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Abstract

Spatial indexes, such as those based on the quadtree, are important in spatial databases for efficient
execution of queries involving spatial constraints, especially when the queries involve spatial joins. In
this paper we present a number of techniques for speeding up the construction of two quadtree-based
spatial indexes, the PMR quadtree and the PR quadtree. The PMR quadtree can index arbitrary spatial
data, whereas the PR quadtree is specialized for multidimensional point data. The quadtrees are imple-
mented using a linear quadtree, a disk-resident representation that stores objects contained in the leaf
nodes of the quadtree in a linear index (e.g., a B-tree) ordered based on a space-filling curve. For the
PMR quadtree, we present two complementary techniques: an improved insertion algorithm and a bulk-
loading method. The bulk-loading method can be extended to handle bulk-insertions into an existing
PMR quadtree. For the PR quadtree, we present a bulk-loading method, which also can be extended to
handle bulk-insertions. We make some analytical observations about the I/O cost and CPU cost of our
PMR quadtree bulk-loading algorithm, and conduct an extensive empirical study of all the techniques
presented in the paper. Our techniques are found to yield significant speedup compared to traditional
quadtree building methods, even when the size of the main memory buffer is very small compared to the
size of the resulting quadtrees. The usefulness of speeding up quadtree construction is demonstrated by
studying a spatial join operation that requires the construction of a spatial index for its operands as well
as its spatial output. In this case, the performance of the spatial join was significantly improved by the
presence of the spatial indexes.
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1 Introduction

Traditional database systems employ indexes on alphanumeric data, usually based on the B-tree, to facili-
tate efficient query handling. Typically, the database system allows the users to designate which attributes
(data fields) need to be indexed. However, advanced query optimizers also have the ability to create in-
dexes on un-indexed relations or intermediate query results as needed. In order for this to be worthwhile,
the index creation process must not be too time-consuming, as otherwise the operation could be executed
more efficiently without an index. In other words, the index may not be particularly useful if the exe-
cution time of the operation without an index is faster than the total time to execute it when the time to
build the index is included. Of course, if the database is static, then we can afford to spend more time on
building the index as the index creation time can be amortized over the number of queries made on the
indexed data. The same issues arise in spatial databases, where attribute values may be of a spatial type,
in which case the index is a spatial index (e.g., a quadtree).

In the research reported here, we address the problem of constructing and updating spatial indexes
in situations where the database is dynamic. In this case, the time to construct or update an index is
critical, since database updates and queries are interleaved. Furthermore, slow updates of indexes can
seriously degrade query response, which is especially detrimental in modern interactive database appli-
cations. There are three ways in which indexes can be constructed or updated for an attribute of a relation
(i.e., a set of objects). First, if the attribute has not been indexed yet (e.g., it represents an intermediate
query result), an index must be built from scratch on the attribute for the entire relation (known as bulk-
loading). Second, if the attribute already has an index, and a large batch of data is to be added to the
relation, the index can be updated with all the new data values at once (known as bulk-insertion). Third,
if the attribute already has an index, and a small amount of data is to be added (e.g., just one object), it
may be most efficient to simply insert the new objects, one by one, into the existing index. In our work,
we present methods for speeding up construction and updating of quadtree-based spatial indexes for all
three situations. In particular, we focus on the PMR quadtree spatial index [39], and to a lesser degree
on the PR quadtree multidimensional point index.

The issues that arise when the database is dynamic have often been neglected in the design of spatial
databases. The problem is that often the index is chosen on the basis of the speed with which queries
can be performed and on the amount of storage that is required. The queries usually involve retrieval
rather than the creation of new data. This emphasis on retrieval efficiency may lead to a wrong choice of
an index when the operations are not limited to retrieval. This is especially evident for complex query
operations such as the spatial join. As an example of a spatial join, suppose that given a road relation
and a river relation, we want to find all locations where a road and river meet (i.e., locations of bridges
and tunnels). This can be achieved by computing a join of the two relations, where the join predicate
is true for road and river pairs that have at least one point in common. Since computing the spatial join
operation is expensive without spatial indexes, it may be worthwhile to build a spatial index if one is
not present for one of the relations. Furthermore, the output of the join may serve as input to subsequent
spatial operations (i.e., a cascaded spatial join as would be common in a spatial spreadsheet [29]), so
it may also be advantageous to build an index on the join result. In this way, the time to build spatial
indexes can play an important role in the overall query response time.

