODS

2.1 Segment Trees
2.2 Interval Trees
2.3 Priority Search Trees
2.4 Applications

3. POINT-BASED METHODS
4. AREA-BASED METHODS

4.1 MX-CIF Quadtrees
4.2 Multiple Quadtree Block Representations
4.3 R-Trees

5. CONCLUDING REMARKS
ACKNOWLEDGMENTS
REFERENCES

hills [Matsuyama et al. 19841. In such
a case, the approximation gives a rough
indication of the existence of an object.
This is useful in processing spatial queries
in a geographic information system. Such
queries can involve the detection of over-
lapping areas, a determination of proxim-
ity, and so on. Another application is the
detection of cartographic anomalies that
require further resolution when a map is
printed.

Rectangles are also used in the process
of very large-scale integration (VLSI) de-
sign rule checking as a model of chip com-
ponents for the analysis of their proper
placement. Again, the rectangles serve as
minimum enclosing objects. This process
includes tasks such as determining whether
components intersect and ensuring the sat-
isfaction of constraints involving factors as
minimum separation and widths. These
tasks have a practical significance in that
they can be used to avoid design flaws, and
so i n.

The size of the collection depends on the
application; it can vary tremendously. For
example, in cartographic applications the
number of elements in the collection is
usually small, and frequently the sizes of
the rectangles are of the same order of
magnitude as the space from which they
are drawn. On the other hand, in VLSI
applications, the size of the collection is
quite large (e.g., millions of components),

ACM Computing Surveys, Vol. 20, No. 4, December 1988

and the sizes of the rectangles are several
orders of magnitude smaller than the space
from which they are drawn.

In this tutorial we focus primarily on how
to represent a large collection of rectangles
as is common in VLSI applications. Our
techniques, however, are equally applicable
to other domains. We assume that all rec-
tangles are positioned so that their sides
are parallel to the x and y coordinate axes.
We first give a general introduction to the
problem domain and to the tasks whose
solutions such representations are intended
to facilitate. The representations and issues
that we discuss are also common to multi-
attribute data. In order to compare the
different representations, we will use the
collection of rectangles given in Figure 1
and the collection of points correspond-
ing to the locations of the cities given in
Figure 2.

Initially, we present representations that
are designed for use with the plane-sweep
solution paradigm [Preparata and Shamos
1985; Shamos and Hoey 19761. This solu-
tion consists of two passes. The first pass
sorts the data along one dimension, and the
second pass processes the result of the first
pass. In this case, the rectangles are repre-
sented by the intervals that form their
boundaries. Use of this paradigm requires
maintaining a changing set of intervals
whose endpoints are known in advance (a
by-product of the initial sorting pass). One
representation that we discuss is the seg-
ment tree. The segment tree represents the
intervals as unions of atomic segments
whose endpoints are members of the collec-
tion of rectangles. It turns out that the
segment tree is suboptimal with respect to
its space requirements, and this leads to
the development of the interval tree. The
interval tree does not decompose each in-
terval into segments and hence reduces the
space requirements without increasing the
execution time. In essence, the interval tree
is a balanced binary tree of suitably chosen
points from the space spanned by the in-
tervals so that interval I is associated with
the point P that is closest to the root such
that P is in I.

Our discussion of the plane-sweep solu-
tion paradigm uses the rectangle intersec-
tion problem as a motivating example. For

Hierarchical Representations of Collections of Small Rectangles l 273

Y

0
0 IO 20 30 40

(a) (b)

Figure 1. (a) A collection of rectangles. Members of the collection are designated by
solid lines and labeled alphabetically (A-G). Query rectangles are designated by broken
lines and labeled numerically (l-3). P and Q are query points. (b) The locations of the
endpoints of the rectangles and the points in (a). For a rectangle, x,, and .xR correspond
to its left and right boundaries, respectively, and yH and yr correspond to its bottom and
top boundaries, respectively. For a point, xL and yB are its x and y coordinate values,

Figure 2. A collection of points.

this task, as well as many other tasks, the
plane-sweep paradigm leads to worst-case
optimal solutions in time and space. Rep-
resentations such as the segment and in-
terval tree, however, are designed primarily
for formulations of the tasks in a static
environment. This means that the identity
of all of the rectangles must be known a
priori if the worst-case time and space
bounds are to hold. Furthermore, for some
tasks, the addition of a single object to the
database may force the reexecution of the
algorithm on the entire database.

The remaining representations are for a
dynamic environment. They are differen-
tiated by the way in which each rectangle
is represented. The first type of represen-
tation reduces each rectangle to a point in
a higher (usually) dimensional space and
then treats the problem as if it involves a
collection of points. The second type is
region based in the sense that the subdivi-
sion of the space from which the rectangles
are drawn depends on the physical extent
of the rectangle-it does not just treat a
rectangle as one point. A number of these
region-based representations make use of
variants of a data structure commonly re-
ferred to as a quadtree. Interestingly, these
quadtree representations are very similar
to the segment and interval trees that are
used with the plane-sweep paradigm. More-
over, we observe that the quadtree serves
as a multidimensional sort and the process
of traversing it is analogous to a plane
sweep in multiple dimensions. We conclude
with a discussion of some representations
that are more commonly used in a problem
domain that involves a relatively small
number of rectangles (e.g., as found in a
cartographic application).

ACM Computing Surveys, Vol. 20, No. 4, December 1988

274 . Hanan Samet

(a)

Level 3

Level 2

Level I

Level 0

(b) Cc)

7 8 9 IO 15 16 17 IS

(4

Figure 3. An example (a) region, (b) its binary array, (c) its maximal blocks
(blocks in the region are shaded), and (d) the corresponding quadtree.

Since the focus of this tutorial is on
hierarchical data structures, we will find
ourselves making frequent comparisons
with quadtree like data structures. Hence
in the following we briefly review them.
The term quadtree is used to describe a
class of hierarchical data structures whose
common property is that they are based on
the principle of recursive decomposition of
space (similar to divide and conquer meth-
ods [Aho et al. 19741). They can be differ-
entiated on (1) the type of data they are
used to represent and (2) the principle guid-
ing the decomposition process. The decom-
position may be into equal parts on each
level, termed a regular decomposition, or it
may be governed by the input. The second
distinction is very similar to that between
a trie [Fredkin 19601 and a tree, respec-
tively. The most common quadtree repre-

sentations are the region quadtree [Hunter
1978; Klinger 1971; Samet 19841 (really a
trie) and the point quadtree [Finkel and
Bentley 19741.

The region quadtree is used to represent
region data and is based on the successive
subdivision of an image into four equal-size
blocks until each block is of a uniform color
or type. Figure 3 is an example of a binary
image consisting of a region and its region
quadtree representation. The region quad-
tree is based on a regular decomposition.
On the other hand, the point quadtree is a
representation of multiattribute data where
the subdivision lines are determined by the
input data. In essence, it is a multidimen-
sional binary search tree. For example, Fig-
ure 4 is the point quadtree for the data in
Figure 2 when the cities are inserted in the
order in which they appear in Figure 2. See

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles l 275

(60,751
TORONTO (p,

I

(80,65) (80,65)
BUFFALO BUFFALO

(5.451 (5.451
DENVER DENVER (35,4D) (35,4D)

CHICAGO CHICAGO

(25,351 (25,351
OMAHA OMAHA

(85, 15) (85, 15)

(50, IO) (50, IO) ATLANTA ATLANTA

MOBILE MOBILE

I I I

(90,511 (90,5) 1
MIAMI 1 MIAMI 1

(0,Ol
x-

(100.100)

(lOO,O)

CHICAGO

DENVER TORONTO OMAHA MOBILE

BUFFALO ATLANTA MIAMI

Figure 4. A point quadtree corresponding to the points in Figure 2.

Samet [1984,1989a, 1989b] for more details
on quadtrees and related hierarchical data
structures.

1. CHOOSING A REPRESENTATION

In choosing a representation for a collec-
tion of objects’ we are faced with two issues.
First, we must choose a representation

’ In this section we will speak of arbitrary objects
although the subsequent discussion will be restricted
to rectangles.

for the objects. Second, we must decide
whether (and if so, how) to organize the
objects that make up the collection. During
our decision process we will be confronted
with many of the same issues that arise in
the representation of multiattribute data.
For example, we must decide between a
static and a dynamic representation, be-
tween making use of comparative search
and address computation, and between re-
trieval on one key that is a combination of
all the keys and just using a subset of the

ACM Computing Surveys, Vol. 20, No. 4, December 1988

276 l Hanan Samet

keys. Of course, there are many other op-
tions and factors, and thus a choice can
only be made after a careful consideration
of the type of operations (including queries)
we wish to support. Not surprisingly, the
operations are similar to those commonly
considered for points. It should be men-
tioned that there are situations where the
representation issue is not as crucial. For
example, implementing an operation using
plane-sweep methods (see Section 2) im-
plies a sequential process in which only a
subset of the objects is generally of interest.
Thus, there is no need to be concerned
about how to represent the entire collection
of objects.

Hinrichs and Nievergelt [19831 and Hin-
richs [1985a] suggest that the representa-
tions of the individual objects can be
grouped into three principal categories,
which are briefly described below. First, we
can use a representative point (e.g., the
centroid). Such an approach is not good for
proximity queries if the object’s extent (e.g.,
lengths of the sides for a rectangle) is not
stored together with the coordinate values
of the representative point.

Second, we can represent an object by
its characteristic parts. There are many
choices, some of which are outlined below:

(1) The representation can be based on
the interior of the object. For example,
we could decompose the object into
smaller units (e.g., a decomposition of
a rectangle into squares as would be
done by a region quadtree). Each unit
contains a pointer to the complete de-
scription of the object.

(2) The representation can be based on the
boundary of the object. For example,
polygons are often represented as an
ordered collection of vertices or, equiv-
alently, by the line segments compris-
ing their boundaries.

(3) The representation can be proce-
dural-that is, a combination of (1) and
(2) according to a well-defined set of
rules. The combination could also be
based on a decomposition into units
of a smaller dimension. For example,
a rectangle is often represented as
the Cartesian product of two one-
dimensional spheres (i.e., intervals).

ACM Computing Surveys, Vol. 20, No. 4, December 1988

There are several difficulties with such
approaches. One problem is that updating
(e.g., insertion or deletion) will generally
require processing several units. Another
more serious drawback is that at times a
query is posed in such a manner that none
of the characteristic parts of an object, say
0, that satisfies the query will match the
query’s description, yet 0 does satisfy the
query. The problem is that not all proper-
ties are inherited by the parts. For example,
suppose we are dealing with a collection of
polygons stored so that each polygon is
represented by the line segments that con-
stitute its edges. We wish to determine
whether a given polygon contains a given
rectangle. Clearly, no edge of the polygon
will contain the rectangle. Hence a solution
to this problem requires that with each edge
of a polygon (or rectangle) we store an
identifier that indicates the polygons or
objects associated with each of its sides.

Third, we can represent an object by
partitioning the space from which it is
drawn into cells that are adapted to the
objects. Each cell is like a bucket that con-
tains references to all objects that intersect
it. The cells may be disjoint or may be
permitted to overlap. In the latter case, if
the partition is such that there always ex-
ists at least one cell that contains the object
in its entirety, we can avoid the redundancy
that is a natural consequence of the multi-
ple references to the object. Of course, the
fact that cells may overlap will increase
the costs of certain query operations since
several cells may cover a specific point.

Once a representation has been selected
for the individual objects, we must choose
how to represent the collection of the ob-
jects. There are numerous ways of doing SO.

In this tutorial we are primarily interested
in hierarchical representations, so the bulk
of our discussion concentrates on hierar-
chical methods and on operations for which
they are useful. As we will see, the method
that is used depends to a large degree on
the manner in which the individual ob-
jects are represented. When objects are
represented using representative points,
data structures for multiattribute data
are applicable (e.g., grid file [Nievergelt
et al. 19841, k-d trees [Bentley 19751, point
quadtrees [Finkel and Bentley 19741, PR

Hierarchical Representations of Collections of Small Rectangles l 277

quadtrees [Orenstein 1982; Samet 19841,
variations on B-trees [Comer 19791). The
choice depends on whether we wish to or-
ganize the data to be stored (i.e., methods
based on comparative search) or the
embedding space from which the data are
drawn (i.e., methods based on address com-
putation). Similar considerations apply
when individual objects are represented by
their characteristic parts, as is the case
when using variants of the region quadtree.

The principal tasks that are to be per-
formed are similar to those for multiat-
tribute data. They range from the basic
operations such as insertion and deletion
to more complex queries that include exact
match, partial match, range, partial range,
finding all objects (e.g., rectangles) in a
given region, finding nearest neighbors
with respect to a given metric for the data
domain, and even join queries [Ullman
19821. The most common of these queries
involves proximity relations and are clas-
sified into two classes by Hinrichs [1985a].
The first is an intersection query that seeks
to determine if two sets intersect. This
could be in the form of a window operation
or query that finds all the rectangles that
intersect (i.e., partially overlap) a given re-
gion. An alternative query is to determine
all rectangles that intersect (i.e., partially
overlap) other rectangles. The second is a
subset relation and can be formulated in
terms of enclosure (i.e., is A a subset of B)
or of containment (i.e., does A contain B).

In describing queries involving these re-
lations we must be careful to distinguish
between a point and an object. A point is
an element in the d-dimensional space from
which the objects are drawn. It is not an
element of the space into which the objects
may be mapped by a particular represen-
tation. For example, in the case of a collec-
tion of rectangles in two dimensions, a
point is an element of the Euclidean plane
and not a rectangle even though we may
choose to represent each rectangle by a
point in some multidimensional space.

2. PLANE-SWEEP METHODS

The term plane-sweep is used to character-
ize a paradigm employed to solve geometric
problems by sweeping a line (plane in three

dimensions) across the plane (space in
three dimensions) and halting at points
where the line (plane) makes its first or
last intersection with any of the objects
being processed. At these points, the solu-
tion is partially computed so that at the
end of the sweep a final solution is avail-
able. In this discussion we are dealing with
two-dimensional data. Assume, without
loss of generality, that the line is swept in
the horizontal direction and from left to
right. In order to use this solution tech-
nique, we need to organize two sets of data.
The first set consists of the halting points
of the line (i.e., the points of initial or final
intersection). It is usually organized as a
list of x coordinate values sorted in ascend-
ing order. The second set consists of a
description of the status of the objects that
are intersected by the current position of
the sweep line. This status reflects the in-
formation relevant to the problem that is
being solved, and it must be updated at
each halting point. Thus, the data structure
used to store the status must be dynamic.
The characteristics of this data structure
will determine, to a large extent, the effi-
ciency of the solution.

