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ABSTRACT

Spatial applications often require the ability to perform
similarity search over a collection of point sets. For exam-
ple, given a geographical distribution of a disease outbreak,
find k historical outbreaks with similar spatial distributions
from a data collection D. In this paper, we study the prob-
lem of similarity search over a collection of point sets us-
ing the Hausdorff distance, which is a measure commonly
used to determine the maximum discrepancy between two
point sets. To avoid computing the Hausdorff distance for
all point sets S in D, one may compute an optimistic esti-
mate (i.e., lower bound value) of the actual Hausdorff dis-
tance HausDist(Q,S) for each S to rule out sets that are
obviously dissimilar to Q. In our investigation, we observed
that a commonly used method (called BscLB) to compute
an estimate may not produce a result which is indicative
of the actual Hausdorff distance. Consequently, we propose
a method (called EnhLB) which produces a tighter esti-
mate than the existing one. We then formulate a similarity
search algorithm which uses a combination of BscLB and
EnhLB to find similar point sets efficiently. In addition, we
also extend our method to support an outlier-resistant vari-
ant of the Hausdorff distance called the modified Hausdorff
distance. We compare our proposed algorithm with an al-
gorithm using only BscLB. The results of our experiments
show a reduction in computation time of 72% for searches
using the Hausdorff distance and a reduction of 53% using
the modified Hausdorff distance.
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1. INTRODUCTION
Existing spatial search systems (e.g., Google Maps, Yelp,

Zillow) allow users to find points of interest by using a prox-
imity query like “find the 3 nearest gas stations with respect
to one’s location q”. This problem can be formalized as the
nearest neighbor (NN) query problem. That is, given a set D
of gas stations and a query location q, the nearest neighbor
(NN) query [11, 17] identifies a point p in D which minimizes
the distance Dist(q, p).

The NN query can also be generalized to the aggregate
NN query [16] and the distance join query [6, 10, 19, 22].
These queries involve identifying a closest point p in D that
minimizes the distance to a query object Q which is a set of
locations rather than a single location. For example, given a
set Q of stations of a train line and a set D of bus stops of a
bus route, find a stop p in D which minimizes the distance
to any train station in Q for transfer purposes.

In this paper, the concept of NN search is further extended
to a case where (i) the dataset D comprises sets of locations,
(ii) the query object Q is also a set of locations, and (iii) we
want to find the k most similar sets in D with respect to
Q using measures described later in this section. Example
applications that may benefit from our work include:

• Given a geographical distribution of a current disease
outbreak represented as a location set Q, an epidemi-
ologist may wish to find k occurrences of outbreaks
(from a set D of historical outbreak distributions) that
are most similar to Q. These results can then be used
to help identify correlations between the outbreak in
question and other outbreaks.

• Let Q denote a location set of warehouses of one logis-
tics company and D denote a collection of location sets
of petrol stations where each location set contains loca-
tions of petrol stations within a single petrol company.
To form a partnership with a petrol company, the lo-
gistics company may wish to find the petrol company
whose location set S minimizes the average distance
from each warehouse in Q to the nearest station in S.

We use the Hausdorff distance HausDist as a dissimilar-
ity measure of a set A with respect to another set B. The
Hausdorff distance HausDist(A, B) can be regarded as the
worst-case discrepancy of A with respect to B. Specifically,
the distance HausDist(A, B) is defined as the maximum
value of the distance from each point a in A to its nearest
point in B, i.e.,

HausDist(A, B) =

max{min{Dist(a, b) : b ∈ B} : a ∈ A}.
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(a) BscLB is 32.6% of the corresponding HausDist (b) EnhLB is 82.7% of the corresponding HausDist

Figure 1: Illustrations of BscLB, EnhLB and HausDist from A to B ({a1, ..., a6} to {b1, ..., b6})

Intuitively, using this measure, a set A is considered simi-
lar to B iff each point in A is close to at least one point
in B. Since HausDist is asymmetric, it is not technically
a distance function. However, throughout this paper we re-
fer to it as a distance function in the interest of brevity.
To form a symmetric relation, SymHausDist(A,B) is de-
fined as max{HausDist(A, B),HausDist(B, A)}. That is,
two sets A and B are considered similar to each other if A
is similar to B and B is similar to A.

A naive method to identify a point set in a collection D of
point sets which minimizes the HausDist from Q is to com-
pute HausDist(Q, S) for each point set S in D and identify
a point set that yields the smallest HausDist. One may re-
duce the number of HausDist computations by computing
a lower bound value (an optimistic estimate) of the actual
distance HausDist(Q,S) for each S to rule out sets that
are obviously dissimilar to Q. Ideally, we want this lower
bound to provide an estimate that is close to the actual
distance HausDist(Q, S), while keeping the computation
cost low with respect to that of HausDist(Q,S). Hence,
the challenge of formulating a Hausdorff lower bound lies
in the tradeoff between the quality of the estimate and its
computation cost.

Traditionally, a lower bound on HausDist(A, B) can be
computed as the MaxMin distance [18] from the minimum
bounding rectangle (MBR) of A to the MBR of B. Our re-
search is based on the observation that this basic lower bound
(BscLB) may be inaccurate when the MBR that covers A

significantly overlaps the MBR that covers B. In such a case,
the inaccuracy of BscLB may result in a large number of
HausDist computations which can be highly undesirable
when the number of point sets is large. Based on this obser-
vation, we propose a novel method which decomposes the
two MBRs into sub-MBRs and computes a lower bound us-
ing sub-MBRs of the two sets. We call this new method the
enhanced lower bound (EnhLB). Our experimental results
show that EnhLB provides an estimate that is significantly
closer to the actual HausDist than BscLB, which results
in a greater pruning capability. Although EnhLB incurs a
greater computation cost than BscLB, a significant overall
performance improvement is obtained.