The PMR quadtree is of particular interest because an earlier study [27] showed that the PMR quadtree
performs quite well for spatial joins in contrast to other spatial data structures such as the R-tree [25]
(including variants such as the R�-tree [10]) and the R+-tree [50]. This was especially true when the ex-
ecution time of the spatial join included the time needed to build spatial indexes1. Improving the perfor-

1Note that fast construction techniques for the R-tree, such as the packed R-tree [46] and Hilbert-packed R-tree [30], were
not taken into account in this study as they tend to result in a worse space decomposition from the point of view of overlap than
the standard R-tree construction algorithms.
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mance of building a quadtree spatial index is of interest to us for a number of additional reasons. First of
all, the PMR quadtree is used as the spatial index for the spatial attributes in a prototype spatial database
system built by us called SAND (Spatial and Non-Spatial Data) [5, 6, 20], which employs a data model
inspired by the relational algebra. SAND uses indexing to facilitate speedy access to tuples based on both
spatial and non-spatial attribute values. Second, quadtree indexes have started to appear in commercial
database systems such as the Spatial Data Option (SDO) from the Oracle Corporation [40]. Therefore
speeding their construction has an appeal beyond our SAND prototype.

In this paper, we introduce a number of techniques for speeding up the constructionof quadtree-based
spatial indexes. Many of these techniques can be readily adapted to other spatial indexes that are based
on regular partitioning, such as the buddy-tree [49] and the BANG file [22]. We present two comple-
mentary techniques for the PMR quadtree, an improved insertion algorithm and a bulk-loading method
for a disk-based PMR quadtree index. The improved PMR quadtree insertion algorithm can be applied
to any quadtree representation, and exploits the structure of the quadtree to quickly locate the smallest
quadtree node containing the inserted object, thereby greatly reducing the number of intersection tests.
The approach that we take in the PMR quadtree bulk-loading algorithm is based on the idea of trying to
fill up memory with as much of the quadtree as possible before writing some of its nodes on disk (termed
“flushing”). A key technique for making effective use of the internal memory quadtree buffer is to sort
the objects by their spatial occupancy prior to inserting them into the quadtree. This allows the flushing
algorithm to flush only nodes that will never be inserted into again. Our treatment of PMR quadtree bulk-
loading has several other elements, including alternative strategies for freeing memory in the quadtree
buffer and a technique for achieving high storage utilization. In addition, we show how our bulk-loading
method can be extended to handle bulk-insertions into an existing quadtree index.

In our bulk-loadingalgorithmfor the PR quadtree, the fact that point data has no spatial extent enables
us to build the leaf nodes of the quadtree in a bottom-up manner (loosely speaking). This is in contrast
to the PMR quadtree bulk-loading algorithm, which must proceed in a top-down manner. Nevertheless,
the two algorithms share the requirement that the input data be sorted in a particular way. Note also that
the PR quadtree bulk-loading algorithm can be extended to handle bulk-insertions.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 describes the
PR and PMR quadtrees, and the disk-based quadtree representation used in SAND. Section 4 introduces
an improved PMR quadtree insertion algorithm. Section 5 presents our PMR quadtree bulk-loading ap-
proach. Section 6 discusses how the PMR quadtree bulk-loading algorithm can be extended to handle
bulk-insertions. Section 7 describes our PR quadtree bulk-loading method (for point data). Section 8
presents some analytical observations, mainly regarding the PMR quadtree bulk-loading approach. Sec-
tion 9 discusses the results of our experiments, while concluding remarks are made in Section 10.

2 Related Work

Methods for bulk-loading dynamic access structures have long been sought. The goal of such methods is
to reduce the loading time, the query cost of the resulting structure, or both. The B-tree, together with its
variants, is the most commonly used dynamic indexing structure for one-dimensional data. Rosenberg
and Snyder [44], and Klein, Parzygnat, and Tharp [33] introduced methods for building space-optimal
B-trees, i.e., ones having the smallest number of nodes, or equivalently, the highest possible average
storage utilization. Their methods yield both a lower load time, and lower average query cost due to
the improved storage utilization. Both methods rely on pre-sorting the data prior to building the tree;
a similar approach can be used to bulk-load B+-trees. Huang and Viswanathan [28] took a more direct
approach to reducing query cost, while possibly increasing loading time. However, no experiments were
reported. They introduce a dynamic programming algorithm, inspired by existing algorithms for binary
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search trees, that builds a tree that yields the lowest expected query cost, given the access frequencies of
key values. Another example of bulk-loading algorithms for non-spatial structures is the one by Ciaccia
and Patella [17] for the M-tree, a dynamic distance-based indexing structure.