The application of plane-sweep methods
to rectangle problems is much studied. The
solutions to many of these problems require
the data to be ordered in a manner that
makes use of some variant of multidimen-
sional sorting. In such cases, the execution
times of optimal algorithms are often con-
strained by how fast we can sort, which for
N objects usually means a lower bound of
O(N. log,N). At times, an increase in
speed can be obtained by making use of
more storage. The text of Preparata and
Shamos [1985] contains an excellent dis-
cussion of a number of problems to which
such techniques are applicable.

We assume that each rectangle is speci-
fied by four values; the x coordinates of its
two vertical sides and the y coordinates of
its two horizontal sides (equivalently, these
are the x and y coordinates of its lower-left
and upper-right corners). We also assume
that each rectangle is closed on its left and
bottom sides and open on its top and right
sides. Applying the same open-closed con-
vention to the boundaries of a rectangle
finds that its horizontal (vertical) bounda-

ACM Computing Surveys, Vol. 20, No. 4, December 1988

278 l Hanan Samet

ries are closed on their left (bottom) ends
and open on their right (top) ends. Alter-
natively, the boundaries can be described
as being semiclosed.

In this section we focus on the efficient
solution of the problem of reporting all
intersections between rectangles and, to a
lesser extent, on some related problems. We
assumed that a static environment, that is,
the identity of all rectangles is known a
priori. Note that a naive way to report all
intersections is to check each rectangle
against every other rectangle, which re-
quires O(N2) time for N rectangles. The
plane-sweep solution of the problem con-
sists of two passes. The first pass sorts the
left and right boundaries (i.e., x coordinate
values) of the rectangles in ascending order
and forms a list. For example, consider the
collection of rectangles given in Figure 1.
Letting RI and R, denote the left and right
boundaries of rectangle R, the result of the
first pass is a list consisting of 3, 6, 8, 21,
23, 25, 26, 31, 33, 34, 35, 37, 38, 38 corre-
sponding to Al, EL, A,, IA, CL I%, E,, S, G,
B,, F,, C,, D,, G,, respectively.

The second pass sweeps a vertical scan
line through the sorted list from left to right
halting at each one of these points. This
pass requires solving a quasi-dynamic ver-
sion of the one-dimensional intersection
problem. At any instant, all rectangles that
intersect the scan line are considered active
(e.g., rectangles D, E, and G for a vertical
scan line through x = 24 in Figure 1). We
must report all intersections between a
newly activated rectangle and currently ac-
tive rectangles that lie on the active scan
line. The sweep process halts every time a
rectangle becomes active (causing it to be
inserted in the set of active rectangles) or
ceases to be active (causing it to be deleted
from the set of active rectangles). The key
to a good solution is to organize the active
rectangles so that intersection detection,
insertion, and deletion are executed effi-
ciently.

The first pass involves sorting, and thus
it requires O(N . log, N) time. Insofar as
the second pass is concerned, each rectan-
gle is nothing more than a one-dimensional
vertical line segment. There are several
data structures that can be used to repre-

sent line segments. If we only care about
reporting the intersections of boundaries
(i.e., vertical boundaries with horizontal
boundaries), then a balanced binary tree is
adequate to represent the bottom and top
boundaries (i.e., y coordinate values) of the
active line segments [Bentley and Ottmann
19791. Unfortunately, such a representa-
tion fails to account for intersections that
result when one rectangle is totally con-
tained within another rectangle.

In the rest of this section we focus on
solutions that use the segment, interval,
and priority search trees to represent the
active line segments. We first explain the
segment tree and then show how the order
of the space requirements of the solution
can be reduced by using either the interval
or priority search trees while still retaining
the same order of execution time. We con-
clude by briefly explaining how some re-
lated problems can be solved using the same
techniques.

2.1 Segment Trees

The segment tree is a representation for a
collection of line segments devised by Bent-
ley [1977]. It is useful for detecting all the
intervals that contain a given point. It is
best understood by first examining a sim-
plified version that we call a unit-segment
tree, which is used to represent a single line
segment. For the moment, assume that the
endpoints of the line segments of our col-
lection are drawn from the set of integers
f i] 0 5 i 5 2&). Let S be a line segment with
endpoints 1 and r (I < r). S consists of the
set of consecutive unit intervals [j: j + 1)
(1 5 j < r). The unit-segment tree is a
complete binary tree of depth h such that
the root is at level h, and nodes at level 0
(i.e., the bottom) represent the sequence of
consecutive intervals [j: j + 1) (0 5 j < 2h).
A node at level i in the unit-segment tree
represents the interval [p: p + 2’) (i.e., the
sequence of 2’ consecutive unit intervals
starting at p where p mod 2’ is 0).

Representing line segment S in a unit-
segment tree is easy. We start at the root
of the tree and check if its corresponding
interval is totally contained in S. If yes,
then we mark the node with S. In such a

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles . 279

A A

Figure 5. The unit-segment tree for the segment [3 : 11) labeled
A in the range [0: 16).

case, we say that S covers the node’s inter-
val. Otherwise, we repeat the process for
the left and right sons of S. This process
visits at most four nodes at each level while
marking at most two of them. Thus, it is
easy to see that inserting a line segment
into a unit-segment tree in a top-down
manner can be achieved in O(h) time. An
equivalent bottom-up description of this
process is that a node is marked with S if
all (i.e., both) the intervals corresponding
to its sons are totally contained in S, in
which case the sons are no longer marked
with S.

As an example of the unit-segment tree,
consider a collection of line segments with
integer endpoints that are in the range
[0: 16). In this case, there are 16 possible
intervals, each of unit length. The unit-
segment tree for a line segment, named A,
of length 8 whose endpoints are at 3 and 11
is given in Figure 5. Note that the interval
[i: i + 1) is represented by the node labeled
i. From the figure it is easy to observe the
close analogy between the unit-segment
tree and a one-dimensional region quadtree
[Rosenfeld and Kak 19821, where the unit
intervals are the one-dimensional analog of
pixels. The analogy is completed by letting
BLACK (WHITE) correspond to the la-
beled (unlabeled) nodes and merging
brother nodes of the same color.

The unit-segment tree is inadequate for
two reasons: (1) it can only represent one

line segment, and (2) it is only defined for
line segments with integer endpoints. The
segment tree is an adaptation of the unit-
segment tree that enables the use of one
data structure to represent a collection of
line segments with arbitrary endpoints by
removing the restriction that the intervals
be of uniform length, and by replacing the
mark at each node by a linked list of the
names of the line segments that contain
that node. This is achieved in the following
manner. Given a set of N line segments, we
first sort their endpoints and remove du-
plicates to obtain yo, yl, . . . , ym (m < 2N).
Next, we form the segment tree in the same
way as the unit-segment tree with the ex-
ception that interval [j: j + 1) is replaced
by the interval [yj: yj+l) (0 5 j c 2h and
2h-’ 5 m < 2h). Each line segment S with
endpoints y1 and yr consists of the sequence
of consecutive intervals [yj: yj+,) (1 5 j
< r). A node at level i in the segment tree
represents the interval [y,: y,,,~) (i.e., the
sequence of 2’ consecutive intervals start-
ing at yP, where p mod 2’ is 0). Each node
is marked with the names of all the line
segments that cover the node’s correspond-
ing interval and that do not cover the cor-
responding interval of the parent node. As
in the case of the unit-segment tree, a node
and its brother cannot be both marked with
the same line segment. The set of line seg-
ments associated with each node is repre-
sented as a doubly linked list.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

280 l Hanan Samet

i :

yi: 3 6 8 II 14 15 19 21 23 27 3436 29

IAl I4 IFI ICI w IA.Cl

Figure 6. The segment tree for the set of line segments corresponding
to the vertical boundaries of the rectangles in Figure 1. Terminal node
i corresponds to the interval [yC : y,,,).

For example, Figure 6 is the segment tree
for the set of line segments that correspond
to the vertical boundaries of the rectangles
in Figure 1. Although there are seven line
segments, the segment tree contains 12
intervals since there are only 13 different
endpoints. Since the segment tree is a com-
plete binary tree, in this case it has four
unused intervals. Each terminal node is
labeled with its corresponding interval
number and the leftmost endpoint of the
interval-that is, node i corresponds to the
interval [yi: YL+~). Nodes are also labeled
with the sets of names of the line segments
that cover their corresponding intervals.
For example, the interval [23 : 34) is labeled
with {A, C) since it is covered by these line
segments.

Inserting a line segment in the segment
tree is analogous to inserting it in the unit-
segment tree. The only difference is that
the line segment must also be placed in the
list of the line segments that is associated
with the node. It can be placed anywhere
in the list and thus we usually attach it to
the front of the list. In a domain of N line
segments, insertion (into the tree and list)
takes 0 (log, N) time per line segment.

Deleting a line segment from a segment
tree is somewhat more complex. We must
remove the line segment from the doubly
linked list that is associated with each node

that contains it. This could be expensive,
since in the worst case it requires the trav-
ersal of O(log, N) linked lists, each contain-
ing O(N) entries. This difficulty is avoided
by maintaining an auxiliary table with one
entry for each of the N line segments. Each
table entry points to a list of pointers. Each
pointer points to a list entry for the line
segment in a node, say P, of the segment
tree such that P’s interval is covered by the
line segment. This table is built as the line
segments are entered into the segment tree.
It contains at most N entries and can be
accessed or updated in 0 (log, N) time when
implemented as a balanced binary tree (or
even in constant time if implemented as an
array, in which case each line segment must
be represented by a unique integer in the
range 1 . . . N). We can use an array instead
of a dictionary because we know the iden-
tities of the rectangles in advance (i.e., a
static environment).

A segment tree for N line segments has
a maximum of 2 . N leaf nodes. Each line
segment covers the intervals of at most
2 . [log, Nl nodes of the segment tree. At
each of these nodes, deletion of the line
segment can be done in constant time,
since the segment lists that are associated
with these nodes are implemented as dou-
bly linked lists. Thus, the total cost of
deleting a line segment is O(log, N). The

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles l 281

segment tree has a total of O(N) nodes,
and since each line segment can appear
in (i.e., cover) O(log,N) nodes, the total
space required (including the auxiliary
table) in the worst case is O(N . logn N).
Interestingly, Bucher and Edelsbrunner
[1983] have shown that the average space
requirement for a segment tree is also
O(N - log,N).

Given F rectangle intersections, using a
segment tree to determine the set of rectan-
gles that intersect each other is somewhat
complex [Bentley and Wood 19801 if we
want to do it in O(N . log, N + F) time. In
particular, it involves considerably more
work than just inserting a line segment and
reporting the rectangles associated with the
line segments that were encountered during
the insertion process. Conceptually, the
problem is quite straightforward-for each
line segment S, with starting and ending
points 1 and r, respectively, we want the set
of line segments A such that Ai fl S is
nonempty for each Ai E A. Recalling that
the segment tree is good for detecting all
intervals that contain a given point, we
formulate the problem as an infinite set of
point queries-that is, for each point pi in
line segment S find all line segments that
contain it. This process requires O(log,N)
time for each point that is queried. In order
to avoid looking at every point in S (an
infinite number!), we can restrict our
search to the endpoints of the line segments
that are overlapped by S. An obvious, but
unacceptable solution is to explicitly store
with each line segment the set of segments
that intersect it, at a total storage cost of
O(N”).

A more reasonable solution, which makes
use of the above restriction on the search,
is given by Six and Wood [1980,1982], who
decompose the search into two disjoint
problems. They make use of the obvious
fact that any line segment whose starting
point is greater than r or whose ending
point is less than 1 does not intersect the
line segment S. The first problem consists
of determining all line segments with start-
ing points less than 1 whose intersection
with S is nonempty. The second problem
consists of determining all line segments
with starting points that lie between 1 and

r. Thus, there is really only a need to be
concerned with an ordering that is based
on the starting points.

The first problem is solved by performing
a point query for point 1 on the segment
tree representation of the line segments. In
order to determine all the line segments
that contain 1, we simply locate the smallest
interval that contains it. Since a segment
tree for N line segments has a maximum of
2 . N leaf nodes, this search visits at most
flog,Nl + 1 nodes. For each node that is
visited, we traverse its associated list of line
segments and report them as containing 1.
This process requires O(log,N + FI) time,
where F, is the number of line segments
that contain 1. Since a segment tree is used,
it needs 0 (N . log, N) space.

The second problem is solved by per-
forming a range query for range [l: r) on
the set of starting points of the line seg-
ments. This query is one for which a range
tree [Bentley 1979, Bentley and Maurer
19801 that stores the starting points of the
line segments is ideal. A range tree is a
balanced binary tree where the data points
are stored in sorted order in the leaf nodes,
which are linked in this order by use of a
doubly linked list. Therefore, insertion and
deletion are both O(log,N) processes. A
range query consists of locating the node
corresponding to the start of the range, say
L, and the closest node to the end of the
range, say R, and then reporting the line
segments corresponding to the nodes that
lie between them by traversing the linked
list of nodes. This process requires O(log, N
+ FL,) time, where F[, is the number of line
segments with starting points in [l: r).
Since a balanced binary tree is used, it
needs O(N) space. The combination of the
point and range query solution requires
O(N . log, N) space and O(N . log, N + F)
time, where F is the number of rectangle
intersections.

2.2 Interval Trees

Suppose we try to determine the set of
rectangles that intersect each other by just
using a segment tree. The problem with
this approach is that upon insertion of a
line segment, say S, in a segment tree, we

ACM Computing Surveys, Vol. 20, No. 4, December 1988

282 ’ Hanan Samet

cannot find all of the existing line segments
in the tree that are totally contained in S,
or partially overlap S, without examining
every node in each subtree that contains S.
For example, consider the segment tree of
Figure 6 without line segment A (i.e., for
segments B, C, D, E, F, and G). Upon
inserting line segment A in the node cor-
responding to interval [14 : 23), the only
way to determine the existence of line seg-
ment F (corresponding to the interval
[15 : 19)) that is totally contained in A is to
descend to the bottom of the subtree rooted
at [14 : 23). A similar example can be con-
structed to show that this problem also
arises in the case of partial overlap. Unfor-
tunately, checking for total containment or
partial overlap in this way takes O(N) time
for each line segment, or O(N’) for all the
line segments.

The above problem can be overcome in
part by making the following modifications
to the segment tree. Link each marked node
(i.e., a node whose corresponding interval
overlaps at least one line segment), say P,
to some of the nodes in P’s subtrees that
are marked. This could be implemented by
an auxiliary binary tree whose elements are
the marked nodes. Since each line segment
can be associated with more than one node
in the segment tree, the number of inter-
sections that can be detected is bounded by
2 . N2 . logn N, while the number of differ-
ent intersections is bounded by N2. Remov-
ing duplicates will require sorting, and even
use of the bin method [Weid 19781, which
is linear, still leaves us with an O(N2 .
log2 N) process. The duplicate entries, how-
ever, can be avoided by redefining the seg-
ment tree so that a line segment is only
associated with one node-the nearest
common ancestor2 of all the intervals con-
tained in the line segment (e.g., the node
corresponding to the interval [3 : 38) for line
segments A and C in Figure 6). The absence
of duplicate entries also means that the
space requirements can be reduced to
O(N).