Figure 1 provides a comparison between BscLB and
EnhLB (computed using the methods described in Sec-
tion 4). In Figure 1(a), the value of BscLB from A to B
is calculated as the MaxMin distance from the MBR that
encloses A to the MBR that encloses B. An edge pair that
yields the BscLB value of 3 is highlighted in grey. In Fig-
ure 1(b), the value of EnhLB from A to B is calculated
using the sub-MBRs of those in Figure 1(a). An edge pair

that yields the EnhLB value of 7.62 is highlighted in grey.
In this example, EnhLB is 2.54 times closer to the actual
HausDist than BscLB.

It can be seen that the accuracy of EnhLB(A,B) depends
on how the MBRs of A and B are decomposed into sub-
MBRs as well as the number n of sub-MBRs. Hence, we
formulate an algorithm to find appropriate MBRs for each
point set S. Specifically, we propose an algorithm which uti-
lizes an R-Tree index R to hierarchically organize the data
points in S. The algorithm traverses R starting from the
root and decomposes larger MBRs into sub-MBRs (MBRs
of their children) until a desired number n of sub-MBRs is
reached. We also present an empirical study to choose an
appropriate value of n in Section 6.

In addition to HausDist, which is a measure of maximum
discrepancy, we extend the concept of EnhLB to support a
measure of average discrepancy called the modified Haus-
dorff distance (MHD). We then formulate an incremental
search algorithm which can be applied to both HausDist
and MHD. We also use this search algorithm to demonstrate
the effectiveness of EnhLB in comparison to BscLB.

The contributions of our work are summarized as follows.
• An improved method (EnhLB) of calculating a

HausDist lower bound that provides a greater prun-
ing capability than the basic method (BscLB).

• An incremental search algorithm that utilizes BscLB
and EnhLB and can be applied to both HausDist and
MHD.

• Performance evaluations of our proposed search algo-
rithm in terms of the (i) total response time, (ii) I/O
cost, and (iii) processing cost.

The rest of this paper is organized as follows. Section 2
provides background knowledge of HausDist algorithms
and branch-and-bound search algorithms. Section 3 con-
tains a definition of our research problem. Our proposed
lower bound computation method and the proposed search
algorithm are given in Section 4. In Section 5, we show
how our proposed method can be extended to support the
modified Hausdorff distance, an outlier-resistant variant of
HausDist. In Section 6, we report our experimental results,
while Section 7 provides conclusions and directions of future
research.

2. RELATED WORK

2.1 Hausdorff Distance Computation
The Hausdorff distance is frequently used in spatial and

geometric matching problems in a variety of contexts, such
as shape- or image-matching, geometric modeling, model
rendering, and image recognition [1, 7, 15, 20]. In these con-
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texts, it is used to measure how well two shapes, images,
or polygonal meshes resemble each other (i.e., A matches B
within a maximum discrepancy of δ).

The problem of computing Hausdorff distances between
pairs of point sets, polygons, or meshes is a well-studied
problem. For two point sets with total cardinality O(n), the
naive approach computes all pairwise distances to find the
MaxMin distance of the two sets, which has a running time
of O(n2). Some approaches to achieve more efficient perfor-
mance involve calculating the Voronoi diagram of one point
set, and then performing plane sweep [2]. These approaches
become computationally intractable in high dimensions [20].
Some methods attempt to improve efficiency by introducing
randomization [2] or providing approximate solutions [20].

Computing the Hausdorff distance is naturally related to
executing a nearest neighbor query, as the Hausdorff dis-
tance from point set A to point set B is determined by the
maximum distance of a point in A to its nearest neighbor
in B. Thus it is not surprising that an approach similar
to the one used for solving the k-nearest neighbors (kNN)
problem can also be useful in calculating the Hausdorff dis-
tance between two point sets. Nutanong et al. proposed an
algorithm for computing the Hausdorff distance in the con-
text of trajectory matching, which is based on the branch-
and-bound approach used for solving the k-nearest neighbors
(kNN) problem [15]. The branch-and-bound search method
involves incrementally proceeding through a search tree, and
re-ranking and pruning the candidate solutions as the pro-
cess continues. Tang et al. discuss the difficulties of comput-
ing the exact Hausdorff distance between polygons efficiently
in R

3, and present an approximation algorithm that uses
a similar branch-and-bound technique that stops when the
bounds are within the specified approximation factor [20].

In this paper our focus is on using the Hausdorff distance
as a similarity measure between point sets. In particular
our goal is not one of finding the most efficient method of
computing the Hausdorff distance, but instead one of re-
ducing the number of times that the Hausdorff distance is
computed. This is done by improving Hausdorff distance
estimates used in a branch-and-bound search to provide a
greater pruning capability. We elaborate further the concept
of distance estimators and branch-and-bound search in the
next subsection.

2.2 Branch-and-Bound Search
The branch-and-bound principle is widely adopted for

similarity search problems [9]. Classic examples of branch-
and-bound search in spatial databases are the depth-first [17]
and best-first [11] algorithms to search for nearest neighbors
(NNs) over a point set indexed in a hierarchical index, such
as the R-Tree [4, 8]. These algorithms use an optimistic esti-
mator to provide the order in which index nodes are visited
and to disregard index nodes containing points that clearly
cannot be resultant NNs.

For example, the best-first NN algorithm uses a priority
queue to sort index nodes N according to the minimum dis-
tance MinDist from the query point q, which serves as an
optimistic estimate of the distance from q to any object in
N . In this way, index nodes with large MinDists are sched-
uled to be visited later than those with smaller MinDists.
When a data point is retrieved from the priority queue, the
MinDist estimator guarantees that none of the nodes cur-
rently in the priority queue can produce an object closer to

q. As a result, the search can be used to incrementally find
NNs and terminate when a desired number k of data points
are retrieved from the priority queue.