In recent years, numerous bulk-loading algorithms for spatial indexing structures have been intro-
duced. Most of the attention has been focused on the R-tree and related structures. Among the exceptions
are two algorithms for the grid file. Li, Rotem and Srivastava [36] introduced a dynamic programming
algorithm that operates in a parallel domain, and primarily aims at obtaining a good grid partitioning.
Leutenegger and Nicol [35] introduced a much faster solution, which results in grid file partitions that
are in some ways better.

Most bulk-loadingstrategies that have been developed for the R-tree have the property that they result
in trees that may be dramatically different from R-trees built with dynamic insertion rules [10, 25]. Some
of these methods use a heuristic for aggregating objects into the leaf nodes [30, 34, 46], while others ex-
plicitly aim at producing good partitioning of the objects and thus a small level of overlap [3, 12, 42, 52].
Roussopoulos and Leifker [46] introduced a method (termed the packed R-tree) that uses a heuristic for
aggregating rectangles into nodes. First, the leaf nodes in the R-tree are built by inserting the objects into
them in a particular order. The nonleaf nodes are built recursively in the same manner, level by level. The
order used in the packed R-tree method [46] is such that the first object to be inserted into each leaf node
is the remaining object whose centroid has the lowest x-coordinate value, whereas the rest of the objects
in the node are its B�1 nearest neighbors, where B is the node capacity2. Kamel and Faloutsos [30] de-
vised a variant of the packed R-tree, termed a Hilbert-packed R-tree, wherein the order is based purely on
the Hilbert code of the objects’ centroids. Leutenegger, López, and Edgington [34] proposed a somewhat
related technique, which uses an ordering based on a rectilinear tiling of the data space. The advantage
of packing methods is that they result in a dramatically shorter build time than when using dynamic in-
sertion methods. Unfortunately, the heuristics they use to obtain their space partitioning usually produce
worse results (i.e., in terms of the amount of overlap) than the dynamic ones. This drawback is often
alleviated by the fact that they result in nearly 100% storage utilization (i.e., most R-tree nodes are filled
to capacity). DeWitt et al. [19] suggest that a better space partitioning can be obtained with the Hilbert-
packed R-tree by sacrificing 100% storage utilization. In particular, they propose that nodes be initially
filled to 75% in the usual way. If any of the items subsequently scheduled to be inserted into a node
cause the node region to be enlarged by too much (e.g., by more than 20%), then no more items are in-
serted into the node. In addition, a fixed number of recently packed leaf nodes are combined and resplit
using the R�-tree splitting algorithm to further improve the space partitioning. Gavrila [24] proposed an-
other method for improving the space partitioning of R-tree packing, through the use of an optimization
technique. Initially, an arbitrary packing of the leaf nodes is performed, e.g., based on one of the packing
algorithms above. Next, the algorithm attempts to minimize a cost function over the packing, by moving
items from one leaf node to a nearby one.

The bulk-loading strategies for the R-tree that aim at improved space partitioning have in common
that they operate on the whole data set in a top-down fashion, recursively subdividing the set in some
manner at each step. They differ in the particular subdivision technique that is employed, as well as in
other technical details, but most are specifically intended for high-dimensional point data. Since building
R-trees with good dynamic insertion methods (e.g., [10]) is expensive, these methods generally achieve
a shorter build time (but typically much longer than the packing methods discussed above), as well as im-
proved space partitioning. One example of such methods is the VAMSplit R-tree of White and Jain [52],
which uses a variant of a k-d tree splitting strategy to obtain the space partitioning. Garcı́a, López, and