*The principle of associating key information with
the nearest common ancestor is similar to Chazelle
and Guibas’ [1986a, 1986131 fractional cascading. It is
also used as the basis of an efficient solution of the
point location problem by Edelsbrunner et al. [1986].

The above modifications serve as the
foundation for the development of the
interval tree of Edelsbrunner [1980a,
1983a, 1983b] and the tile tree of McCreight
[19801. The difference between them is that
the tile tree is based on a regular decom-
position, while the interval tree is not. In
the rest of this section, we only discuss the
interval tree.

The interval tree is designed specifically
to detect all intervals that intersect a given
interval. It is motivated by the dual goals
of reducing the space requirement to O(N)
while maintaining an execution time of
O(N. log, N + F). The interval tree solu-
tion also makes use of the decomposition
of the search into the two disjoint tasks of

(1) determining all line segments that
overlap the starting point of the query
line segment, and

(2) determining all line segments whose
starting point lies within the query line
segment.

Once again, assume that we are given a
set of N line segments such that line seg-
ment Si corresponds to the interval [1, : ri)-
that is, li and ri are its left and right end-
points, respectively. The endpoints of the
N line segments are sorted (with duplicates
removed) to obtain the sequence yo, yl, . . . ,
y,,, (m < 2N and 2h-’ % m < 2h). The
interval tree is a three-level structure,
where the first (and principal) level is
termed the primary structure, the second
level is termed the secondary structure, and
the third level is termed the tertiary struc-
ture. We shall illustrate our discussion with
Figure 7, the interval tree for the set of
line segments corresponding to the vertical
boundaries of the rectangles in Figure 1.

The primary structure is a complete
binary tree with m + 1 external (i.e., ter-
minal) nodes such that when the tree is
flattened and the internal nodes are re-
moved, external node i corresponds to yi.
In Figure 7, the primary structure is de-
noted by solid lines. In our example,
although there are 7 line segments, the
primary structure contains only 13 exter-
nal nodes as there are only 13 different
endpoints. Each terminal node is labeled

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles 283

Figure 7. The interval tree for the set of line segments corresponding to the
vertical boundaries of the rectangles in Figure 1. The primary structure is shown
by solid lines. The secondary structure is shown by dotted lines. The tertiary
structure is shown by broken lines, with the active nodes circled with thick
lines. The interrelationships between the endpoints of the line segments are
also shown.

with its corresponding endpoint [i.e., yi for
terminal node i (0 % i < 2N)]. Each internal
node is assigned an arbitrary value, stored
in the field VAL, that lies between the
maximum value in its left subtree and the
minimum value in its right subtree (usually
their average). For example, the root node
in Figure 7 is labeled with 22.

Given a line segment corresponding to
the interval [l :r), we say that its nearest
common ancestor in the interval tree is the
internal node that contains 1 and r in its
left and right subtrees, respectively. For
example, in Figure 7, node 22 is the nearest
common ancestor of line segment A, which
corresponds to the interval [6, 36).

Each internal node in the primary struc-
ture, say u, serves as the key to a pair of
secondary structures LS and RS that rep-
resent the sets of left and right endpoints,
respectively, of the line segments for which
u is the nearest common ancestor (i.e., they
contain U’S value). Elements of the sets LS
and RS are linked in ascending and de-
scending order, respectively. In Figure 7,

the secondary structure is denoted by dot-
ted lines emanating from each internal
node that has a nonempty secondary struc-
ture. The sets LS and RS are distinguished
by dotted lines emanating from the internal
node to its left and right sides, respectively.
When LS and RS contain more than one
entry, we show them linked in increasing
and decreasing order, respectively (e.g., LS
of the root node shows 6 pointing to 21
since the corresponding intervals are
[6 : 36) and [21: 36)). Each starting (ending)
point appears in LS (RS) as many times as
there are line segments that have it as a
starting (ending) point. For example, 36
appears twice in RS of the root node in
Figure 7 as it is the ending point of line
segments A and C. In order to support rapid
insertion and deletion, the sets LS and RS
are implemented as balanced binary trees
(as well as doubly linked lists).

Each internal node in the primary struc-
ture has eight pointers-two to its left and
right subtrees in the primary structure (LP
and RP), two to the roots of LS and RS in

ACM Computing Surveys, Vol. 20, No. 4, December 1988

284 . Hanan Samet

the secondary structure, one to the mini-
mum value in LS, one to the maximum
value in RS, and two (LT and RT) to its
left and right subtrees in the tertiary struc-
ture, which we discuss below.

An internal node in the primary struc-
ture is marked active if its corresponding
secondary structure is nonempty or both of
its sons have active descendants; otherwise,
it is marked inactive. The active nodes of
the primary structure form the tertiary
structure, which is a binary tree. It is rooted
at the root of the primary structure and is
linked via the LT and RT fields of the
internal nodes of the primary structure. If
node v of the primary structure is inactive,
then LT(v) and RT(v) are Q [i.e., pointers
to Nil]. If v is active, then LT(v) points to
the closest active node in the left subtree
of v [i.e., in LP(v)], and RT(v) points to
the closest active node in the right subtree
of v [i.e., in RP(v)]. If there are no closest
active nodes in the left and right subtrees
of v, then LT(v) and RT(v), respectively,
are Q (i.e., pointers to NLL). In Figure 7,
the tertiary structure is denoted by broken
lines linking all of the active nodes (e.g.,
nodes 22, 12.5, 7, 17, 35, and 25), which are
also marked with thicker ellipses. The ter-
tiary structure is useful in collecting the
line segments that intersect a given line
segment and enables us to avoid examining
primary nodes whose corresponding line
segments do not. It can be shown that more
than half of the elements of the tertiary
structure (i.e., active nodes) have nonempty
secondary structures.

Inserting the line segment [I: r) in the
interval tree is very simple. We start at the
root and locate the first node v such that
1 < VAL(v) < r. In this case, we insert 1
into LS(v) and r into RS(v). Both of these
processes can be achieved in O(logz N)
time. Updating the tertiary structure re-
quires us to traverse it in parallel with the
primary structure and takes O(log, N)
time. Deletion of a line segment is per-
formed in a similar manner and with the
same complexity.

Reporting the rectangle intersections in
an interval tree is straightforward, al-
though there are a number of cases to con-
sider. Again, this task is performed while

inserting a vertical line segment, say S,
corresponding to the interval [1: r). During
this process we search for and report the
line segments that overlap S. Assume that
the interval tree is rooted at TI . The search
has the following three stages:

(1) Start at T1 and find the first node v
such that 1< VAL(v) < r.

(2) Start at v and locate 1 in the left subtree
of v.

(3) Start at v and locate r in the right
subtree of v.

This search involves the secondary struc-
tures of the nodes in the primary structure.
The tertiary structure is used to limit the
number of nodes in the primary structure,
with empty secondary structures, that must
be examined. Note that all of the overlap-
ping line segments will be reported, and
each will be reported only once since it is
associated with the secondary structure of
just one node in the primary structure.

In the following we present the main
ideas of the three stages. Figure 8 aids
the visualization of the symbols used in
the explanation for [I: r). All secondary
and tertiary structures that are visited
are marked with dotted and broken lines,
respectively.

First, we explain stage (1). (Tij denotes
the set of nodes encountered during the
search for v. We use the insertion of line
segment [6: 20) into the interval tree of
Figure 7 as our example. The secondary
structures associated with each Ti must be
checked for a possible overlap with S. This
is quite simple. Either 2 < r < VAL(Ti) or
VAL(T,) < 1< r.

If r < VAL(Ti), then we need only report
the line segments in the secondary struc-
ture of Ti whose starting points are less
than r (e.g., line segment A upon examining
the internal node with value 22). To achieve
this we visit LS(Ti) in ascending order until
we encounter a line segment whose starting
point exceeds r. We then search the left
subtree of T; [i.e., LP(Ti)].

Similarly, if VAL(Ti) < I, we need only
report the elements of the secondary struc-
ture of Ti whose ending points are greater
than 1. To do this, we visit RS(Ti) in de-

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles l 285

Figure 8. Example of an interval tree search for the
interval [1 : r). All secondary structures that are visited
are marked with dotted lines. All tertiary structures
that are visited are marked with broken lines.

scending order until encountering a line
segment whose ending point is less than 1.
The search is then continued in the right
subtree of Z’i [i.e., RP(Ti)].

Both of these cases are executed in time
proportional to the number of intersections
that are reported. Once node IJ has been
located we report all elements of its second-
ary structure as intersecting S. In our ex-
ample, we would report line segment G,
since v is the internal node with value 12.5.

Now, we explain stages (2) and (3). They
are very similar and thus we just discuss
stage (2). We use the insertion of line seg-
ment [6 : 34) into the interval tree of Figure
7 as our example. In this case, v is the root
of the tree (the internal node with value
22). Let (Lil denote the set of nodes en-
countered during the search for 1 in this
stage. Recall that 1 < VAL(v). Either 1 <
VAL(L;) or VAL(Li) < 1.

If 1 < VAL(L,), then 5’ intersects every
line segment in the secondary structure of
Li as well as all the line segments in the
secondary structures in the right subtree of
Lie The first set consists of just the line
segments in RS(L;) (e.g., line segment G
upon examining the internal node with
value 12.5). The second set is obtained by
visiting all the active nodes in the right
subtree of Li, RP(Li) (e.g., line segment F
during the processing of the internal node
with value 12.5 since F is associated with
the active internal node with value 17). In
order to avoid visiting irrelevant nodes we
make use of the tertiary structure using the
pointers LT(Li) and RT(Li). It can be
shown that more than half of the elements
of the tertiary structure have nonempty
secondary structures, and thus the time
necessary to execute this process is propor-
tional to the number of intersections that
are reported. The search is continued in the
left subtree of Lip LP(Li).

If VAL(L;) < 1, then we report the line
segments in the secondary structure of Li
whose ending points are greater than 1. To
do this, we visit RS(Li) in descending order
until encountering a line segment whose
ending pont is less than 1. This process is
executed in time proportional to the num-
ber of intersections that are reported. The
search is continued in the right subtree of
LL, RP(Li).

Solving the rectangle intersection prob-
lem using an interval tree requires O(N)
space and O(N . log, N + F) time, where F
is the number of rectangle intersections.3
The space requirements are obtained by
observing that for N line segments we
need at most 2 . N terminal nodes in the
primary structure and likewise for the
secondary structures. The tertiary struc-
ture is constructed from nodes in the pri-
mary structure, and thus it requires no
additional space except for the pointer
fields. Making use of the fact that the in-

’ For the tile tree, the execution time is O(N .
log,(max(N, K)) + F), where the horizontal bounda-
ries of the rectangles are integers between 0 and
K - 1. The execution time becomes O(N . log, N +
F) if the 2. N y coordinate values are first sorted and
then mapped into the integers from 0 to 2 . N - 1.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

286 l Hanan Samet

terval tree is a complete binary tree, the
number of internal nodes in the primary
and secondary structures is bounded by 2 .
N- 1.

The execution time requirements are ob-
tained by noting that searching the primary
structure for the starting and ending points
of a line segment takes O(log, N) time. The
number of nodes in the secondary structure
that are visited is of the same order as the
number of rectangle intersections that are
found. Since at least one-half of the active
nodes have nonempty secondary structures,
the number of nodes in the tertiary struc-
ture that are visited is no more than twice
the number of nodes visited in the second-
ary structure. Constructing the interval
tree takes O(N . log, N) time since the end-
points of the line segments that form the
sides of the rectangles must be sorted.

2.3 Priority Search Trees

Using an interval tree, as described in Sec-
tion 2.2, yields an optimal worst-case space
and time solution to the rectangle intersec-
tion problem. The interval tree solution
requires that we know in advance the end-
points of all of the vertical intervals since
they must be sorted and stored in a com-
plete binary tree. Thus, given N rectangles,
the storage requirement is always O(N).
The solution can be slightly improved
by adapting the priority search tree of
McCreight [1985] to keep track of the
active vertical intervals. In this case, the
storage requirements for the sweep pass
only depend on the maximum number of
vertical intervals that can be active at any
one time, say M. Moreover, there is no need
to know their endpoints in advance, and
thus there is no need to sort them. This
also has an effect on the execution time of
the algorithm since the data structure used
to keep track of the endpoints of the verti-
cal intervals is the determinative factor in
the amount of time necessary to do a
search. Thus, when using the priority
search tree, the sweep pass of the solution
to the rectangle intersection problem can
be performed in O(N . log, M + F) time,
rather than O(N . log, N + F) time. How-
ever, sorting the endpoints of the horizontal

intervals, which is the first pass of the plane
sweep, still requires O(N . log, N) time.

A priority search tree keeps track of
points in a two-dimensional space. It is
built in the following manner. Assume that
no two data points have the same x coor-
dinate value. Sort all the points along the
x coordinate and store them in the leaf
nodes of a balanced binary search tree, say
T. We proceed from the root node toward
the leaf nodes. With each internal node of
T, say I, associate the point in the subtree
rooted at I with the maximum value for its
y coordinate that has not already been
stored at a shallower depth in the tree. If
such a point does not exist, then leave the
node empty. For example, treating the ver-
tical boundaries [ya, yT) of the rectangles
in Figure 1 as points (x, y), Figure 9 is their
corresponding priority search tree. For N
points, the priority search tree requires
O(N) storage.

The priority search tree is designed for
solving queries involving semi-infinite
ranges in two-dimensional space. Perform-
ing a semi-infinite range query ([L,: R,],
[L,: a~]) using a priority search tree is done
as follows. Descend the tree looking for the
nearest common ancestor of L, and R,, say
Q. Now, recursively, apply the following
search procedure to the subtree rooted at
Q. Let T denote the root of the subtree that
is currently being processed, and let P be
the point associated with it. If no such P
exists, then we are finished with the entire
subtree rooted at T since all points in
its subtrees have already been examined
and/or reported. Examine the y coordinate
value of P, say Py . If P, < L,, then we are
finished with the entire subtree rooted at T
since P is the point with the maximum y
coordinate value in the subtree. Otherwise,
perform the following steps:

(1)

(2)

Check if the x coordinate value of P is
in the range [L, : R,]; if yes, then output
P as satisfying the query.
Determine where the search is to be
continued. If both T and its right son
are on the path from Q to L,, then
continue in the right son of T; else if
both T and its left son are on the path
from Q to R,, then continue in the left

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles

E A G F C D
(3,8) (6,36) (11.14) (15,19) (21,36) (23,27)

Figure9. The priority search tree for the set of line segments
corresponding to the vertical boundaries [ye, yT) of the rectangles
in Figure 1. Each vertical boundary [yB, yT) is treated as a point
(x, y) in a two-dimensional space. The leaf nodes contain the ye
values and the internal nodes contain the maximum yT values.