The best-first search principle can also be used to process
aggregate NN queries [16], which are multiple query point
generalizations of the NN query. Specifically, given a dataset
D, the aggregate NN of a query point set Q is the data object
p in D, which minimizes the distance to Q according to an
aggregate function: min, max, or sum. One can calculate an
optimistic estimate as the smallest possible aggregate dis-
tance of any data point in the node N to Q. For example,
an optimistic estimate of max-aggregate from Q to objects
in a node N is given as max{MinDist(q, N) : q ∈ Q}. A
best-first search can then be conducted by visiting nodes N
in ascending order of the optimistic estimates. In the next
subsection, we show how the same concept can be applied
to similarity search over a collection of point sets.

3. PROBLEM DEFINITION
We model the problem of similarity search over a collec-

tion of point sets as a HausDist minimization problem. For-
mally, we define our similarity search function as follows.

Definition 1 (Similar Point Set Query). The
query accepts a point set Q, a collection D of point sets and
the number k of resultant point sets. As output, the function
returns a list A of point sets such that

(i) each element of A is a member of D;
(ii) |A| is equal to min{k, |D|};
(iii) for each S in A and each T in D \ A,

HausDist(Q,S) ≤ HausDist(Q, T );

(iv) for each Si and Sj in A where i is less than j,

HausDist(Q,Si) ≤ HausDist(Q,Sj).

This query can be processed by separating the resultant list
A of point sets from the rest (D \ A).

To avoid computing HausDist for every point set in D, we
can compute an optimistic estimate for each point set S in
D. Specifically, an optimistic estimator of HausDist(Q, S)
is a function which returns a distance guaranteed to be less
than or equal to HausDist(Q,S). We use this optimistic
estimate to provide the search order and to rule out entries
that clearly cannot be in the result A. Ideally, we want this
estimator to produce a value as close to HausDist(Q,S) as
possible. At the same time, we also want to keep the com-
putation cost low with respect to that of HausDist(Q,S).

To further avoid computing an optimistic estimate for ev-
ery point set, we can index the point sets in D as rectangular
objects (using their respective MBRs) in a hierarchical struc-
ture like the R-Tree. In this case, an optimistic estimate of
the Hausdorff distance from Q to an R-Tree node N is a
value guaranteed to be smaller than the Hausdorff distance
from Q to any point set in N .

The objectives of our investigation are given as follows: (i)
to improve the accuracy of the existing Hausdorff estimator
without introducing an excessive computation cost; and (ii)
to formulate a search algorithm which utilizes this estimator.
This estimator improvement and the search algorithm are
described in the next section.
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4. PROPOSEDMETHOD
In this section, we propose a method which improves

the accuracy in computing an optimistic estimate (a lower
bound) of HausDist(A, B) using the MBRs of A and B.
We observe that real-world geographic point sets have a ten-
dency to cluster around key locations like big cities or indus-
trialized coastal areas. Our solution is formulated based on a
hypothesis that the accuracy in estimating HausDist(A,B)
can be improved by using the sub-MBRs, MBRs of such clus-
ters.

We use the R-Tree index to store all point sets in the
collection D where each point set S is represented as a rect-
angular object using its MBR. We use two types of R-Trees.
The first type, primary R-Tree, is used to store a collection
of point sets where each point set is represented by its MBR.
The second type, secondary R-Tree, is used to store points
in each point set. Note that the root node of a secondary R-
Tree is equivalent to its representative MBR in the primary
R-Tree.

In the rest of this section, we present our search algorithm
which uses the basic lower bound BscLB to provide the
search order for nodes in the primary R-Tree and uses the
enhanced lower bound EnhLB to refine the search order for
each point set. Subsequently, we describe how BscLB and
EnhLB are computed.

4.1 Incremental Search Algorithm
In this section, we describe our proposed search algo-

rithm (Algorithm 1) which uses the two optimistic estima-
tors BscLB and EnhLB to help search for k similar point
sets with respect to a query point set Q. Specifically, we
use BscLB for preliminary search ordering and EnhLB to
refine the search order. Our rationale behind this practice
is that BscLB, which is cheaper to compute than EnhLB,
can provide a reasonable estimate of HausDist(Q, S) when
Q and S are far from each other. Hence, BscLB can be used
as a preliminary pruning criterion to rule out point sets with
large BscLB values.

We conducted a simple experiment to support our ar-
gument. Given a query point set Q and a collection D of
point sets, we rank each point set S in D according to
HausDist(Q, S). We then show the accuracy of the two es-
timators as the rank k of S increases. The description of the
dataset is given in Section 6 and the results of our experi-
ment are reported in Appendix A.

We now consider the algorithm description (Algorithm 1).
The algorithm finds k point sets in D which minimize the
HausDists from a query point set Q. An environment vari-
able n specifies the resolution in which EnhLB is computed
and is shared throughout the algorithm descriptions in this
section.

The initialization steps are given by Lines 1 to 8. We create
two levels of R-Trees (as described in Section 3) to index all
point sets. The primary R-Tree is used to index all point
sets and data points in each point set are in turn indexed
in a secondary R-Tree. The remaining steps of initialization
include (i) creating an R-Tree QueryRT for the query point
set; (ii) initializing a priority queue PQ ; and (iii) creating
an empty list A to store resultant point sets.