2The exact order proposed by Roussopoulos and Leifker [46] for the packed R-tree appears to be subject to a number of
interpretations. Most authors citing the packed R-tree describe it as using an order based solely on the x-coordinate values of
the objects’ centroids which produces node regions that are highly elongated in the direction of the y-axis, whereas this is not
exactly what was originally proposed.
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Leutenegger [42] present a similar technique, but they introduce the notion of using a user-defined cost
function to select split positions. The S-tree of Aggarwal et al. [3] is actually a variant of R-trees that is
not strictly balanced; the amount of imbalance is bounded, however. The technique presented by Berch-
told, Böhm, and Kriegel [12] also has some commonality with the VAMSplit R-tree. However, their
splitting method benefits from insights into effects that occur in high-dimensional spaces, and is able to
exploit flexibility in storage utilization to achieve improved space partitioning. A further benefit of their
technique is that it can get by with only a modest amount of main memory, while being able to handle
large data files.

Two methods have been proposed for bulk-loading R-trees that actually make use of dynamic inser-
tion rules [8, 13]. These methods are in general applicable to balanced tree structures which resemble
B-trees, including a large class of multidimensional index structures. Both techniques are based on the
notion of the buffer-tree [7], wherein each internal node of the tree structure contains a buffer of records.
The buffers enable effective use of available main memory, and result in large savings in I/O cost over
the regular dynamic insertion method (but generally in at least as much CPU cost). In the method pro-
posed by van den Bercken, Seeger, and Widmayer [13], the R-tree is built recursively bottom-up. In each
stage, an intermediate tree structure is built where the lowest level corresponds to the next level of the
final R-tree. The nonleaf nodes in the intermediate tree structures have a high fan-out (determined by
available internal memory) as well as a buffer that receives insertions. Arge et al. [8] achieve a similar
effect by using a regular R-tree structure (i.e., where the nonleaf nodes have the same fan-out as the leaf
nodes) and attaching buffers to nodes only at certain levels of the tree. The advantages of their method
over the method in [13] are that it is more efficient as it does not build intermediate structures, and it
results in a better space partition. Note that the algorithm in [13] does not result in an R-tree structure
identical to that resulting from the corresponding dynamic insertion method, whereas the algorithm in [8]
does (assuming reinsertions [10] are not used). In addition, the method of [8] supports bulk-insertions
(as opposed to just initial bulk-loading as in [13]) and bulk-queries, and in fact, intermixed insertions
and queries.

With the exception of [8], all the methods we have mentioned for bulk-loading R-trees are static, and
do not allow bulk-insertions into an existing R-tree structure. A few other methods for bulk-insertion
into existing R-trees have been proposed [16, 32, 45]. The cubetree [45] is an R-tree-like structure for
on-line analytical processing (OLAP) applications that employs a specialized packing algorithm. The
bulk-insertion algorithm proposed by Roussopolous, Kotidis, and Roussopolous [45] works roughly as
follows. First, the data set to be inserted is sorted in the packing order. The sorted list is merged with
the sorted list of objects in the existing data set, which is obtained directly from the leaf nodes of the
existing cubetree. A new cubetree is then packed using the sorted list resulting from the merging. This
approach is also applicable to the Hilbert-packed R-tree [30] and possibly other R-tree packing algo-
rithms. Kamel, Khalil, and Kouramajian [32] propose a bulk-insertion method in which new leaf nodes
are first built following the Hilbert-packed R-tree [30] technique. The new leaf nodes are then inserted
one by one into the existing R-tree using a dynamic R-tree insertion algorithm. In the method presented
by Chen, Choubey, and Rundensteiner [16], a new R-tree is built from scratch for the new data (using
any construction algorithm). The root node of the new tree is then inserted into the appropriate place in
the existing R-tree using a specialized algorithm that performs some local reorganization of the existing
tree based on a set of proposed heuristics. Unfortunately, the algorithms of [16, 32] are likely to result in
increased node overlap, at least if the area occupied by the new data already contains data in the existing
tree. Thus, the resulting R-tree indexes are likely to have a worse query performance than an index built
from scratch from the combined data set.

None of the bulk-loading techniques discussed above are applicable to quadtrees. This is primarily
because quadtrees use a very different space partitioning method from grid files and R-trees, and because
they are unbalanced and their fan-out is fixed. Additional complications arise from the use of most disk-
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resident representations of quadtrees (e.g., the linear quadtree), as well as from the property that each non-
point object may be represented in more than one leaf node (sometimes termed “clipping”; see Section 3).
Nevertheless, some analogies can be drawn between our bulk-loading methods and some of the above
methods. For example, like many of the above algorithms, we rely on sorting the objects in our algorithm
and we use merging to implement bulk-insertions as done in the cubetree [45] (although our merging
process is very different).