. 287

son of T; else continue in the two sons
of T.

For Npoints, this process requires O(log, N
+ F) time, where F is the number of points
found.

There are two keys to understanding the
use of the priority search tree in solving
the rectangle intersection problem. As-
sume, again, that all intervals are semi-
closed (i.e., they are closed on their left
ends and open on their right ends). First,
each one-dimensional interval, say [a : b), is
represented by the point (a, b) in two-
dimensional space. This two-dimensional
space is represented by a priority search
tree. Second, we observe that the one-
dimensional interval [a : b) intersects the
interval [c: d) if and only if a < d and
c < b. An equivalent observation is that the
point (c, d) lies in the range ([-m: b),
(a: ml). This equivalence means that in or-
der to find all one-dimensional intervals
that intersect the interval [a : b), we need
only perform the semi-infinite range query
([--03 : b), (a : m]) in the priority search tree.
If the priority search tree contains M one-
dimensional intervals, then this operation

requires O(log, M + F) time, where F is the
number of intersecting intervals found.

In order for the space and time bounds
to be comparable with the interval tree, we
must also show that a one-dimensional in-
terval can be inserted and deleted from a
priority search tree in O(log, M) time. This
is achieved by implementing the priority
search tree as a “red-black” balanced bi-
nary tree [Guibas and Sedgewick 19781.
The red-black balanced binary tree has the
property that, for M items, insertions and
deletions take O(log,M) time with O(1)
rotations [Tarjan 19831. McCreight [19851
shows that the priority search tree adapta-
tion of the red-black balanced binary tree
can be maintained at a cost of O(log, M)
per rotation. The use of a red-black bal-
anced binary tree does not affect the O(M)
storage requirements of the priority search
tree. Hence the desired time and space
bounds are achieved.

When the priority search tree is imple-
mented as a red-black balanced binary tree,
its node structure differs from the way it
was defined earlier in this section. In par-
ticular, the internal nodes now also contain
intervals. The interval associated with an

ACM Computing Surveys, Vol. 20, No. 4, December 1988

288 ’ Hanun Samet

internal node, say I, is the one whose left
endpoint, say L, is the median value of the
left endpoints of the intervals in I’s sub-
trees. All intervals in I’s left subtree have
left endpoints that are less than L, whereas
the intervals in I’s right subtree have left
endpoints that are greater than L.

Comparing the interval and priority
search tree solutions to the rectangle inter-
section problem, we find that the priority
search tree is considerably simpler from a
conceptual standpoint than the interval
tree. The execution time requirements of
the priority search tree are lower when the
sort pass is ignored. Also, the priority
search tree enables a more dynamic solu-
tion than the interval tree because for the
priority search tree only the endpoints of
the horizontal intervals need to be known
in advance. On the other hand, for the
interval tree the endpoints of both the hor-
izontal and vertical intervals must be
known in advance.

2.4 Applications

Data structures such as the segment tree
can be used within the plane-sweep para-
digm to solve a number of problems other
than rectangle intersection. In fact, the seg-
ment tree was originally developed by Bent-
ley [19771 as part of a plane-sweep solution
to compute the area (also termed a measure
problem [Klee 19771) of a collection of rec-
tangles where overlapping regions are only
counted once. It can also be used to com-
pute the perimeter.

The central idea behind the use of the
segment tree to compute the area is to keep
track of the total length of the parts of the
vertical scan line, say Li at halting point
Xi, that overlap the vertical boundaries of
rectangles that are active just to the left of
Xi. This quantity is adjusted at each halting
point. The total area is obtained by accu-
mulating the product of this quantity with
the difference between the current halting
point and the next halting point-that is,
Li * (Xi - Xi-l). In order to facilitate this
computation, each node of the segment tree
contains the length of the overlap of the

marked4 components of its corresponding
interval with the vertical scan line.

As an example of the computation of the
area, consider the collection of rectangles
in Figure 1. When the scan line passes over
x = 7, the lengths of its overlaps with the
nodes corresponding to intervals [6 : 8),
[3 : 8), [8 : 14), [3 : 14), [14 : 23), [3 : 23),
[23 : 34), [34: 36), [34: 38), [23 : 38), [23 : w),
and [3: 03) are 2, 5, 6, 11, 9, 20, 11, 2, 2, 13,
13, and 33, respectively. In addition, for
each marked node of the segment tree, we
record the number of times, if any, it is
marked. In our example, when x = 7, the
nodes corresponding to the intervals [6 : 8),
[3:8), [8:14), [14:23), [23:34), and
[34:36) are marked once; however, at no
time in this example will any node be
marked more than once. These values are
adjusted whenever a vertical boundary of a
rectangle is inserted into, or deleted from,
the segment tree-that is, at each halting
point. For N rectangles, this adjustment
process requires O(log, N) steps per halting
point or O(N . log, N) for the area of the
entire collection. The total space require-
ments is O(N).

As stated earlier, the unit-segment tree
is analogous to a region quadtree in one
dimension. This analogy is exploited by van
Leeuwen and Wood [1981] in solving mea-
sure problems in higher dimensional spaces
(i.e., cl> 2). Lee [1983] also uses the same
technique to develop an algorithm that
finds the maximum number of rectangles
whose intersection is not empty (also
termed a maximum clique [Harary 19691).
As an example of this method consider the
problem of computing the volume that is
occupied by the union of a collection of
three-dimensional rectangular parallel-
epipeds. van Leeuwen and Wood [19811 use
a plane-sweep solution that sorts the
boundaries of the parallelepipeds along one
direction (say x) and then sweeps a plane
(instead of a line) parallel to the y-z plane
across it. At any instant of time, the plane
consists of a collection of cross sections

4 By marked we mean that the node’s interval is com-
pletely contained in a vertical boundary of one of the
rectangles.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles l 289

(i.e., two-dimensional rectangles). This col-
lection is represented as a region quadtree
in a manner analogous to the segment tree.

The region quadtree is built as follows.
Assume that there is a maximum of N
boundaries in all directions. First, sort the
y and z boundaries of the parallelepipeds
(removing duplicates) obtaining yo, yl, . . . ,
yp (P < 2W, 20, 21, . . . , 2, (q < 2M, and
2h-’ I max(p, q) < 2h. Assume without
loss of generality that the boundaries are
distinct. If not, then there are fewer subdi-
visions. Also, add enough subdivision lines
so that there are 2h subdivisions in each of
y and z. Next, form a grid with an origin at
the lower left corner such that the two-
dimensional interval with a lower left cor-
ner at (i, j) corresponds to the rectangular
parallelepiped with (yi, z;) as its lower left
corner. Each two-dimensional interval is
marked with the name of the parallelepiped
of which it is a part. At this point, only the
terminal nodes of the quadtree are marked.
The nonterminal nodes are marked as fol-
lows. Visit the intervals in an order such as
that used in building a region quadtree from
a binary array [Samet 19801. Whenever
four brother two-dimensional intervals, say
1i, are in the same parallelepiped, say P,
then their father node, say F, gets the label
of the parallelepiped and P is no longer
associated with any of Ii. Whenever no
parallelepipeds are associated with four
brother intervals, then they are merged and
their corresponding nodes are removed
from the quadtree. Building the region
quadtree is an O(N’) process.

As the scan line is swept, each halting
point causes the insertion and/or deletion
of two-dimensional intervals from the
quadtree. Insertion and deletion of a two-
dimensional interval is an O(N) process
since a rectangle can appear in at most
O(N) nodes. Thus, we see that a plane-
sweep algorithm employing the region
quadtree will execute in time O(N .
log,N + N*) or O(N*) since there are O(N)
halting points. This is an improvement over
a solution of Bentley [1977], which recur-
sively performs a plane sweep across each
of the planes (i.e., it reduces it to N one-
dimensional subproblems) for an execution

time of O(N* . log2 N). Generalizing these
results to d dimensions reduces the time
requirement of Bentley’s solution from
O(Nd-’ . log2N) to O(Nd-‘); however, this
increases the space requirement from 0 (N)
to O(N*). This is achieved by recursively
reducing the d-dimensional problem to N
problems in (d - 1) dimensions until we
obtain the three-dimensional case and then
solving each three-dimensional problem as
discussed above.

Another related problem is finding the
containment set (also known as the inclu-
sion or enclosure set) of a collection of
rectangles. The containment set is the set
of all pairs of rectangles A and B such that
A contains B. Variants of the segment tree
are used by Vaishnavi and Wood [1980] to
solve this problem in O(N . log; N + F)
time and O(N. log: N) space. The space
requirement is reduced to O(N) by Lee and
Preparata [1982], who map each rectangle
into a point in four-dimensional space and
solve a point dominance problem.

As described in Section 1, the rectangle
intersection problem is closely related to
the following problems:

(1) Determining all rectangles that are
contained in a given rectangle,

(2) Determining all rectangles that enclose
a given rectangle,

(3) Determining all rectangles that par-
tially overlap or are contained in a
given rectangle (a window query).

The plane-sweep approach is not appropri-
ate for these problems since, regardless of
the data structures employed (e.g., seg-
ment, interval, or priority search trees),
sorting is a prerequisite and thus any al-
gorithm requires at least 0 (N . log2 N) time
for N rectangles. In contrast, the naive
solution of intersecting each rectangle with
the query rectangle is an O(N) process.

The problems described above can be
solved by segment trees and interval trees
without making use of a plane sweep [Ov-
ermars 19881. The key is to adapt these
representations to store two-dimensional
intervals in a manner similar to that in
which a two-dimensional range tree is de-

ACM Computing Surveys, Vol. 20, No. 4, December 1988

290 l Hanan Samet

veloped from a one-dimensional range tree changing set of points in sorted order. A
[Edelsbrunner 19821. For example, a seg- more serious problem is that in a dynamic
ment tree can be adapted to represent rec- environment, the sweep pass of a plane-
tangles as follows. Project the rectangles sweep algorithm will usually have to be
on the x axis and store these intervals in a reexecuted, since there is no data structure
segment tree, say T. Let I be an internal corresponding to it.5 In the following sec-
node in T and let RI denote the rectangles tions we discuss methods for a dynamic
whose horizontal sides are associated with environment whose worst-case behavior is
I. For each I build a segment tree for the not as good as that of plane sweep. Inter-
projections of Rr on the y axis. We can also estingly, the data structures that were used
build an interval tree for the projections of in the plane-sweep approach are also appli-
RI on the y axis. cable in the dynamic environment.

Using such adaptations of the segment
and interval trees, for N rectangles the
execution time of the solution to the win-
dow query is 0 (log? N + F), where F is the
number of rectangles that satisfy the query.
The difference is in their storage require-
ments-the segment tree solution requires
O(N . log; N) space, whereas the interval
tree solution requires O(N . log, N) space.
For both of these structures, judicious use
of doubly linked lists ensures that rectan-
gles can be inserted and deleted in
O(loggN) time. Of course, these structures
must still be built, which requires O(N.
IogZN) time in both cases. In the case of
the segment tree solution, the query time
can be reduced further to O(log,N + F)
with the same space and preprocessing
costs by adding some pointers (termed a
layered tree) [Vaishnavi and Wood 19821.
It is not clear how to adapt the prior-
ity search tree to store two-dimensional
intervals.

3. POINT-BASED METHODS

The plane-sweep paradigm for solving
the geometric problems discussed earlier in
this section (e.g., the rectangle intersection
problem) assumes that the set of rectangles
is only processed once. It can be shown that
for many of these problems, plane-sweep
methods yield a theoretically optimal solu-
tion. A disadvantage is that such solutions
assume a static environment.

In this section we first discuss the repre-
sentation of rectangles as points and then
examine the representation of the collec-
tion of points. A common solution to the
problem of representing a collection of ob-
jects is to approximate elements of the col-
lection by simpler objects. One technique
is to represent each object by using one of
a number of primitive shapes that contain
it. Up to now we have used rectangles, but
other shapes such as triangles, circles,
cubes, parallelepipeds, cylinders, and
spheres are also possible. This approach is
motivated, in part, by the fact that it is
easier to test the containing objects for
intersection than it is to perform the test
using the actual objects. For example, it is
easier to compute the intersection of two
rectangles than of two polygons for which
the rectangles serve as approximations.
More complex approximations can be cre-
ated by composing Boolean operations and
geometric transformations on instances
of the primitive types. In fact, this is the
basis of the constructive solid geometry
[Requicha 1980; Voelcker and Requicha
19771 (CSG) technique of representing
three-dimensional objects.

In contrast, in a dynamic environment
where update operations occur frequently
(i.e., rectangles are added and deleted), the
plane-sweep approach is less attractive.
Plane-sweep methods require that the end-
points of all rectangles are known a priori
and that the endpoints be sorted before the
sweep pass. This is not a major problem,
since it is easy to maintain a dynamically

The advantage of using such approxi-
mations is that each primitive can be
described by a small set of parameters
and can in turn represent a large class of
objects. In particular, if primitive P is

’ Application of newly introduced methods employing
persistent search trees due to Sarnak and Tajan
[1986] to the rectangle intersection problem may be
useful in avoiding the reexecution of the sweep pass.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles 291

described by k parameters, then each set
of parameter values defines a point in a
k-dimensional space assigned to the class
of objects whose members are all the pos-
sible instances of primitive P. Such a point
is termed a representative point. Note that
a representative point, and the class to
which it belongs, completely define all of
the topological and geometric properties of
the corresponding object.

Most primitives can be described by more
than one set of parameters. For example,
using Cartesian coordinates, a circle is de-
scribed by a representative point in three-
dimensional space consisting of the x and
y coordinates of its center and the value
of its radius. On the other hand, using
polar coordinates, a circle can also be de-
scribed by a representative point in three-
dimensional space consisting of the p and 0
coordinates of its center and the value of
its radius. For other primitives, the choices
are even more varied. For example, the
class of objects formed by a rectangle in
two dimensions whose sides are parallel to
the x and y coordinate axes is described by
a representative point in four-dimensional
space. Some choices for the parameters are
as follows:

(1)

(2)

(3)

The x and y coordinates of two diago-
nally opposite corners of the rectangle
(e.g., the lower left and upper right).
The x and y coordinates of a corner of
the rectangle, together with its horizon-
tal and vertical extents.
The x and y coordinates of the centroid
of the rectangle, together with its hor-
izontal and vertical extents (i.e., the
horizontal and vertical distances from
the centroid to the relevant sides).

The actual choice depends on the type of
operations we intend to perform on the
objects formed by them.