The control loop is given by Lines 9 to 25. At the begin-
ning of each iteration (Line 10), we retrieve the head entry
(N , d, LB-Stage) from PQ, where N is the node which has
the smallest estimated HausDist d. The value of LB-Stage

identifies the nature in which the current value of d has been
calculated: “0” denotes BscLB, “1” denotes EnhLB, and “2”
denotes an actual HausDist. The rest of the control loop is
organized into the two following cases:

• Node N contains only one secondary R-Tree SecRT. In
this case, we check the value of LB-Stage. If LB-Stage
is “0”, then d is currently a BscLB value. Hence, we
reset d to a EnhLB value and insert the entry back into
PQ with an LB-Stage of “1”. If LB-Stage is “1”, then
d is currently a EnhLB value. Hence, we compute the
actual HausDist and assign it to d. Then, we insert the
entry back into PQ with an LB-Stage of “2”. Otherwise
LB-Stage is “2”, which means that d is final and SecRT
can be included as a query result in A.

• Node N contains multiple children C. In this case, for
each child node C, we compute an estimate d using
BscLB and then we insert a priority queue entry (C,
d, LB-Stage) into PQ where LB-Stage is set to “0”.

The control loop terminates when A contains k objects or
when PQ is exhausted.

Algorithm 1: SimSearch(Q, D, k)

input : Query point set Q, Collection D of point
sets, and Number k of results

output : k point sets with the smallest HausDists
with respect to Q

environment : Number n of MBRs used to compute
EnhLB

PrimRT ← Create an empty R-Tree;1

for each Point Set S in D do2

SecRT ← Create an R-Tree of S;3

Insert SecRT into PrimRT ;4

QueryRT ← Create an R-Tree of Q;5

Priority Queue PQ ← Create an “ascending order” PQ;6

Insert (RootOf(PrimRT ), 0, 0) into PQ ;7

List A ← Create an empty list;8

while PQ is not empty do9

PQ-Entry (N , d, LB-Stage) ← Dequeue(PQ);10

if N contains one secondary R-Tree SecRT then11

if LB-Stage is 0 then12

d ← EnhLB(QueryRT, SecRT );13

Insert (N , d, LB-Stage=1) into PQ ;14

else if LB-Stage is 1 then15

d ← HausDist(QueryRT, SecRT );16

Insert (N , d, LB-Stage=2) into PQ ;17

else18

Insert the point set from SecRT into A;19

if A contains k point sets then20

return A;21

else22

for each Child C of N do23

Distance d ← BscLB(RootOf(QueryRT ), C);24

Insert (C, d, 0) into PQ ;25

return A;26

4.2 Lower Bound Computation
In this subsection, we describe how BscLB and EnhLB

used by Algorithm 1 are computed. Traditionally, a lower
bound of HausDist(A, B) can be computed as the MaxMin
distance [18] from the MBR which encloses A to the MBR
which encloses B. This is because HausDist(A, B) can be
considered as the MaxMin distance from A to B. We for-
mally define this lower bound function as follows.
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Definition 2 (Basic Hausdorff Lower bound).
Let MA and MB denote the MBRs of A and B, respectively.

BscLB(MA, MB) =

max{MinDist(fa, MB) : fa ∈ FacesOf(MA)}.

That is, we exploit the minimum enclosing property of
MBRs and assume that each MBR face touches at least one
object. We then compute a lower bound value of each face
using MinDist. The maximum of these lower bound val-
ues becomes the resultant estimate and is guaranteed to be
smaller than or equal to the actual HausDist.

We now present our proposed method to compute an op-
timistic estimate of HausDist(A,B) using MBRs of subsets
of A and B. First, we describe our algorithm Algorithm 2
to find n MBRs which cover the point set S indexed in an
R-Tree R. Our algorithm utilizes the R-Tree index which
organizes objects in a hierarchy of MBRs and accepts an R-
Tree R of a point set and the number of MBRs to be selected
from R. The objective here is to find a list of MBRs which
cover the point set S. We formulate an algorithm which tra-
verses the R-Tree R according to the areas of MBRs in the
hierarchy. Specifically, we decompose the largest MBRs be-
cause smaller MBRs are likely to provide tighter estimates
than large ones.

In the initialization steps, we first create an empty list L

to store the resultant MBRs (Line 1). Second, we initialize
a priority queue PQ to arrange MBR entries according to
their areas in descending order (Line 2) and insert the root
of R as the first entry (Line 3).

We now consider the control loop (Line 4 to 11). At the
beginning of each iteration (Line 5), the R-Tree node N with
the largest area a is retrieved from the priority queue. If N
contains points, then N is inserted into the resultant list
L since there are no R-Tree nodes beneath N . Otherwise,
child entries of N are inserted into PQ. The control loop
terminates when PQ is exhausted or there are at least n
entries in PQ and L. Finally, all entries in PQ are inserted
into L, and L is returned as output.

Algorithm 2: GetCovMBRs(R)

input : R-Tree R of data points
output : List L of MBRs
environment : Requested number n of MBRs in L

List L ← Create an empty list of nodes (MBRs);1

Priority Queue PQ ← Create a “descending order” PQ;2

Insert (RootOf(R), 0) into PQ ;3

while SizeOf(PQ) + SizeOf(L) < n and PQ is not empty4

do
PQ-Entry (Node N , Area a) ← Dequeue(PQ);5

if N contains points then6

Insert N into L;7

else8

for each Child C of N do9

Area a ← AreaOf(C);10

Insert(C, a) into PQ ;11

for each (Node N , Area a) in PQ do12

Insert N into L;13

return L;14

Figure 2 provides an example run of Algorithm 2. The
figure contains a three-level R-Tree R, where the top level
(Level 3) corresponds to the root node and the bottom level

(Level 1) comprises nodes whose immediate children are
data points. Assume that the n value is 4. At the initializa-
tion, the resultant list L is initialized to an empty list and
the root node is inserted into the priority queue PQ which
arranges MBRs in descending order according to their ar-
eas. In the first iteration of the control loop, the root node
is retrieved from the head of PQ. Then, we expand the root
node by inserting its immediate children M1, M2, and M3

into PQ. Since the size of PQ is 3 and L is still empty, we
need to further explore R to meet the minimum requirement
of n MBRs. In the second iteration, M3, which is the largest
MBR, is retrieved from PQ. Then, we expand M3 by insert-
ing the children M10, M11 and M12 into PQ. At this point
there are 5 MBRs in PQ which is greater than the n value of
4. Hence, all these MBRs are inserted into A and returned
as query results.