In addition to the numerous bulk-loadingand bulk-insertion algorithms proposed for the R-tree, there
have been several different proposals for improving dynamic insertions [4, 9, 10, 43, 31]. Most have been
concerned with improving the quality of the resulting partitioning, at the cost of increased construction
time, including the well known R�-tree method of Beckmann et al. [10], and the polynomial time optimal
node splittingmethods of Becker et al. [9] and Garcı́a, López, and Leutenegger [43]. In addition, [10] and
[43] also introduced heuristics for improving storage utilization. Ang and Tan [4] developed a linear time
node splittingalgorithmthat they claim produces node splits that are better than the original node splitting
algorithms [25] and competitive with that of the R�-tree. The Hilbert R-tree of Kamel and Faloutsos [31]
employs the same heuristic as the Hilbert-packed R-tree [30], maintaining the data rectangles in strict
linear order based on the Hilbert codes of their centroids. This is done by organizing them with a B+-
tree on the Hilbert codes, augmented with the minimum bounding rectangle of the entries in each node.
Thus, updates in the Hilbert R-tree are inexpensive, while it often yields query performance similar to
that of the R�-tree (at least in low dimensions).

Recently, Wang, Yang, and Muntz [51] introduced the PK-tree, a multidimensional indexing struc-
ture based on regular partitioning. In [53], they proposed a bulk-loading technique for the PK-tree, which
is based on sorting the data in a specific order, determined by the partitioning method. Their method re-
sembles our bulk-loading techniques in that a space-filling curve is used to order the data prior to building
the tree. In fact, our PR quadtree bulk-loading algorithm (Section 7) can be viewed as an adaptation of
their method. However, it is not applicable for building a PMR quadtree for non-point objects, since each
object may be represented in more than one leaf node.

One of the topics of this paper is a bulk-loading technique for PMR quadtrees. This subject has been
previously addressed by Hjaltason, Samet, and Sussman [26]. The bulk-loading technique presented in
this paper is an improvement on the algorithm in [26]. In particular, our flushing algorithm (which writes
to disk some of the quadtree nodes from a buffer) is guided by the most recently inserted object, whereas
the one in [26] relied on a user-defined parameter. Unfortunately, it was unclear how to choose the opti-
mal parameter value or how robust the algorithm was for any given value. Moreover, the heuristic em-
ployed by the flushing algorithm in [26] did not always succeed in its goal, and sometimes flushed nodes
that intersected objects that had yet to be inserted into the quadtree. A further benefit of our improved
approach is that it permits a much higher storage utilization in the disk-based quadtree, which reduces
the I/O cost for constructing the quadtree as well as for performing queries.

3 Quadtrees and their Implementation

In this section, we first briefly discuss the general concept of quadtrees. Next we define the PMR quadtree,
followed by a description of the implementation of quadtrees in SAND.

3.1 Quadtrees

By the term quadtree [47, 48] we mean a spatial data structure based on a disjoint regular partitioning
of space. Each quadtree block (also referred to as a cell) covers a portion of space that forms a hyper-
cube in d-dimensions, usually with a side length that is a power of 2. Quadtree blocks may be further
divided into 2d sub-blocks of equal size; i.e., the sub-blocks of a block are obtained by halving the block
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along each coordinate axis. Figure 1 shows a simple quadtree decomposition of space. One way of con-
ceptualizing a quadtree is to think of it as an extended 2d-ary tree, i.e., a tree in which every nonleaf
node has 2d children (e.g., Figure 1b). Thus, below we use the terms quadtree node and quadtree block
interchangeably. In this view, the quadtree is essentially a trie, where the branch structure is based on
space coverage. Another way to view the quadtree is to focus on the space decomposition, in which case
the quadtree can be thought of as being an adaptive grid (e.g., Figure 1a). Usually, there is a prescribed
maximum height of the tree, or equivalently, a minimum size for each quadtree block.

(a) (b)

1 2

7
3 4

5 6

3 4 5 6

1 2 7

A

B

Figure 1: (a) The block decomposition and (b) tree structure of a simple

quadtree, where leaf blocks are labeled with numbers and nonleaf blocks with

letters.