Different parameters have different ef-
fects on the queries, and thus making the
right choice is important. Hinrichs and
Nievergelt [19831 and Hinrichs [1985a]
lump the parameters into two classes-
location and extension. Location parame-
ters specify the coordinates of a point such
as a corner or a centroid, whereas extension

‘c’
t

’ B’
n

I E “F+
, ‘A’, I + ,G I -

+2_2_9,,,.._30_-,. 40
-X

0 IO
31 2P

(a)

Figure 10. (a) Horizontal (i.e., x) and (b) vertical
(i.e., y) intervals corresponding to the sides of the
rectangles in Figure 1. Solid lines correspond to rec-
tangles in the collection, and broken lines correspond
to the query rectangles.

parameters specify size, such as the radius
of a circle. This distinction is always pos-
sible for objects that can be described as
Cartesian products of spheres of varying
dimension. Many common objects can be
described in this way. For example, a rec-
tangle is the Cartesian product of two one-
dimensional spheres, whereas a cylinder is
the Cartesian product of a one-dimensional
sphere and a two-dimensional sphere.
Whenever such a distinction between lo-
cation and extension parameters can be
drawn, the proximity queries that are de-
scribed in Section 1 have cone-shaped
search regions where the tip of the cone is
usually in the subspace of the location pa-
rameters and has the shape of the query
point or query object.

The importance of making the right
choice can be seen by examining the class
of one-dimensional intervals on a straight
line. As an example, consider the collection
of rectangles given in Figure 1. Each rec-
tangle can be represented as the Cartesian
product of two one-dimensional spheres
corresponding to the sides that are given as
horizontal and vertical intervals in Fig-
ure 10. These intervals can be represented
using any of the three representations
enumerated above. Representation (1)

ACM Computing Surveys, Vol. 20, No. 4, December 1988

292 l Hanan Samet

R

Figure 11. Representation of the horizontal inter-
vals of Figure 1 as ordered pairs (L, R), where L and
R are the left and right endpoints, respectively, of the
interval.

yields an ordered pair (L, R) where L and
R correspond to the left and right endpoints
of the interval, respectively. Figure 11
shows how the horizontal intervals would
be represented using this method.

In most applications the intervals are
small. Therefore, for representation (l), L
and R are very close in value. L < R means
that the representative points are clustered
near and above the diagonal. Thus, the
representative points are not well distrib-
uted and hence any data structure that is
based on organizing the embedding space of
the data (e.g., address computation), in
contrast to one based on the actual repre-
sentative points that are stored (e.g., com-
parative search), will have to pay a price
for the empty half of the embedding space.
On the other hand, Hinrichs and Nievergelt
[1983] point out that separating the loca-
tion parameters from the extension param-
eters results in a smaller embedding space,
which is filled more uniformly. For exam-
ple, representation (3) is used in Figure 12,
where the horizontal intervals are repre-
sented as an ordered pair (CX, DX) such
that CX is the centroid of the interval and
DX is the distance from the centroid to the
end of the interval.

Bearing the above considerations in
mind, representation (3) seems to be the
most appropriate. In such a case, a rec-

D:
I

0 IO 20
cx

30 40

Figure 12. Representation of the horizontal inter-
vals of Fiaure 1 as ordered pairs (CX. DX). where CX
and DX are the centers ani half-ien&hs, kspectively,
of the interval.

tangle is represented by the 4-tuple (c,, d,,
c,, d,), which is interpreted as the Carte-
sian product of a horizontal and a vertical
one-dimensional interval-that is, (c,, d,)
and (c,, $), respectively.6 This represen-
tation is used by Hinrichs and Nievergelt
[1983] and Hinrichs [1985a], and the fol-
lowing examples of its utility are due to
them.

Proximity queries involving point and
rectangular query objects are easy to imple-
ment. Their answers are conic-shaped re-
gions in the four-dimensional space formed
by the Cartesian product of the two interval
query regions. This is equivalent to com-
puting the intersection of the two query
regions, but is much more efficient. It also
enables us to visualize our examples since
the horizontal and vertical intervals cor-
respond to the projections of the query
responses on the c,-cl, and cY-dY planes,
respectively.

We illustrate our discussion with the col-
lection of rectangles given in Figure 1 along
with query point P and query rectangles 1,
2, and 3. Note that when the query objects
are not individual points or rectangles, the
representation of a rectangle as the Carte-
sian product of two orthogonal intervals is
not that useful (e.g., query regions in the
form of an arbitrary line or circle).

For a point query, we wish to determine
all intervals that contain a given point, say

’ The notation (c,, d,) corresponds to a point in a two-
dimensional space. It is not the open one-dimensional
interval whose left and right endpoints are at c, and
d,, respectively.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles

DX DX

0
0 IO 20 30 P 40

(a)

DY

IO

0
0 IO 20 P 30 40

(b)

Figure 13. Search region for a point query on P for
(a) the horizontal intervals and (b) the vertical inter-
vals of Figure 1. All intervals containing P are in the
shaded regions. Intervals appearing in the shaded
regions of both (a) and (b) correspond to rectangles
that contain P.

p. These intervals form a cone-shaped re- shaped region whose tip is the interval I.
gion whose tip is an interval of length zero
centered at P.~ For example, the horizontal

For example, the horizontal and vertical
intervals that overlap the horizontal and

and vertical intervals containing P are vertical sides of query rectangle 1 are shown
shown shaded in Figures 13a and 13b, re-
spectively. To find all the rectangles that

shaded in Figures 14a and 14b, respectively.

contain a given point, we access a specific
To find all the rectangles that overlap the

region in the four-dimension1 space defined
query window, we access a specific region

by the Cartesian product of the horizontal
in the four-dimensional space defined by
the Cartesian product of the horizontal and

and vertical point-in-interval query re- vertical interval-in-interval query regions.
gions. For example, P is in the set of rec- For example, query rectangle 1 overlaps
tangles with representative points in the the intersection of the shaded portions
intersection of the shaded portions of Fig- of Figures 14a and 14b-that is, (B, D)
ures 13a and 13b-that is, (C, D) is the is the intersection of (B, D, E, G) and
intersection of (C, D, G) and (A, C, D). (4 B, C, JX

A window query is a bit more complex.
In this case, the one-dimensional analog of
this query is to find all intervals that over-
lap a given interval, say I. Again, the set of
overlapping intervals consists of a cone-

For a containment query, the one-dimen-
sional analog is to find all the intervals that
are totally contained within a given inter-
val, say I. The set of contained intervals
consists of a cone-shaped region whose tip
is at I and that opens in the direction of
smaller extent values. This makes sense
since all intervals within the cone are to-

’ McCreight [1980] uses the same technique in con-
junction with representation (1) to solve the problem.

DY
4

(b)

Figure 14. Search region for a window query on
query rectangle 1 of Figure 1 for (a) the horizontal
intervals and (b) the vertical intervals of that figure.
All intervals that contain points of rectangle 1 are in
the shaded regions. Intervals appearing in the shaded
regions of both (a) and (b) correspond to rectangles
that intersect rectangle 1.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

294 .

DX

Hanan Samet

DX

E
IO - . D

l * G
IO

A
.

0 I I
0 IO

+ cx
20 30

0
40 0 IO 20 30 40

cx

(a) (a)

DY DY
A

A
.

IO - C IO
.

E 2 D B . .

0 ?h. 0 IO 20 30 4occy

lb) (b)

Figure 15. Search regions for a containment query Figure 16. Search regions for an enclosure query on
on query rectangle 2 of Figure 1 for (a) the horizontal query rectangle 3 of Figure 1 for (a) the horizontal
intervals and (b) the vertical intervals of that figure. intervals and (b) the vertical intervals of that figure.
All intervals that are contained in one of the intervals All figures that enclose one of the intervals forming
forming rectangle 2 are in the shaded regions. Inter- rectangle 3 are in the shaded regions. Intervals ap-
vals appearing in the shaded regions of both (a) and pearing in the shaded regions of both (a) and (b)
(b) correspond to rectangles that are contained in correspond to the rectangles that enclose rectangle 3.
rectangle 2.

tally contained in the interval represented
by the tip. For example, the horizontal and
vertical intervals that are contained in the
horizontal and vertical sides of query rec-
tangle 2 are shown shaded in Figures 15a
and 15b, respectively. To find all the rec-
tangles that are contained in the query
window, we access a specific region in the
four-dimensional space defined by the
Cartesian product of the horizontal and
vertical contained-in-interval query re-
gions. For example, query rectangle 2
contains the intersection of the shaded por-
tions of Figures 15a and 15b-that is, (F).

For an enclosure query, the one-dimen-
sional analog is to find all the intervals that
enclose the given interval, say I. The set of
enclosing intervals consists of a cone-
shaped region whose tip is at I and that
opens in the direction of larger extent val-
ues. This is logical since the interval rep-
resented by the tip is contained (i.e.,

enclosed) by all intervals within the cone.
For example, the horizontal and vertical
intervals that enclose the horizontal and
vertical sides of query rectangle 3 are shown
shaded in Figures 16a and 16b, respectively.
To find all the rectangles that enclose the
query window, we access a specific region
in the four-dimensional space defined by
the Cartesian product of the horizontal and
vertical enclose-interval query regions. For
example, query rectangle 3 contains the
intersection of the shaded portions of Fig-
ures 16a and 16b-that is, (E).

In spite of the relative ease with which
the above queries are implemented using
the representative point method with rep-
resentation (3), there are queries for which
it is ill suited. For example, suppose we
wish to solve the rectangle intersection
problem. The fact is, no matter which of
the three representations we use, in order
to solve this problem we must intersect
each rectangle with every other rectangle.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles l 295

The problem is that none of these represen-
tations is area oriented-that is, they
reduce a spatial object to a single repre-
sentative point. Although the extent of the
object is reflected in the representative
point, the final mapping of the representa-
tive point in the four-dimensional space
does not result in the preservation of near-
ness in the two-dimensional space from
which the rectangles are drawn. In other
words, two rectangles may be very close
(and possibly overlap), yet the Euclidean
distance between their representative
points in four-dimensional space may be
quite large, thereby masking the overlap-
ping relationship between them. For ex-
ample, even though rectangles B and D
intersect query rectangle 1, we cannot eas-
ily tell if they intersect each other except
by checking their sizes.

Our discussion has emphasized represen-
tation (3). Nevertheless, as we will see
below, the other representations are also
commonly used. Interestingly, although a
rectangle whose sides are parallel to the x
and y axes requires four values to be
uniquely specified, it is also frequently
modeled by a representative point in a two-
dimensional space. The representative
point corresponds to the centroid of the
rectangle or to one of its corners (e.g., lower
left). If rectangles are not permitted to
overlap, then such a representation is suf-
ficient to ensure that no two rectangles
have the same representative point. Of
course, since two values do not uniquely
specify the rectangle, the remaining values
are retained in the record corresponding to
the rectangle that is associated with the
representative point. If rectangles are per-
mitted to overlap, then such a representa-
tion means that there may be more than
one record associated with a specific rep-
resentative point.

Once a specific representative point
method is chosen for the rectangle, we can
use any one of a number of techniques for
representing multiattribute data to orga-
nize the collection of representative points.
Again, the choice of representation depends
to a large extent on the type of operations
that we will be performing. As an example,
Lauther [19781 and Rosenberg [1985] make

use of a balanced k-d tree to organize the
rectangles whose representative point uses
representation (1). The k-d tree [Bentley
19751 is a binary search tree where at each
level of the tree a different coordinate is
tested when determining the direction in
which a branch is to be made. Therefore,
in the two-dimensional case (i.e., a 2-d
tree!), we compare x coordinates at the root
and at even levels (assuming the root is at
level 0) and y coordinates at odd levels. For
example, Figure 17 is the k-d tree corre-
sponding to the data of Figure 2.

The balanced k-d tree is a k-d tree
where at each level the number of nodes
in the two subtrees is either equal or differ
by 1. Lauther [1978] discusses the solution
of the rectangle intersection problem using
the balanced k-d tree. The solution is an
adaptation of the O(N2) algorithm. It first
builds the tree (equivalent to a sorting pro-
cess) and then traverses the tree in inorder
and intersects each rectangle, say P, with
the remaining unprocessed rectangles (i.e.,
the inorder successors of Pa). Two rectan-
gles with sides parallel to the axes intersect
if their projections on the x axis intersect
and their projections on the y axis inter-
sect. The one-dimensional analog of this
condition has been used in the segment and
interval tree solutions to the rectangle in-
tersection problem (see Sections 2.1 and
2.2). More formally, we say that in order
for rectangle Q to intersect rectangle P, all
four of the following conditions must be
satisfied:

(1) xmin(Q) 5 pax
(2) ymin(Q) 5 yrnax(P)
(3) xmin(P) 5 pax
(4) ymin(P) 5 yrnax(Q)

Armed with this formulation of the prob-
lem, we see that there is no need to visit all
of the inorder successors of P since when-
ever one of these conditions fails to hold at
a node Q, the appropriate subtree of Q need
not be searched. These conditions can be
restated in the following manner, which is

’ In this discussion we use P to refer to both a rectangle
and its corresponding node in the tree. The correct
meaning should be clear from the context.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

296 l Hanan Samet

(0,100

t
Y

to,0

I-

I
I

)

(5,451
DENVER

(25.35)
OMAHA

(60,751 (60,751
TORONTO TORONTO

t
(35,40) (35,40)

” CHICAGO CHICAGO

(50,10)
MOBILE

(80.65)
BUFFALO

(B5.15)
ATLANTA

1,5)
MIAMI

CHICAGO

DENVER MOBILE

(100. loo)

Figure 17. A k-d tree corresponding to the points in Figure 2.

more compatible with the way in which the Now, we build a balanced k-d tree with
balanced k-d tree is traversed: discriminators Ko, K,, K2, K3 correspond-

ing to x,i,, ymin, -x,,,, and -ymax, respec-
(5) xmin(Q) 5 pax
(6) ymin(Q) 5 Ymax(P)

(7) -&nax (8) 5 -xmin(P)
(8) -~max(Q) 5 -Ymin(f’)

tively. Whenever we encounter node Q
discriminating on Kd such that Kd(Q) >
K Cd+2jmod4(P), then all the nodes in the right
subtree of Q need not be examined further.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles l 297

(4 (b)

Figure 18. Blocks examined when searching for points within a
conic region for a collection of intervals represented by (a) a grid
file and(b) a k-d tree.

Solving the rectangle intersection prob-
lem as described above has an upper bound
of O(N’) and a lower bound of O(N .
log,N). The lower bound is achieved when
pruning is assumed to occur at every right
subtree. When the rectangle intersection
problem is posed in terms of conditions (5)-
(8), the relation 5 between Q and P is said
to be a dominance relation [Preparata and
Shamos 19851. In such a case, the intersec-
tion problem is called the dominance merge
problem by Preparata and Shamos [19851.
Given F rectangle intersections, the algo-
rithm of Preparata and Shamos solves the
rectangle intersection problem in O(N .
logs N + F) time instead of the optimal
O(N . log, N + F) time.