Figure 2: An example of GetCovMBRs(R) with the
requested number n of MBRs of 4, where selected
MBRs are highlighted in gray.

Note that the actual length l of the resultant list L may
not exactly match the requested number n of MBRs. Specif-
ically, the length l of L depends on how the conditions in
Line 4 are broken, i.e., whether n MBRs are obtained or PQ
is exhausted first. If n MBRs are obtained first, l must be
greater than or equal to n but smaller than (n + b) where b

is the branching factor of R. This is because, at each itera-
tion we can add at most b MBRs into PQ. In the case where
PQ is exhausted first, i.e., we do not have enough MBRs to
satisfy the request, l is less than n.

We now present our algorithm (Algorithm 3) to compute
an optimistic estimate of HausDist(A, B) using MBRs of
subsets of A and B. The algorithm accepts R-Trees RA

and RB of two point sets and the number n of MBRs from
each R-Tree that will be used to calculate a lower bound.
Specifically, we use GetCovMBRs (Algorithm 2) to select
n MBRs from RA and another n MBRs from RB , and store
them in lists LA and LB respectively (Lines 1 and 2). The re-
sultant distance is computed as the MaxMin distance from
faces of MBRs in LA to the MBRs in LB (Lines 4 to 12).
Specifically, for each face FA of MBRs in LA we compute the
minimum distance from FA to all MBRs B in LB . The re-
sultant distance is calculated as the maximum of these min-
imum distances computed in the while loop (Lines 8 to 10).
Note that the while loop may not need to iterate through
the entire LB if it is found that the minimum distance of the
current FA to LB cannot affect dmax. That is, the current
dmin is less than or equal to the current dmax.
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Algorithm 3: EnhLB(RA, RB)

input : R-Trees RA and RB of two point sets, and
the number n of MBRs used to compute
the result

output : Optimistic Estimate of the HausDist from
points in RA to points in RB

environment : Number n of MBRs used to compute
EnhLB

MBR-List LA ← GetCovMBRs(RA);1

MBR-List LB ← GetCovMBRs(RB);2

Distance dmax ← 0;3

for each MBR A in LA do4

for each Face FA in A do5

Distance dmin ← ∞;6

B ← First MBR in LB ;7

while dmin ≤ dmax and B is not null do8

dmin ← min{dmin, MinDist(FA, B)};9

B ← Next MBR in LB ;10

dmax ← max{dmax, dmin};11

return dmax;12

4.3 Discussion
As can be seen, the proposed similarity search algorithm

(Algorithm 1) uses BscLB for preliminary sorting and uses
EnhLB to refine the estimate initially given by BscLB. Con-
sequently, we only compute EnhLB values for those point
sets whose BscLB values are insufficient to rule them out
from the search. However, by introducing EnhLB as an in-
termediate step, each of the resultant point sets has to be
considered three times, i.e., once for each of BscLB, EnhLB
and the actual HausDist. This incurs an overhead in terms
of priority queue operations. To provide a better insight into
performance evaluation, we compared this method to meth-
ods that use BscLB or EnhLB alone in our experiments
(Section 6).

5. EXTENSION: HANDLING OUTLIERS

Since HausDist(A,B) is a measure of maximum discrep-
ancy of A with respect to B, the measure can be sensitive to
outliers. Specifically, if there is only one object a in A that
is far away from B, then distance from that object a to B
will be used as the resultant distance. That is, the measure
disregards the majority of points in A which are much closer
to B. To mitigate this problem, a variant of the Hausdorff
distance called the modified Hausdorff distance (MHD) [14]
can be used to spread out the effect of outliers over the entire
point set A. A formal definition of MHD can be given as

MHD(A, B) =

P

{min{Dist(a, b) : b ∈ B} : a ∈ A}

|A|
.

In this section, we extend our concept of lower bound calcu-
lations to support the MHD measure.

Since MHD(A,B) is the average of the distances from
points in A to their nearest point in B, the HausDist lower
bound computed as the MaxMin distance from the MBRs
of A and B is not guaranteed to be smaller than or equal
to MHD(A,B). As a result, we have to use MinDist as our
MHD basic lower bound (MHD-BscLB) in this case.

In a similar manner as the enhanced lower bound for the
Hausdorff distance, an MHD enhanced lower bound can be
computed from MBRs of subsets inside the point sets A

and B. Algorithm 4 displays our MHD modification of Al-
gorithm 3. Specifically, we can represent the point sets A in
B as lists LA and LB of sub-MBRs, respectively (Lines 1
and 2). We can then compute a weighted sum of MinDist
of MBRs in LA to LB based on the point count of the node
corresponding to each MBRs in LA (Lines 3 to 11). The re-
sultant distance is the sum divided by the total number of
points (Line 12).