Many different varieties of quadtrees have been defined, differing in the rules governing node split-
ting, the type of data being indexed, and other details. An example is the PR quadtree [47], which indexes
point data. Points are stored in the leaf blocks, and the splitting rule specifies that a leaf block must be
split if it contains more than one point. In other words, each leaf block contains either one point or none.
Alternatively, we can set a fixed bucket capacity c, and split a leaf block if it contains more than c points
(this is termed a bucket PR quadtree in [47]).

Quadtrees can be implemented in many different ways. One method, inspired by viewing them as
trees, is to implement each block as a record, where nonleaf blocks store 2d pointers to child block records,
and leaf blocks store a list of objects. However, this pointer-based approach is ill-suited for implement-
ing disk-based structures. A general methodology for solving this problem is to represent only the leaf
blocks in the quadtree. The location and size of each leaf block are encoded in some manner, and the re-
sult is used as a key into an auxiliary disk-based data structure, such as a B-tree. This approach is termed
a linear quadtree [23].

Quadtrees were originally designed for the purpose of indexing two- and three-dimensional space.
Although the definition of a quadtree is valid for a space of arbitrary dimension d, quadtrees are only
practical for a relatively low number of dimensions. This is due to the fact that the fan-out of internal
nodes is exponential in d, and thus becomes unwieldy for d larger than 5 or 6. Another factor is that
the number of cells tends to grow sharply with the dimension even when data size is kept constant3, and
typically is excessive for more than 4 to 8 dimensions, depending on the leaf node capacity (or splitting
threshold) and data distribution. For a higher number of dimensions, we can apply the k-d tree [11] strat-
egy of splitting the dimensions cyclically (i.e., at each internal node, the space is split into two equal-size
halves), for a constant fan-out and improved average leaf node occupancy. The resulting space partition-
ing can be effectively structured using the PK-tree technique [51], for example. In the remainder of this
paper, we will usually assume a two-dimensional quadtree to simplify the discussion. Our methods are
general, however, and work for arbitrary dimensions.

3This is due to the fact that average leaf node occupancy tends to fall as the number of dimensions increases.
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3.2 PMR Quadtrees

The PMR quadtree [39] is a quadtree-based dynamic spatial data structure for storing objects of arbitrary
spatial type (e.g., see Figure 2 which shows a PMR quadtree for a collection of line segments). Since the
PMR quadtree gives rise to a disjoint decomposition of space, and objects are stored only in leaf blocks,
this implies that non-point objects may be stored in more than one leaf block. Thus, the PMR quadtree
would be classified as applying clipping, as we can view an object as being clipped to the region of each
intersecting leaf block. The part of an object that intersects a leaf block that contains it is often referred
to as a q-object; for line segments, we usually talk of q-edges. For example, segment a in Figure 2 is
split into three q-edges as it intersects three leaf nodes.

h
a b

e

fi

c

d

g

Figure 2: A PMR quadtree for line segments with a splitting threshold of 2,

where the line segments have been inserted in alphabetical order.

A key aspect of the PMR quadtree is its splitting rule, i.e., the condition under which a quadtree
block is split. The PMR quadtree employs a user-determined splitting threshold t for this purpose. If
the insertion of an object o causes the number of objects in a leaf block b to exceed t and b is not at the
maximum decomposition level, then b is split and the objects in b (including o) are inserted into the newly
created sub-blocks that they intersect. These sub-blocks are not split further at this time, even if they
contain more than t objects. Thus, a leaf block at depth D can contain up to t+D objects, where the root
is at depth 0 (there is no limit on the number of objects in leaf nodes at the maximum depth). The rationale
for not immediately splitting newly formed leaf blocks is that this avoids excessive splitting. This aspect
of the PMR quadtree gives rise to a probabilistic behavior in the sense that the order in which the objects
are inserted affects the shape of the resulting tree. As an example, in Figure 2, if line segment g were
inserted after line segment i instead of after line segment f, then the decomposition of the SE quadrant
of the SW quadrant of the root, where c, d, and i meet, would not have taken place. Nevertheless, it is
rarely of importance which of the possible quadtree shapes arise from inserting a given set of objects.
We will exploit this later on, by re-ordering the objects to allow a more efficient quadtree construction
process.