Building a balanced k-d tree takes more
time than an ordinary k-d tree since medi-
ans must be computed in order to assure
balance. The balanced k-d tree makes point
searches and region searches quite efficient.
Rosenberg [1985] compares the perform-
ance of the k-d tree, a point method in his
formulation, with linked lists’ and the area-
based quadtree approaches discussed in
Section 4.1 below and concludes that the
point methods are superior. However, he
only takes into account point and window
queries. Comparisons using queries such as
finding all intersecting rectangles may lead
to a different conclusion.

Hinrichs and Nievergelt [19831 and Hin-
richs [1985a, 1985b] make use of the grid

’ The rectangles are stored in a doubly linked list.

file to organize the rectangles whose rep-
resentative point uses representation (3). A
grid file yields a partition of space into
variable-sized blocks having a finite capac-
ity that are accessed with the aid of a
directory. For example, Figure 18a is an
example space partition induced by a grid
file. The result is that proximity queries
are answered by examining all grid blocks
that intersect the cone-shaped search re-
gions. They prefer this method to one based
on a tree (e.g., the k-d tree) because the
relevant grid blocks are in contiguous re-
gions, whereas in a tree, contiguous blocks
may appear in different subtrees. Hinrichs
and Nievergelt are quite concerned with
reducing the number of disk access opera-
tions necessary to process such queries. For
example, Figure 18 shows a conic-shaped
search region when the rectangles are or-
ganized with a grid file (Figure 18a) and a
k-d tree (Figure 18b). In the case of a grid
file, blocks A, B, C, D, E, and F would be
examined, whereas for a k-d tree blocks G,
H, I, J, K, L, and M would be examined.
Note that blocks I and K are in a different
subtree of the k-d tree than blocks G, H, J,
L, and M. In the worst case, solving the
rectangle intersection problem when using
a grid file takes O(N’) time. This is
achieved by using the naive method of Sec-
tion 2. The expected cost, however, will be
lower since it is assumed that the points
corresponding to the rectangles are well
distributed among the grid blocks. For an
analysis of grid file methods on randomly
distributed point data, see Regnier [19851.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

298 l Hanan Samet

The techniques discussed above for or-
ganizing the collection of representative
points assume that the representative point
lies in four-dimensional space. Another
possibility is to use a representative point
in two-dimensional space. For example,
suppose that in our application we must
perform a point query (i.e., determine the
rectangles that contain a given point). In
this case, when the representative point is
the centroid, some of the tree representa-
tions require that we search the entire data
structure. For example, this is the case for
the point quadtree (see Figure 4) because
the rectangle that is centered at a given
point can lie in all of the quadrants. Of
course, pruning can occur at deeper levels
in the tree. In contrast, using the lower left
corner as the representative point may per-
mit the pruning of up to three quadrants in
the search. For instance, when the query
point lies in the SW quadrant, then no
rectangle whose representative point lies in
the NW, NE, or SE quadrants can contain
the query point.

4. AREA-BASED METHODS

The problem with using trees in conjunc-
tion with representative point methods
such as those discussed in Section 3 is that
the placement of the node in the tree (i.e.,
its depth) does not reflect the size (i.e., the
spatial extent) of the rectangle. It primarily
depends on the location of the represent-
ative point. In this section we focus on
alternative representations provided by
area-based methods that associate each rec-
tangle with blocks that contain it or blocks
that it contains. The sizes and positions of
these blocks may be predetermined as is
the case in an approach based on the region
quadtree. This need not be the case, how-
ever, nor must the blocks be disjoint.

As an example of a representation based
on the region quadtree, suppose that we
represent each rectangle by its minimum
enclosing quadtree block (i.e., a square).
The rectangle is associated with the center
of the quadtree block. Of course, more than
one rectangle can be associated with a given
enclosing square and a technique must be
used to differentiate among them. Observe
that in this case, we do not explicitly store

a representative point. Instead, there is a
predefined set of representative points with
which rectangles can be stored. In some
sense this is analogous to hashing [Knuth
19731, where the representative points cor-
respond to buckets. These techniques,
which we term CIF quadtrees, have been
developed independently by Kedem [19821
(called a quad-CIF tree) and by Abel and
Smith [19831.

In this section we expand further on the
area-based approaches. We first present a
detailed implementation of one variant of
the CIF quadtree, which is related to the
MX quadtree representation of point data
[Samet 19841. Next, we describe some
quadtree-based alternatives that permit a
rectangle to be associated with more than
one quadtree block. We conclude with a
discussion of the R-tree and some of its
variants. It is a hierarchy of rectangular
regions that contain the data rectangles.
The hierarchy is constructed by rules sim-
ilar to those used to define a B-tree. The
regions need not be disjoint. Analyzing
the space requirements of these representa-
tions as well as the execution time of
algorithms that use them is quite difficult,
since it depends heavily on the distribution
of the data. In most cases, a limited part of
the tree must be traversed and thus the
execution time depends, in part, on the
depth and the shape of the tree.

4.1 MX-CIF Quadtrees

The MX-CIF quadtree associates each rec-
tangle, say R, with the quadtree node cor-
responding to the smallest block that con-
tains R in its entirety. Rectangles can be
associated with both terminal and nonter-
minal nodes. Subdivision ceases whenever
a node’s block contains no rectangles. Al-
ternatively, subdivision can also cease once
a quadtree block is smaller than a predeter-
mined threshold size. This threshold is
often chosen to be equal to the expected
size of the rectangle [Kedem 19821. Fig-
ure 19 is the MX-CIF quadtree for the set
of rectangles in Figure 1. Once a rectangle
is associated with a quadtree node, say P,
it is not considered to be a member of any

lo CIF denotes Caltech Intermediate Form.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles l 299

(a)

{Ad

(b)

Figure 19. The MX-CIF quadtree (b) and the block
decomposition induced by it (a) for the rectangles in
Figure 1.

of the sons of P. For example, in Figure 19,
rectangle G overlaps the space spanned by
both the SE son of the root and the NE
son of the SE son of the root; yet G is only
associated with the SE son of the root.

It should be clear that more than one
rectangle can be associated with a given
enclosing block (i.e., node). There are sev-
eral ways of organizing these rectangles.
The simplest solution is to maintain a
linked list of these rectangles. Another ap-
proach, due to Kedem [19821, is described
below.

Let P be a quadtree node and let S be
the set of rectangles that are associated
with P. Members of S are organized into
two sets according to their intersection (or
colinearity of their sides) with the lines
passing through the centroid of P’s block.
We shall use the term axes or axis lines to
refer to these lines. For example, consider
node P centered at (CX, CY). All members
of S that intersect the line x = CX form

E D 0

(4 (b)

Figure 20. Binary trees for the y axes passing
through (a) the root of the MX-CIF quadtree in Figure
19 and (b) the NE son of the root of the MX-CIF
quadtree in Figure 19.

one set, and all members of S that intersect
the line y = CY form the other set. Equiv-
alently, these sets correspond to the rec-
tangles intersecting the y and x axes,
respectively, passing through (CX, CY). If
a rectangle intersects both axes (i.e., it con-
tains the centroid of P’s block), then we
adopt the convention that it is stored with
the set associated with the y axis. These
subsets are implemented as binary trees
(really tries), which in actuality are one-
dimensional analogs of the MX-CIF quad-
tree. For example, Figure 20 illustrates the
binary tree associated with the y axes pass-
ing through the root and the NE son of the
root of the MX-CIF quadtree of Figure 19.
The subdivision points of the axis lines are
shown by tick works in Figure 19.

At this point, the following observations
can be made. The MX-CIF quadtree is
related to the region quadtree in the same
way as the interval tree is related to the
segment tree. The MX-CIF quadtree is the
two-dimensional analog of the tile tree”
(without the tertiary structure). The tile
tree and the one-dimensional MX-CIF
quadtree are identical. In particular, when
rectangles are not permitted to overlap, the
secondary structures of the tile tree consist
of at most one rectangle. When the tile tree
is used in this context, it is not a complete
binary tree. Alternatively, it is not neces-
sarily balanced since the subdivision points
are fixed by virtue of regular decomposition
rather than being determined by the end-
points of the domain of rectangles as in the
definition of the interval tree.

I1 The analogy is with the tile tree instead of the
interval tree because the MX-CIF quadtree is based
on a regular decomposition.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

300 l Hanan Samet

A rectangle is inserted into an MX-CIF
quadtree by a top-down search for the po-
sition that it is to occupy. This position is
determined by a two-step process. First, the
first subdivision point must be located such
that at least one of its axis lines (i.e., the
quadrant lines emanating from the subdi-
vision point) intersects the input rectangle.
Second, having found such a point and an
axis, say point P and axis V, the subdivision
process is repeated for the V axis until the
first subdivision point that is contained
within the rectangle is located. During the
process of locating the destination position
for the input rectangle, the space spanned
by the MX-CIF quadtree may have to be
repeatedly subdivided (termed splitting)
creating new nodes in the process. In the
worst case, each rectangle is at the maxi-
mum depth of the tree, say n.12 Thus, the
worst-case cost of building an MX-CIF
quadtree for N rectangles is O(n . N) in
space and time. Of course, the expected
behavior should be better. It should be clear
that the shape of the resulting MX-CIF
quadtree is independent of the order in
which the rectangles are inserted into it.
Deletion of nodes is more complex and may
require collapsing of nodes-that is, the
direct counterpart of the node splitting
process outlined above.

The most common operations are deter-
mining whether a given rectangle overlaps
(i.e., intersects) any of the existing rectan-
gles or performing a window query. Another
popular query seeks to determine whether
one collection of rectangles can be overlaid
on another collection without any of the
component rectangles intersecting one an-
other. These two operations can be imple-
mented by using variants of algorithms
developed for handling set operations (i.e.,
union and intersection) in region-based
quadtrees [Hunter and Steiglitz 1979;
Shneier 19811. The window query is an-
swered by intersecting the query window
with the MX-CIF quadtree. The overlay
query is answered by a two-step process.
The two MX-CIF quadtrees are first inter-
sected. If the result is empty, then they can
be safely overlaid, and all that is needed is

I2 n is the sum of the maximum depths of the MX-
CIF quadtree and of the binary tree.

to perform a union of the two MX-CIF
quadtrees. Boolean queries can also be
easily handled.

When the rectangles are allowed to in-
tersect, reporting the pairs of rectangles
that intersect each other is achieved by
traversing the MX-CIF quadtree and for
each node examining all neighboring nodes
that can contain rectangles that intersect
it. In the worst case, for some rectangles we
may have to examine the entire MX-CIF
quadtree. If this is the case, however, the
remaining rectangles will not require this
much work. Nevertheless, the worst-case
execution time of this task is O(n . W) for
a tree of maximum depth n with N rec-
tangles. The expected behavior should be
better.

Abel and Smith [1983] also represent a
collection of rectangles by an MX-CIF
quadtree. The difference between their ap-
proach and that of Kedem [1982] is that
they do not use binary trees, or any other
data structure, to organize the rectangles
that are associated with each quadtree node
separately. They represent each rectangle
by its locational code. The locational code
represents a sequence of 2-bit directional
codes that locate the quadtree node along a
path from the root of the quadtree. The
code also reflects the level at which the
node is found. These codes are subse-
quently organized in a B+-tree [Comer
19791. Note that many rectangles have
identical locational codes, and thus the rec-
tangle dimensions must also be stored along
with the locational codes in the B+-tree.
For example, for the set of rectangles in
Figure 19, rectangles B, C, and D have the
same locational code, and so do rectangles
A and E.

4.2 Multiple Quadtree Block Representations

One of the problems with the MX-CIF
quadtree and other representations that as-
sociate each rectangle with the smallest
enclosing quadtree block is that determin-
ing how many rectangles intersect a win-
dow (e.g., in the form of a rectangle) may
be quite costly. The problem is that the
quadtree nodes that intersect the query rec-
tangle may contain many rectangles that

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles 301

do not intersect the query rectangle, yet
each one of them must be individually com-
pared with the query rectangle to determine
the existence of a possible intersection.

For example, consider the MX-CIF
quadtree in Figure 19, which corresponds
to the collection of rectangles given in Fig-
ure 1. Although query rectangle 1 (see Fig-
ure 1) is in the NE quadrant of the root of
the MX-CIF quadtree, we still have to
check some of the rectangles that are stored
at the root of the entire quadtree since these
rectangles could conceivably overlap the
query rectangle. This work could be avoided
by using a more compact (in an area sense)
representation of each rectangle. Such a
representation would use more, and
smaller, quadtree blocks to represent each
rectangle, but the total area of the blocks
would be considerably less than that of the
smallest enclosing quadtree block. The
result is that more rectangles would be
eliminated from consideration due to the
pruning that occurs during the search of
the quadtree. A number of alternatives are
available to achieve this effect. They
are examined briefly below.

One possibility is to use a region quadtree
representation for each rectangle. Such a
representation would lead to many nodes
since its underlying decomposition rule re-
quires that the block corresponding to each
node be homogeneous (i.e., that it be totally
contained within one of the rectangles or
not be in any of the rectangles). Permitting
rectangles to overlap forces a modification
of the decomposition rule. In particular, it
implies that decomposition ceases when a
block is totally contained within one or
more rectangles. If a block is contained in
more than one rectangle, however, it must
be totally contained in all of them.

Abel and Smith [1985] present a less
radical alternative. They propose that in-
stead of using the minimum enclosing
quadtree block, each rectangle is repre-
sented by a collection of enclosing quadtree
blocks. They suggest that the collection
contain a maximum of four blocks, al-
though other amounts are also possible.
The four blocks are obtained by determin-
ing the minimum enclosing quadtree block,
say B, for each rectangle, say R, and then
splitting B once to obtain quadtree blocks

(a)

IF)
(b)

Figure 21. The expanded MX-CIF quadtree (b) and
the block decomposition induced by it (a) for the
rectangles in Figure 1.

Bi (i E (NW, NE, SW, SE]) such that Ri is
the portion of R, if any, that is contained
in B;. Next, for each Bi we find the mini-
mum enclosing quadtree block, say Di, that
contains Ri. Now, each rectangle is repre-
sented by the set of blocks consisting of Die
We term such a representation an expanded
MX-CIF quadtree.