Algorithm 4: MHD-EnhLB(RA, RB)

input : R-Trees RA and RB of two point sets
output : Optimistic Estimate of the HausDist from

points in RA to points in RB

environment : Number n of MBRs used to compute
EnhLB

MBR-List LA ← GetCovMBRs(RA);1

MBR-List LB ← GetCovMBRs(RB);2

Distance ctotal ← 0;3

Distance dsum ← 0;4

for each MBR A in LA do5

Distance dmin ← ∞;6

Count c ← Number of points in A;7

for each MBR B in LB do8

dmin ← min{dmin,MinDist(A, B)};9

dsum ← dsum + dmin · c ;10

ctotal ← ctotal + c;11

return dsum/ctotal;12

Figure 3 provides a comparison between MHD-BscLB,
MHD-EnhLB and the actual HausDist from one point set
to another. It can be seen that MHD-BscLB which is com-
puted as MinDist yields an estimate of 0 units due to the
overlap. On the other hand, we can decompose the root
MBRs of A and B into sub MBRs where MA1 corresponds
to {a1,a2,a3}, MA2 corresponds to {a4,a5,a6}, MB1 corre-
sponds to {b1,b2,b3}, and MB2 corresponds to {b4,b5,b6}.
MHD-EnhLB can be computed using Algorithm 4, where
LA and LB are {MA1, MA2} and {MB1, MB2}, respectively.
In this case, MHD-EnhLB yields an estimate of 3 units
which is much closer to the actual MHD of 7.23 units than
MHD-BscLB.

Figure 3: Comparison between MHD-BscLB,
MHD-EnhLB and MHD from A to B ({a1, ..., a6} to
{b1, ..., b6})

To form a similarity search algorithm, we can mod-
ify Algorithm 1 by replacing BscLB with MHD-BscLB,
EnhLB with MHD-EnhLB, and HausDist with MHD.
In our experimental studies, we compare a method which
uses both MHD-BscLB and MHD-EnhLB to ones which
use MHD-BscLB or MHD-EnhLB alone. The difference
between the similarity measures HausDist and MHD are
shown as example query results in Appendix B.
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6. EXPERIMENTAL STUDIES
In this section, we evaluate the effectiveness of our

method. As shown in Table 1, we compare methods which
use only BscLB or EnhLB to Algorithm 1 which uses a
hybrid of BscLB and EnhLB. To emphasize this contrast,
this method is referred to as Hyb in this section.

The rest of this section is organized as follows. We first
describe the dataset used for testing. Next, we study the
impact of adjusting the number n of sub-MBRs selected for
each point set on the performance of the three methods.
Finally, we show the performance improvements achieved
using Hyb for our sample datasets.

Table 1: Similarity Search Methods

Search Method Preliminary Sort Refinement

Bsc BscLB -
Enh EnhLB -
Hyb BscLB EnhLB

6.1 Setup
Evaluating our Hausdorff search algorithm requires run-

ning the algorithm on a collection of point sets. This sub-
section describes the creation of our testing dataset. Specifi-
cally, our collection was generated by geotagging [13] a large
number of spreadsheets found on the Web. We first located
a large number of spreadsheets that were likely to contain
location data. To do this, we identified spreadsheets indexed
by large search engines (google.com and yahoo.com) using
their APIs to execute search queries of the following form.

filetype:xls <place_name_1> <place_name_2>

The parameters place_name_1 and place_name_2 were ran-
domly selected from lists of country names, U.S. state
names, and U.S. city names. The choice to use one or two
search terms was also randomly determined. This technique
yielded a large collection of 26,150 distinct URIs ending in
“.xls” from a variety of sources on the Web.

After downloading from the resultant Web locations and
excluding invalid Excel spreadsheet files, we used a method
similar to that of WebTables [5] to locate sections of each
spreadsheet that contained data rows (i.e., not column head-
ers, table titles, or notes). Finally, we attempted to geotag
each data row by identifying columns that contain values
of a consistent geographical type (such as city, state, ZIP
code), and using a gazetteer to combine geographic values
from multiple columns to associate the row with a single ge-
ographic location (or no geographic location, if we cannot
identify one) [12, 13, 21].

This procedure resulted in a collection of spreadsheets,
each containing multiple data rows, many of which are an-
notated with a latitude and longitude. Due to the search
query format we used to locate these spreadsheets, the ref-
erences to locations have a variety of geographical distribu-
tions and scope. We should note that, although the accuracy
and coverage of the spreadsheet extraction and geotagging
algorithms is not the focus of this paper, the observed results
appear to be highly accurate, producing many successfully
geotagged documents.

The output of the spreadsheet selection, extraction, and
geotagging process is a collection of 16,724 point sets with
latitude and longitude coordinates, representing real-world
data from the Web. From this collection, we selected a subset
of the point sets in which there was a large degree of overlap
between the point set MBRs and each set contained a large

number of points. In particular, we selected only point sets
containing over 300 points in North America to form a test
dataset that we call NA-Test. Note that the Hyb search
method exhibits fast performance on the full data set as
well—however, small point sets were excluded because they
cause the Hausdorff distance computation to become less
expensive, so differences between the methods are negligible.
As shown in Table 2, the resulting collection contains 923
point sets, with an average point set size of 955 points.

Table 2: NA-Test Point Sets

Number of Point Sets 923
Minimum Point Count 300
Maximum Point Count 5,796
Total Point Count 881,713

In our implementation, HausDist(A, B) and MHD(A, B)
are computed by iterating through the pairwise distances
{Dist(a, b) : a ∈ A, b ∈ B}. Although more sophisticated
methods can be applied here, we chose the pairwise approach
due to (i) its small memory footprint; and (ii) its reasonable
performance in our setting where the average point set size
is less than 1000 points.

6.2 Selecting the number of MBRs
The motivating hypothesis behind the Enh and Hyb

search methods is that using multiple sub-MBRs to calculate
a lower bound of the Hausdorff distance is significantly more
accurate than using a single MBR (i.e., the root MBR). To
test this hypothesis, we first look at the performance of the
SimSearch algorithm using varying numbers of sub-MBRs.