3.3 Quadtree Implementation in SAND

The implementation of quadtrees used in the SAND spatial database is based on a general linear quadtree
implementation called the Morton Block Index (abbreviated MBI). Our bulk-loading methods are appli-
cable to any linear quadtree implementation, and should be easily adapted to any other disk-based repre-
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sentation of quadtrees. Nevertheless, for concreteness, it is helpful to review some of the details of our
system.

3.3.1 Morton Codes and Morton Block Values

The MBI encodes quadtree blocks using a pair of numbers, termed a Morton block value. The first num-
ber is the Morton code of the corner of the quadtree block closest to the origin (i.e., the lower-left corner
in two dimensions), while the second number is the side length of the block (stored in log2 form). The
Morton code of a point is constructed by bit-interleaving its coordinate values. Coordinate values are
constrained to be w-bit integers, where w is a user-determined value between 0 and 32. Thus, a Morton
code for d-dimensional space occupies d �w bits. Furthermore, the side length of the space covered by
the MBI is 2w, and coordinate values range from 0 to 2w�1 in each dimension4. Since the minimum side
length of a quadtree block that can be represented is 1, the maximum height of the quadtree is w. Not all
possible Morton block values correspond to legal quadtree blocks. For example, for a two-dimensional
quadtree, the only quadtree block that can have a lower-left corner of (1;1) has a side length of 1. On
the other hand, a Morton code can correspond to many quadtree blocks, e.g., the point with coordinate
values (0;0) can be the lower-left corner of a block of any size. Observe that the number of dimensions,
d, is not limited by the MBI, although very high values are not practical.

Morton codes provide a mapping from d-dimensional points to one-dimensional scalars, the result
of which is known as a space-filling curve. When the d-dimensional points are ordered on the basis
of their corresponding Morton codes, the order is called a Morton order [38]. It is also known as a Z-
order [41] since it traces a ‘Z’ pattern in two dimensions. Many other space-ordering methods exist, such
as the Peano-Hilbert, Cantor-diagonal, and spiral orders. However, of these, only the Morton and Peano-
Hilbert orders are practical for ordering quadtree blocks. The codes derived from the Peano-Hilbert or-
der are usually called Hilbert codes. Morton codes can also be transformed into so-called Gray codes,
in which two successive code values differ only in one bit [21]. Figure 3 presents an example of the or-
dering resulting from these three encoding methods. The advantage of Morton codes over Hilbert codes
and Gray codes is that it is computationally less expensive to convert between a Morton code and its
corresponding coordinate values (and vice versa) than for the other two encoding schemes, especially
compared to the Hilbert code. In addition, various operations on Morton block values can be imple-
mented through simple bit-manipulation operations on Morton codes; e.g., computing the Morton block
values for sub-blocks. Nevertheless, Hilbert and Gray codes have the advantage that they better preserve
locality (e.g., the Euclidean distance between the locations of two points with successive code values is
lower on average than for Morton codes), which may reduce query cost [1]. However, for the most part,
operations on the quadtree are independent of the actual encoding scheme being used, and in particular,
this is true of our bulk-loading method. Thus, in most of this paper, any mention of Morton codes (or
Z-order) can be replaced by Hilbert or Gray codes (or the ordering induced by them). When warranted,
we mention issues arising from the use of Hilbert or Gray codes.

Figure 4a illustrates the Morton code order imposed on the quadtree blocks for the quadtree in Fig-
ure 2. The contents of the MBI for this PMR quadtree are partially shown in Figure 4b, where the order
in the list corresponds to Morton code order. To illustrate actual Morton block values, assume that the
side length of the data space is 24 = 16. The coordinate values of the lower-left corner of the block la-
beled 15 are (2;12), or (0010b;1010b) (“b” indicates binary). Thus, the Morton code value of this block
is 10001100b (i.e., the bit order for the coordinate values is yxyxyxyx), which equals 140. The size of
this block is 2 = 21, so the Morton block value is [140;1]. Observe that the two least significant bits of
the Morton code are 0, which is the case for all blocks of size 2 = 21. In general, for a block of size 2s,

4This limited range of coordinate values is not a real drawback, as it is a simple matter to transform coordinate values in
any other range into the range of a Morton code, and vice versa.
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the s �d least significant bits are 0, where d is the dimensionality. If block 15 had to be split, the Morton
code values of the child blocks would be 10001100b, 10001101b, 10001110b, and 10001111b. In other
words, only d bits of the original Morton code are modified. Similarly, the Morton code of the parent
block of block 15 is 10000000b.
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items stored in the linear quadtree.