As an example of the expanded MX-CIF
quadtree, consider Figure 21, which corre-
sponds to the collection of rectangles of
Figure 1. Several items are worthy of note.
First, each node appears at least one level
lower in the expanded MX-CIF quadtree
than it did in the MX-CIF quadtree. Sec-
ond, some of the Di may be empty (e.g.,
rectangle A in Figure 21 is covered by
blocks 2 and 4; rectangle F in Figure 21 is
covered by block 14). Third, the covering

ACM Computing Surveys, Vol. 20, No. 4, December 1988

302 l Hanan Samet

blocks are not necessarily of equal size (e.g.,
rectangle E in Figure 21 is covered by
blocks 4 and 12). It should be clear that the
area covered by the collection of blocks Di
is not greater than that of B.

The worst-case execution time for build-
ing the expanded MX-CIF quadtree and
the space requirements are the same as for
the MX-CIF quadtree-that is, O(n. N)
for a tree of maximum depth n with N
rectangles. The worst-case execution time
of the rectangle intersection problem is also
the same as that for the MX-CIF quad-
tree-that is, O(n . N’). Abel and Smith
suggest that the search process can be made
more efficient by applying the splitting
process again to the blocks Die Of course,
the more times that we split, the closer we
get to the region quadtree representation of
the rectangles. Also, this increases the
space requirement and the insertion and
deletion costs.

Shaffer [1986] presents a pair of data
structures termed an RR quadtree that is
somewhat related to the expanded MX-
CIF quadtree. Two variants are given. The
first, called an RR1 quudtree makes use of
a decomposition rule that splits until each
node contains either just one rectangle or
all of the rectangles in the node intersect
each other. Thus, all rectangles are associ-
ated with terminal nodes. When rectangles
are not permitted to overlap, this decom-
position rule means that no block can con-
tain a part of more than one rectangle. For
example, consider Figure 22, which is the
RR1 quadtree corresponding to the collec-
tion of rectangles of Figure 1. Note that
node 3 had to be decomposed further since
rectangles B, C, and D do not mutually
intersect each other.

The storage requirements of the RR1
quadtree are much higher than those of the
MX-CIF and expanded MX-CIF quad-
trees. This is due to the need to decompose
the collection when many rectangles are
near each other without mutually inter-
secting each other-for example, a chain
formed by intersecting rectangles. This
problem is partially resolved by loosening
the decomposition criterion of the RR1
quadtree to permit a node, say N, to contain
a pair of rectangles if they intersect or are

(a)

Figure 22. The RR, quadtree (b) and the block de-
composition induced by it (a) for the rectangles in
Figure 1.

a part of a chain of connected rectangles so
that each rectangle in the chain is also in
the node. The resulting structure is called
an RR, quudtree. For example, consider Fig-
ure 23, which is the RR2 quadtree corre-
sponding to the collection of rectangles of
Figure 1. Note that now, unlike the RR1
quadtree, node 3 need not be further de-
composed to deal with rectangles B, C, and
D. These three rectangles form a chain of
intersecting rectangles but they do not mu-
tually intersect each other.

The RR2 quadtree still requires consid-
erably more storage than the MX-CIF and
expanded MX-CIF quadtrees. The advan-
tage of the RR quadtree family, however, is
that if two rectangles intersect, then they
must be stored in the same node. This
makes window queries quite efficient since

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles 303

I I I

(a)

IF} {G} {G}
(b)

Figure 23. The RR, quadtree (b) and the block de-
composition induced by it (a) for the rectangles in
Figure 1.

fewer rectangles must be examined for in-
tersection. In particular, the number of rec-
tangle comparisons required by a window
query in an RR2 quadtree is equal to the
number of comparisons that would be made
were the query rectangle being inserted into
the tree.

The space requirements of the region
quadtree and the RR quadtree family are
dependent on the amount of space that is
required to store an individual rectangle. In
all three cases, for a tree of maximum depth
n, a rectangle requires O(2”) space. For N
rectangles, the time required to build the
region quadtree is O(N. 2’7, whereas for
the RR quadtree family it may be as high
as O(N2 . 2”) since each rectangle must be
checked against the rectangles in each node
in which it is contained-there are O(27

such nodes and each can contain N rectan-
gles. Solving the rectangle intersection
problem is quite easy since it is done by
traversing the tree and reporting all nodes
that contain more than one rectangle. The
time required is the same as the space re-
quirement. It can be shown that each inter-
section is only reported once.

4.3 R-Trees

The R-tree of Guttman [1984] is a hierar-
chical data structure that is derived from
the B-tree. Each node in the tree corre-
sponds to the smallest d-dimensional rec-
tangle that encloses its son nodes. The leaf
nodes contain pointers to the actual geo-
metric objects in the database, instead of
sons. The objects are represented by the
smallest aligned rectangle in which they
are contained. Often the nodes correspond
to disk pages, and thus the parameters de-
fining the tree are chosen so that a small
number of nodes is visited during a spatial
query. Note that rectangles corresponding
to different nodes may overlap. Also, a rec-
tangle may be spatially contained in several
nodes, yet it can only be associated with
one node. This means that a spatial query
may often require several nodes to be vis-
ited before ascertaining the presence or ab-
sence of a particular rectangle. Our discus-
sion is limited to the representation of
rectangles in two dimensions.

The basic rules for the formation of an
R-tree are very similar to those for a B-
tree. All leaf nodes appear at the same level.
Each entry in a leaf node is a 2-tuple of the
form (R, 0) such that R is the smallest
rectangle that spatially contains data object
0. Each entry in a nonleaf node is a 2-tuple
of the form (R, P) such that R is the small-
est rectangle that spatially contains the
rectangles in the child node pointed at by
P. An R-tree of order (m, M) means that
node in the tree, with the exception of the
root, contains between m 5 TM/21 and M
entries. The root node has at least two
entries unless it is a leaf node.

For example, consider the collection of
rectangles given in Figure 1, and treat the
query rectangles (i.e., 1, 2, and 3) as ele-
ments of the collection so that there is a

ACM Computing Surveys, Vol. 20, No. 4, December 1988

304 ’ Hanan Samet

RI IR21

R31 R41

Al II 11E131 BICID1121FIG

(a)

.-----------A

(b)

Figure 24. (a) R-tree for the collection of rectangles
in Figure 1 and (b) the spatial extents of the enclosing
rectangles.

total of 10 rectangles. Let A4 = 3 and m =
2. One possible R-tree for this collection is
given in Figure 24a. Figure 24b shows the
spatial extent of the rectangles of the nodes
in Figure 24a, with broken lines denoting
the rectangles corresponding to the sub-
trees rooted at the nonterminal nodes. Note
that the R-tree is not unique. Its structure
depends heavily on the order in which the
individual rectangles were inserted into
(and possibly deleted from) the tree.

The algorithm for inserting an object
(i.e., a record corresponding to its enclosing
rectangle) in an R-tree is analogous to that
used for B-trees. New rectangles are added
to leaf nodes. The appropriate leaf node is
determined by traversing the R-tree start-
ing at its root and at each step choosing
the subtree whose corresponding rectangle
would have to be enlarged the least. Once
the leaf node has been determined, then
check if insertion of the rectangle will cause
the node to overflow. If yes, then it must
be split and the M + 1 records must be

u r-i u r----

;y+ff+g
0

- ---I
I I
I

1 I

I I
’ Id

.: :-

II
1 I I
:-: [I L------1 E

Figure 25. (a) Four rectangles and the splits that
would be induced (b) by minimizing the total area of
the covering rectangles and (c) by minimizing the area
common to the covering rectangles of both nodes.

distributed in the two nodes. Splits are
propagated up the tree.

There are many possible ways to split a
node. One possible goal is to distribute the
records among the nodes so that the like-
lihood that the nodes will be visited in
subsequent searches will be reduced. This
is accomplished by minimizing the total
areas of the covering rectangles for the
nodes (i.e., coverage). An alternative goal
is to reduce the likelihood that both nodes
are examined in subsequent searches. This
is accomplished by minimizing the area
common to both nodes (i.e., overlap). Of
course, at times these goals may be con-
tradictory. For example, consider the four
rectangles in Figure 25a. The first goal is
satisfied by the split in Figure 25b, whereas
the second goal is satisfied by the split in
Figure 25~.

Deletion of a rectangle, say R, from an
R-tree proceeds by locating the leaf node,
say L, containing R and removing R from
L. Next, adjust the covering rectangles on
the path from L to the root of the tree while
removing all nodes in which underflow oc-
curs and adding them to the set U. Once
the root node is reached, if it has just one
son, then the son becomes the new root.
The nodes in which underflow occurred
(i.e., members of U) are reinserted at the
root. Elements of U that correspond to leaf
nodes result in the placement of their con-
stituent rectangles in the leaf nodes,
whereas other nodes are placed at a level
so that their leaf nodes are at the same level
as those of the whole tree.

The deletion algorithm for an R-tree dif-
fers from that for a B-tree in that in the
case of underflow, nodes are reinserted in-

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles l 305

stead of being merged with adjacent nodes.
The difficulty is that there is no concept of
adjacency in an R-tree, although we could
merge with the sibling whose area will be
increased the least or even just distribute
the elements of the underlowing node
among its siblings. Nevertheless, reinser-
tion is used by Guttman [1984] because of
a feeling that it enables the tree to reflect
the changing spatial structure of the data
dynamically rather than the gradual deg-
radation that could arise when a rectangle
maintains the same parent throughout its
lifetime!

Searching for points or regions in an R-
tree is straightforward. The only problem
is that a large number of nodes may have
to be examined since a rectangle may be
contained in the covering rectangles of
many nodes while its corresponding record
is only contained in one of the leaf nodes
(e.g., in Figure 24, rectangle 1 is contained
in its entirety in Rl, R2, R3, and R5). For
example, suppose we wish to determine the
identity of the rectangle element in the
collection of rectangles given in Figure 1,
which contains point Q at coordinates
(21,24). Since Q can be in either of Rl and
R2, we must search both of their subtrees.
Searching Rl first, we find that Q could
only be contained in R3. Searching R3 does
not lead to the rectangle that contains Q
even though Q is in a portion of rectangle
D that is in R3. Thus, we must search R2,
and we find that Q can only be contained
in R5. Searching R5 results in locating D,
which is the desired rectangle.

The insertion algorithm, and the ac-
companying node splitting techniques,
described above are based on a dynamic
database. If the database can be expected
to be static and all of the objects are known
a priori, then a different technique can be
used to build an R-tree. Roussopoulos and
Leifker [1985] propose the use of a packed
R-tree, which is an R-tree that is built by
successively applying a nearest-neighbor
relation to group objects in a node after the
set of objects has been sorted according to
a spatial criterion. Once an entire level of
the tree is built, the algorithm is reapplied
to add nodes at the next higher level, ter-
minating when a level contains just one

node. This is a static method that results
in each node being filled to capacity.

Although the packed R-tree does not nec-
essarily result in a minimum coverage and/
or overlap, empirical tests [Roussopoulos
and Leifker 19851 of its performance on
point searches in a database of two-dimen-
sional points show its use to lead to signif-
icant improvements vis a vis an R-tree that
was built using the conventional R-tree
insertion routine. In these tests each node
was constructed by selecting an object from
a spatially sorted list and then adding its
M - 1 nearest neighbors. Once all the nodes
at a given level have been constructed, the
process is applied recursively, forming
nodes at successively higher levels in the
tree until just one node remains. A better
approach, although far costlier from a
combinatorial standpoint, is to choose
the M objects simultaneously so that the
area of the resulting covering rectangle is
minimized.

Another alternative to the R-tree is the
R+-tree [Sellis et al. 1987; Stonebraker et
al. 19861, which is an extension of the k-d-
B-tree [Robinson 19811 to deal with rectan-
gles. The motivation for the R+-tree is to
avoid overlap among the bounding rectan-
gles. In particular, all bounding rectangles
(i.e., at levels other than the leaf) are non-
overlapping. Thus, each rectangle is asso-
ciated with all the bounding rectangles that
it intersects. The result is that there may
be several paths starting at the root to the
same rectangle. This will lead to an increase
in the height of the tree. Retrieval time,
however, is sped up. The cell tree of
Gunther [1987] is similar to the R+-tree,
with the principal difference being that the
nonleaf nodes of the cell tree are convex
polyhedra instead of bounding rectangles.

Figure 26 is an example of one possible
R+-tree for the collection of rectangles in
Figure 1. Once again, the query rectangles
(i.e., 1, 2, and 3) are treated as elements of
the collection so that there is a total of 10
rectangles. This particular tree is of order
(2, 3), although in general it is not possible
to always guarantee that all nodes will have
a minimum of two entries. Notice that rec-
tangles D and E appear in three different
nodes, whereas rectangle B appears in two

ACM Computing Surveys, Vol. 20, No. 4, December 1988

306 . Hanan Samet

(4

IlIT- I, -lli4 ,
IL==--====_==_=-::=

I

tb)

Figure 26. (a) R’-tree for the collection of rectangles in Figure
1 and (b) the spatial extents of the enclosing rectangles.

different nodes. Of course, other variants
are possible since the R+-tree is not unique.

It is interesting to note that the decom-
position into blocks induced by the R+-tree
is similar to the way a region quadtree
would be used to represent a collection of
rectangles (see Section 4.2). Since the R+-
tree is an extension of the k-d-B-tree, it has
a drawback that B-tree performance guar-
antees are no longer valid. For example,
pages are not guaranteed to be 50% full
without very complicated record insertion
and deletion procedures. Nevertheless, em-
pirical tests by Faloutsos et al. [19871 reveal
reasonable behavior in comparison to the
conventional R-tree. These tests were cou-
pled with a limited analysis of the behavior
of the two data structures when used to
represent one-dimensional intervals of
equal length by transforming them to
points in two dimensions using represen-
tation (2) of Section 3. Sellis et al. [1987]
suggest that performance of the R+-tree
can be improved by a judicious choice of
partition lines, as well as by a careful initial

ACM Computing Surveys, Vol. 20, No. 4, December 1988

grouping of the rectangles at the leaf level.
The latter can be achieved by applying
heuristics similar to those used to build a
packed R-tree.

Assume that the R-tree and the R+-tree
are constructed in a batch manner-that
is, all the rectangles are known before the
construction and hence are arbitrarily
grouped together. For N rectangles, the
construction time and space requirements
of these two data structures are both O(N)
and O(N2), respectively. The reason for the
higher costs for the R+-tree is that a rec-
tangle may appear in N nodes because of
its intersection with N other rectangles.
This analysis assumes that no optimization
is performed when a node overflows. In
both cases, the worst-case execution time
of the rectangle intersection problem is
O(N2).

5. CONCLUDING REMARKS

In this tutorial we gave an overview of a
number of different hierarchical represen-

tations for collections of rectangles. The
choice of a representation is not clear-cut.
It depends on the problem domain and the
tasks to be performed. Although our cov-
erage has been limited, we have seen that
the various methods are quite similar. In
particular, we have shown a close relation-
ship between quadtree like area-based rep-
resentations and the representations used
to support solutions based on the plane-
sweep paradigm.