Figure 4 shows the performance of the SimSearch algo-
rithm on the NA-Test dataset, using different values of n.
For this test, we randomly selected a sample of 100 point
sets to serve as our collection of query point sets QuerySets.
For each Q ∈ QuerySets, we perform SimSearch with the
number k of results set to 1 and the number of MBRs set to
n. The average running time for each value of n is displayed.
The tests were performed using the Enh and Hyb methods
for 20 ≤ n ≤ 240, and using the Bsc method. Since the
Bsc method is equivalent to using either of the other meth-
ods with n = 1, the Bsc result is displayed as num MBRs
= 1 in the figures. The running time for each value of n
is broken into three components: (i) LB Time, (ii) HausDist
Time, and (iii) PQ Time. These correspond to (i) time spent
generating lower bound estimates, (ii) time spent computing
exact Hausdorff distances, and (iii) time spent maintaining
the priority queue of the collection of point sets, NA-Test.
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Figure 4: Average performance of Enh and Hyb
search methods on the NA-Test dataset, for different
numbers of sub-MBRs, and k = 1.
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We can see that the worst performance, in terms of to-
tal running time, occurs when n = 1 (the Bsc case). The
majority of this time is spent computing exact Hausdorff
distances between the query set Q and other point sets in
NA-Test. PQ Time is relatively small in this case, as it
is for all other values of n, so we focus our discussion on
the LB Time and HausDist Time factors. When n = 1,
LB Time is also small, since only the BscLB value is being
computed for candidate point sets. However, as expected,
BscLB alone does not provide a particularly accurate rank-
ing of point sets in NA-Test, so identifying the set with the
smallest Hausdorff distance to Q requires performing a large
number of exact Hausdorff distance calculations.

The value of n has a positive correlation with LB Time.
This is because calculating EnhLB requires visiting each
sub-MBR in the query and candidate point sets. However,
HausDist Time has a negative correlation with n due to the
accuracy improvement. This dominates the effect of n on
LB Time. As a result, we observe an overall decrease in the
total running time as n increases.

The same experiment was performed using MHD instead
of HausDist, as shown in Figure 5. The total computa-
tion time is generally one order-of-magnitude greater than
for the HausDist search experiment on the same data set.
The slower behavior is caused by the inherent differences in
the distance measures, which we observed in Section 5. In
particular, since the lower bound computations are based
on MinDist instead of MaxMin, the bounds are gener-
ally much smaller than their HausDist counterparts. This
means that many more candidate point sets must be consid-
ered before we identify point sets that have a MHD value
that is less than the minimum remaining BscLB or EnhLB
in the priority queue of SimSearch.
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Figure 5: Average performance of MHD-Enh and
MHD-Hyb search methods on the NA-Test dataset,
for different numbers n of sub-MBRs and k = 1.

Despite the overall increase in running time for perform-
ing SimSearch with MHD, there is still a large increase in
performance as n increases from small values. The perfor-
mance of the Enh and Hyb search methods is nearly iden-
tical, which shows that using BscLB provides very little
benefit in the SimSearch procedure.

In summary, the most significant outcomes of this experi-
ment are (i) the performance of SimSearch benefits greatly
from using EnhLB, and (ii) choosing an appropriate value
of n does not require extreme precision. The first outcome is
clear from the reduced running time for any n value greater
than 1, whereas the second follows from the nearly flat be-
havior of the Hyb graphs for sufficiently large values of n.
In this case, the flat behavior starts at the n value of 140.
Hence, we choose 140 as the default value of n hereafter.

6.3 Performance Studies
Next, we focus on the performance improvements achieved

by the Hyb method under various queries and query parame-
ters. The performance improvements can be evaluated using
multiple measures, as displayed in Figures 6-8, which show
how the performance of SimSearch changes for different val-
ues of the k parameter, while fixing n to the default value
of 140 MBRs. The experiment involved running SimSearch
once against the NA-Test dataset for each combination of
the following parameters:

• every Q ∈ QuerySets (cardinality: 100)
• every search method (Bsc, Enh, and Hyb)
• every odd value of k from 1 to 19
• both HausDist and MHD

For each combination, we recorded the following measures:

• number of point set to point set Hausdorff distance
computations performed

• number of point-to-point and MBR-to-MBR distance
calculations performed

• total search time

Each measure was averaged over all Q in QuerySets.
Figure 6 plots the increase in the total number of Haus-

dorff distance computations performed using each lower
bound method, for increasing values of k. The results show
that the Bsc method consistently requires the greatest num-
ber of Hausdorff distance computations, while Enh and Hyb
both require significantly fewer calculations. In fact, Enh
and Hyb require exactly the same number of Hausdorff dis-
tance computations in each case. This result is due to the
fact that both methods use the EnhLB value to order the
search priority queue before computing the Hausdorff dis-
tance between point sets. The results also show that for
every lower bound method, the number of distance calcula-
tions increases as k increases, since the results of searching
with a larger k value will be a superset of the results with
a smaller k value. An interesting observation from this ex-
periment is that the relative performance improvement from
Bsc to both Enh and Hyb decreases as k increases, which
means that the largest reduction in Hausdorff distance com-
putations occurs when k is equal to 1.
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Figure 6: Average number of full Hausdorff distance
computations performed during SimSearch queries
using Bsc, Enh and Hyb search methods on the
NA-Test dataset, for different values of k.

Figure 7 shows the total number of distance calculations
that occur during search for increasing values of k. The
number of distance calculations includes both point-to-point
distance calculations performed during Hausdorff distance
computations, and MBR-to-MBR distance calculations per-
formed during lower bound computations. In the chart, we
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see a similar result to Figure 6, except that Enh and Hyb
are slightly separated, representing the fact that measuring
the total distance calculations also takes the lower bound
computations into account. Hence, this is a more complete
measure of the total computation costs than Hausdorff dis-
tance computations alone.
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Figure 7: Average number of distance calculations
performed during SimSearch queries using Bsc, Enh
and Hyb search methods on the NA-Test dataset,
for different values of k.