In retrospect, this relationship is not sur-
prising. It is based on the observation that
algorithms that make use of traversals of a
quadtree are in actuality performing a two-
dimensional plane sweep. Furthermore, a
quadtree decomposition is really a multi-
dimensional sort. In contrast, solutions
based on representations such as the inter-
val tree perform a sort in one dimension
and then a sweep in the other direction. Of
course, a similar solution could also be de-
vised in a multidimensional environment.
In such a case, the concept of an active
border [Samet and Tamminen 1985, 19881
used in the multidimensional plane sweep
embodied by a quadtree traversal is the
analog of the scan line in the one-dimen-
sional plane-sweep. At any instant in a
traversal of the quadtree, the active border
represents the boundary between the nodes
that have been processed and those that
have not. The similarity is completed by
devising data structures to represent the
active border that have properties analo-
gous to those of the segment and interval
trees. It would be interesting to explore this
relationship further.

ACKNOWLEDGMENTS

I have benefitted greatly from many discussions with
Mike Dillencourt as this paper was written. I would
also like to think Timos Sellis for his comments on
R-trees, and Azriel Rosenfeld and an anonymous ref-
eree for a thorough review of the paper. The support
of the National Science Foundation under Grant IRI-
88-02457 is gratefully acknowledged.

REFERENCES

ABEL, D. J. 1985. Some elemental operations on
linear quadtrees for geographic information sys-
tems. Comput. J. 28, 1 (February), 73-77.

ABEL, D. J., AND SMITH, J. L. 1983. A data structure
and algorithm based on a linear key for a rectan-

gle retrieval problem. Comput. Vision Graph. Zm-
age Process. 24, 1 (Oct.), 1-13.

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D.
1974. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass.

BENTLEY, J. L. 1975. Multidimensional binary
search trees used for associative searching.
Commun. ACM 18,9 (Sept.), 509-517.

BENTLEY, J. L. 1977. Algorithms for Klee’s rec-
tangle problems. Computer Science Department,
Carnegie-Mellon University, Pittsburgh.

BENTLEY, J. L. 1979. Decomposable searching prob-
lems. Znf. Process. L&t. 8, 5 (June), 244-251.

BENTLEY, J. L., AND MAURER, H. A. 1980. Efficient
worst-case data structures for range searching.
Acta Znf. 13, 2, 155-168.

BENTLEY, J. L., AND OTTMANN, T. A. 1979.
Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput. 28,9 (Sept.),
643-647.

BENTLEY, J. L., AND WOOD, D. 1980. An optimal
worst-case algorithm for reporting intersections
of rectanrrles. IEEE Trans. Comnut. 29. 7 (Julv).
571-577.-

“_,

BUCHER, W., AND EDELSBRUNNER, H. 1983. On ex-
pected and worst-case segment trees. In Advances
in Computing Research, vol. 1, Computational
Geometry, F. P. Preparata, Ed. JAI Press, Green-
wich, Conn., pp. 109-125.

CHAZELLE, B., AND GUIBAS, L. J. 1986a. Fractional
cascading: I. A data structuring technique. Algo-
rithmica 1, 2, 133-162.

CHAZELLE, B., AND GUIBAS, L. J. 1986b. Fractional
cascading: II. Applications. Algorithmica 1, 2,
163-191.

COMER, D. 1979. The ubiquitous B-tree. ACM Com-
put. Surv. 11, 2 (June), 121-137.

EDELSBRUNNER, H. 1980a. Dynamic rectangle
intersection searching. Institute for Information
Processing Rept. 47, Technical University of
Graz, Graz, Austria.

EDELSBRUNNER, H. 1980b. Dynamic data structures
for orthogonal intersection queries. Institute for
Information Processing. Rept. 59, Technical Uni-
versity of Graz, Graz, Austria.

EDELSBRUNNER, H. 1982. Intersection problems in
computational geometry. Institute for Informa-
tion Processing Rept. 93, Technical Univ. of
Graz, Graz, Austria.

EDELSBRUNNER, H. 1983a. A new approach to rec-
tangle intersections: Part I. Znt. J. Comp. Math.
13,3-4.209-219.

EDELSBRUNNER, H. 1983b. A new approach to rec-
tangle intersections: Part II. Znt. J. Comput.
Math. 13,3-4, 221-229.

EDELSBRUNNER, H., GUIBAS, L. J., AND STOLFI, J.
1986. Optimal point location in a monotone
subdivision. SIAM J. Comput. 15, 2 (May),
317-340.

FALOUTSOS, C., SELLIS, T., AND Rousso~ou~os, N.
1987. Analysis of object oriented spatial access

ACM Computing Surveys, Vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles 9 307

308 l Hanan Samet

methods. In Proceedings of the SZGMOD Confer-
ence (San Francisco, May). ACM, New York, pp.
426-439.

FINKEL, R. A., AND BENTLEY, J. L. 1974. Quad trees:
A data structure for retrieval on composite keys.
Acta Znf. 4, 1, l-9.

FREDKIN, E. 1960. Trie memory. Commun. ACM 3,
9 (Sept.) 490-499.

GUIBAS, L. J., AND SEDGEWICK, R. 1978. A dichro-
matic framework for balanced trees. In Proceed-
ings of the 19th Annual IEEE Symposium on the
Foundations of Computer Science (Ann Arbor,
Mich., Oct.). IEEE, New York, pp. 8-21.

GUNTHER, 0. 1987. Efficient structures for geomet-
ric data manaaement. Ph.D. dissertation, UCB/
ERL M87/77,-Electronics Research Laboratory,
College of Engineering, Univ. of California at
Berkeley, Berkeley, Calif.

GUTTMAN, A. 1984. R-trees: A dynamic index struc-
ture for spatial searching. In Proceedings of the
SZGMOD Conference (Boston. June). ACM. New
York, pp. 47-57. ’ ’

HARARY, F. 1969. Graph Theory. Addison-Wesley,
Reading, Mass., 1969.

HINRICHS, K. 1985a. The grid file system: Imple-
mentation and case studies of applications. Ph.D.
dissertation, Institut fur Informatik, ETH,
Zurich, Switzerland.

HINRICHS, K. 1985b. Implementation of the grid tile:
Design concepts and experience. BIT 25, 4,
569-592.

HINRICHS, K., AND NIEVERCELT, J. 1983. The grid
file: A data structure designed to support prox-
imity queries on spatial objects. In Proceedings of
the WG’83 (International Workshop on Graph-
theoretic Concepts in Computer Science), M. Nag1
and J. Perl, Eds. (Trauner Verlag, Linz, Austria),
pp. 100-113.

in design rule verification of integrated circuits.
J. De&m Automat. Fault-Tolerant Comput. 2, 3
(July), 241-247.

LEE, D. T. 1983. Maximum clique problem of rectan-
gle graphs. In Advances in Computing Research.
Vol. 1, Computational Geometry. F. P. Preparata,
Ed. JAI Press, Greenwich, Conn., pp. 91-107.

LEE, D. T., AND PREPARATA, F. P. 1982. An im-
proved algorithm for the rectangle enclosure
problem. J. Algorithms 3, 3 (Sept.), 218-224.

MATSUYAMA, T., HAO, L. V., AND NAGAO, M.
1984. A file organization for geographic infor-
mation systems based on spatial proximity. Com-
put. Vision Graph. Image Process. 26, 3 (June),
303-318.

MCCREIGHT, E. M. 1980. Efficient algorithms for
enumerating intersecting intervals and rectan-
gles. Report CSL-80-9, Xerox Palo Alto Research
Center, Palo Alto, Calif. (June).

MCCREIGHT, E. M. 1985. Priority search trees.
SIAM J. Comput. 14,2 (May), 257-276.

NIEVERGELT, J., HINTERBERGER, H., AND SEVCIK,
K. C. 1984. The grid file: An adaptable, sym-
metric multikey tile structure. ACM Trans. Da-
tabase Syst. 9, 1 (Mar.), 38-71.

ORENSTEIN, J. A. 1982. Multidimensional tries used
for associative searching. Znf. Process. Lett. 14, 4
(June), 150-157.

OVERMARS, M. H. 1988. Geometric data structures
for computer graphics: An overview. In Theoret-
ical Foundations of Computer Graphics and CAD,
R. A. Earnshaw, Ed. Springer-Verlag, Berlin,
pp. 21-49.

REQUICHA, A. A. G. 1980. Representations of rigid
solids: Theory, methods, and systems. ACM Com-
put. Suru. 12, 4 (Dec.), 437-464.

ROBINSON, J. T. 1981. The k-d-B-tree: A search
structure for large multidimensional dynamic in-
dexes. In Proceedings of the SZGMOD Conference
(Ann Arbor, Mich., Apr.). ACM, New York, pp.
10-18.

PREPARATA, F. P., AND SHAMOS, M. I. 1985.
Computational Geometry: An Introduction. Sprin-
ger-Verlag, New York.

REGNIER, M. 1985. Analysis of grid file algorithms.
BIT 25,2,335-357.

HUNTER, G. M. 1978. Efficient computation and

KEDEM, G. 1982. The quad-CIF tree: A data struc-
ture for hierarchical on-line algorithms. In Pro-

data structures for graphics. Ph.D. dissertation,

ceedings of the 19th Design Automation Confer-

Dept. of Electrical Engineering and Computer

ence (Las Vegas, June), pp. 352-357.
KLEE, V. 1977. Can the measure of U [a,, bi] be

Science, Princeton Univ., Princeton, N.J.

computed in less than O(n log n) steps? Am.
Math. Monthly 84,4 (Apr.), 284-285.

HUNTER, G. M., AND STEIGLITZ, K. 1979.

KLINGER, A. 1971. Patterns and search statistics. In

Operations on images using quad trees. IEEE

Optimizing Methods in Statistics, J. S. Rustagi,
Ed. Academic Press, Orlando, Fla., pp. 303-337.

KNUTH, D. E. 1973.

Trans. Pattern Anal. Mach. Zntell. 1, 2 (Apr.),

The Art of Computer Program-
ming, Vol. 3, Sorting and Searching. Addison-
Wesley, Reading, Mass.

145-153.

LAUTHER, U. 1978. Four-dimensional binary search
trees as a means to speed up associative searches

ROSENBERG, J. B. 1985. Geographical data struc-
tures compared: A study of data structures sup-
porting region queries. IEEE Trans. Comput.
Aided Design 4, 1 (Jan.), 53-67.

ROSENFELD, A., AND KAK, A. C. 1982. Digital Pic-
ture Processing, 2nd ed. Academic Press, New
York.

Rousso~ou~os, N., AND LEIFKER, D. 1985. Direct
spatial search on pictorial databases using packed
R-trees. In Proceedings of the SZGMOD Confer-
ence (Austin, TX., May). ACM, New York, pp.
17-31.

SAMET, H. 1980. Region representation: Quadtrees
from binary arrays. Comput. Graph. Image Pro-
cess. 13, 1 (May), 88-93.

ACM Computing Surveys, vol. 20, No. 4, December 1988

Hierarchical Representations of Collections of Small Rectangles l 309

SAMET, H. 1984. The quadtree and related hierar-
chical data structures. ACM Comput. Surv. 16, 2

SIX, H. W., AND WOOD, D. 1980. The rectangle
intersection problem revisited. BIT 20, 4, 426-

(June), 187-260. 433.
SAMET, H. 1989a. Fundamentals of Spatial Data

Structures. Addison-Wesley, Reading, Mass.
SIX, H. W., AND WOOD, D. 1982. Counting and

reporting intersections of d-ranges. IEEE Trans.
SAMET, H. 1989b. Applications of Spatial Data Struc- Comput. 31, 3 (March), 181-187.

tures. Addison-Wesley, Reading, Mass. STONEBRAKER, M., SELLIS, T., AND HANSON, E.
SAMET, H., AND TAMMINEN, M. 1985. Computing 1986. An analysis of rule indexing implemen-

geometric properties of images represented by tations in data base systems. In Proceedings of

linear quadtrees. IEEE Trans. Pattern Anal.
Mach. Zntell. 7, 2 (Mar.), 229-240.

the 1st International Conference on Expert Data-
base Systems (Charleston, S.C., Apr.), pp. 353-

SAMET, H., AND TAMMINEN, M. 1988. Efficient 364.

component labeling of images of arbitrary dimen- TARJAN, R. E. 1983. Updating a balanced search tree
sion represented by linear bintrees. IEEE Trans. in O(1) rotations. Znf. Process. L.&t. 16, 5 (June),
Pattern Anal. Mach. Intell. 10, 4 (July), pp. 579- 253-257.
586. ULLMAN, J. D. 1982. Principles of Database Systems,

SARNAK, N., AND TARJAN, R. E. 1986. Planar point 2nd ed. Computer Science Press, Rockville, Md.
location using persistent search trees. Commun. VAISHNAVI, V., AND WOOD, D. 1980. Data structures
ACM 29, 7 (July), 669-679. for the rectangle containment and enclosure

SELLIS, T., Rousso~ou~os, N., AND FALOUTSOS, C. problems. Comp. Graph. Image Process. 13, 4
1987. The R+-tree: A dynamic index for multi- (Aug.), pp. 372-384.
dimensional objects. Computer Science TR-1795, VAISHNAVI, V., AND WOOD, D. 1982. Rectilinear line
Univ. of Maryland, College Park, Md. segment intersection, layered segment trees and

SHAFFER, C. A. 1986. Application of alternative dynamization. J. Algorithms 3, 2 (June), pp. 160-
quadtree representations. Ph.D. dissertation, TR- 176.
1672, Computer Science Dept., Univ. of Mary- VAN LEEUWEN, J. AND WOOD, D. 1981. The measure
land, College Park, Md. problem for rectangular ranges in d-space. J.

SHAMOS, M. I., AND HOEY, D. 1976. Geometric in- Algorithms 2, 3 (Sept.), 282-300.
tersection problems. In Proceedings of the 17th VOELCKER, H. B., AND REQUICHA, A. A. G. 1977.
Annual IEEE Symposium on the Foundations of
Computer Science (Houston, October). IEEE,

Geometric modeling of mechanical parts and

New York, pp. 208-215.
processes. IEEE Comp. 10, 12 (Dec.), 48-57.

WEIDE, B. W. 1978.
SHNEIER, M. 1981. Calculations of geometric prop-

Statistical methods in algorithm

erties using quadtrees, Comp. Graph. Image Pro-
design and analysis. Res. Rep. CMU-CS-78-142,

cess. 16, 3 (July), 296-302.
Computer Science Department, Carnegie-Mellon
University, Pittsburgh, Pa.

Received January 1988; final revision accepted June 1988.

ACM Computing Surveys, Vol. 20, No. 4, December 1988