Figure 8 plots the average time required to return the
k point sets from QuerySets with the lowest Hausdorff dis-
tance from each Q. The elapsed time has a strong correlation
to the number of distance calculations performed, as shown
in Figure 7. However, here we see the average time required
for each search, which ranges between 275 ms and 684 ms
for the Hyb method using the Hausdorff distance, and be-
tween 3468 ms and 5459 ms for the Hyb method using the
Modified HausDist (MHD). These times were recorded on
an Intel i7-2720QM @ 2.20 GHz with 8GB RAM.

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19

m
s

Number k of resultant point sets

Bsc
Enh
Hyb

(a) HausDist

3000

4000

5000

6000

7000

8000

9000

1 3 5 7 9 11 13 15 17 19

m
s

Number k of resultant point sets

MHD-Bsc
MHD-Enh
MHD-Hyb

(b) MHD

Figure 8: Average performance of SimSearch queries
using Bsc, Enh and Hyb search methods on the
NA-Test dataset, for different values of k.

6.4 Performance Distribution
To gain a better insight into the performance of Hyb rela-

tive to Bsc, we show distributions of performance improve-
ments using histograms in addition to the average perfor-
mance presented previously in Sections 6.2 and 6.3. The
histogram in Figure 9(a) presents the relative performance
of Hyb with respect to Bsc for 923 query point sets. The
x-axis of the histogram represents the relative search time,
i.e., the total search time of Hyb divided by that of Bsc for
each query point set. For example, a relative performance
value of 0.2 means that Bsc takes 5 times as long as Hyb
to process the same query. The x values are organized into
11 bins, where the leftmost bin represents a relative perfor-
mance range of [0.0, 0.1) and the rightmost bin represents

a relative performance range of [1.0, 1.1). The y-axis repre-
sents the count for each bin. We set k and n to the default
values of 1 point set and 140 MBRs, respectively. The same
setup also applies to Figure 9(b) which presents the relative
performance of MHD-Hyb with respect to MHD-Bsc.
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Figure 9: Histogram of performance improvements
for different query point sets. Performance improve-
ment is measured as elapsed search time using the
Hyb method, as a fraction of elapsed search time us-
ing Bsc, so smaller values represent larger speedups.
For all tests, n = 140 and k = 1.

The distribution of relative search times for Hausdorff dis-
tance searches is shown in Figure 9(a). The vast majority of
Hyb searches take only 0.1 to 0.5 of the original Bsc time,
corresponding to a 50% to 90% reduction in search time,
which is a significant improvement. 73.7% of queries result
in Hyb search times that are at least 50% less than the cor-
responding Bsc search time. A small fraction of query point
sets (1.4%) suffer an increased search time, which occurs
when using the EnhLB does not result in a better ordering
of point sets in the priority queue.

Using the Hyb method for modified Hausdorff distance
searching also achieves significant speedup factors, although
the distribution is different, as shown in Figure 9(b). In par-
ticular, all queries are sped up using Hyb, and a larger frac-
tion achieve speedup factors higher than 90%. However, only
48.8% of queries result in Hyb search times that are at least
50% less than the corresponding Bsc search time.

7. CONCLUSIONS AND FUTUREWORK
This paper presents a new approach for similarity search

over a large collection of point sets, where similarity is mea-
sured using the Hausdorff distance. Our method constructs
an ordering of the collection of point sets using a new lower
bound estimation technique called EnhLB, which allows us
to rule out dissimilar point sets without computing the full
Hausdorff distance between them and our query set. We
also applied this technique to searches using the modified
Hausdorff distance, an outlier-resistant variant. On a dataset
of geotagged spreadsheets from the Web, similarity search
times improved significantly using our method, for both dis-
tance measures.

One avenue for future work is to formulate an algorithm
that incrementally refines the lower bound until it becomes
an exact Hausdorff distance, so that no computation is
wasted. Such a method would allow for early termination,
if the range between the lower and upper bounds is suffi-
ciently small to guarantee a specified error threshold (i.e. an
approximation algorithm). This work could also be used to
support feature-based queries as in spatial data mining [3].
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APPENDIX

A. ACCURACY OF ESTIMATORS
Figure 10 shows the accuracy of BscLB and EnhLB as

we vary the number k of resultant point sets. For smaller
k values, EnhLB produces estimates which are much closer

to the actual HausDist (normalized as 1). As k increases
(which means that HausDist(Q,S) increases), the differ-
ence between EnhLB and BscLB diminishes. As a result,
when sorting point sets S with respect to Q, we can use
BscLB to rule out point sets that are obviously far away
from Q and use EnhLB for point sets that require further
examinations before calculating the HausDist. The descrip-
tion of this dataset, NA-Test, is provided in Section 6.
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Figure 10: Accuracy of the two estimators BscLB
and EnhLB given as the estimated distance divided
by HausDist where (i) the measured value is the av-
erage µ of 100 runs, and (ii) each error bar represents
one standard deviation in either direction from µ.

B. EXAMPLE SEARCH RESULTS
Figure 11 shows a query point set Q, comprising locations

in Illinois, and two of the top results (point sets A and B)
when searching with the symmetric measures SymHausDist
and SymMHD in the NA-Test dataset (described in Sec-
tion 6). SymHausDist(Q, A) of 1.01 units is lower than
SymHausDist(Q, B) of 1.32 units. For the SymMHD, the
results are reversed. That is, SymMHD(Q, A) is 0.26 units
which is greater than SymMHD(Q,B) of 0.22 units. As can
be seen, B has a large collection of points near query points
in the top right corner but has a few outliers near the bot-
tom which are far away from the query points. Using MHD
means that the effects of these outliers are reduced by the
averaging nature of the distance function. Hence, B is con-
sidered nearer to Q than A according to MHD.
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Figure 11: Example SimSearch results comparing
HausDist and MHD.
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