3.3.2 B-tree

The MBI uses a B-tree to organize the quadtree contents5, with Morton block values serving as keys.
When comparing two Morton block values, we employ lexicographic ordering on the Morton code and
the side length. When only representing quadtree leaf nodes in the MBI, which is the case for most
quadtree variants, only comparing the Morton code value is sufficient, as the MBI will contain at most one
block size for any given Morton code value. For a quadtree leaf node with k objects, the corresponding

5The MBI can also be based on a B+-tree. This has some advantages, notably when scanning in key order. However, the
difference is not very significant, and is offset by a slightly greater storage requirement for the B+-tree.
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Morton block value is represented k times in the B-tree, once for each object. In the B-tree, we maintain
a buffer of recently used B-tree nodes, and employ an LRU (least recently used) replacement policy to
make room for a new B-tree node. In addition, we employ a node locking mechanism in order to ensure
that the nodes on the path from the root to the current node are not replaced; this is useful in queries that
scan through successive items in the B-tree, since the nodes on the path may be needed later in the scan.

3.3.3 Object Representation

The amount of data associated with each object in the MBI is limited only by the B-tree node size. This
flexibility permits different schemes for storing spatial objects in quadtree indexes implemented with
the MBI. One scheme is to store the entire spatial description of the object, while another scheme is to
store a reference ID for the object, which is actually stored in an auxiliary object table. A hybrid scheme
can also be employed, wherein we store both the spatial description of the object and an object ID. The
disadvantage of the first scheme is that it potentially leads to much wasted storage for non-point objects,
as they may be represented more than once in the PMR quadtree. The drawback of the second scheme
is that a table lookup is necessary to determine the geometry of an object once it is encountered in a
quadtree block. Nevertheless, we must use that scheme (or the hybrid one) if we wish to associate some
non-spatial data with each object (e.g., for objects representing cities, we may want to store their names
and populations).

As previously mentioned, SAND employs a data model inspired by the relational algebra. The ba-
sic storage unit is an attribute, which may be non-spatial (e.g., integers or character strings) or spatial
(e.g., points, line segments, polygons, etc.). Attributes are collected into relations, and relational data
is stored as tuples in tables, each of which is identified by a tuple ID. In SAND relations, the values of
spatial attributes (i.e., their geometry) are stored directly in the tuples belonging to the relation. When
the PMR quadtree is used to index a spatial attribute in SAND, the tuple ID of the tuple storing each
spatial object must be stored in the quadtree (i.e., we use the second scheme described above). For sim-
ple fixed-size spatial objects (such as points, line segments, rectangles, etc.), SAND also permits storing
the geometric representation in the index (i.e., resulting in a hybrid scheme). This allows performing
geometric computations during query evaluation without accessing the tuples. Alternatively, a separate
object table associated with the index can be built for only the values of the spatial attribute. Object IDs
in that table are then represented in the index, while the tuple ID is stored in the object table. This is
advantageous when the size of the spatial attribute values (in bytes) is small compared to the size of a
whole tuple. A further benefit is that this object table can be clustered by spatial proximity, such that
nearby objects are likely to be located on the same disk page. Spatial clustering is important to reduce
the number of I/O operations performed for queries, as stressed by Brinkhoff and Kriegel [14].

3.3.4 Empty Leaf Nodes

Another design choice is whether or not to represent empty quadtree leaf blocks in the MBI. Our imple-
mentation supports both of these choices. Representing empty quadtree leaf blocks simplifies insertion
procedures as well as some other operations on the quadtree and makes it possible to check the MBI for
consistency, since the entire data space must be represented in the index. However, for large dimensions,
this can be very wasteful, since a large number of leaf blocks will tend to be empty.

4 Improved PMR Quadtree Insertion Algorithm

Like insertion algorithms for most hierarchical data structures, the PMR quadtree insertion algorithm is
defined with a top-down traversal of the quadtree. Thus, the CPU cost for inserting an object is roughly
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proportional to the depth of the leaf nodes intersecting it. Below, we introduce a technique that dramati-
cally reduces the CPU cost of insertions. However, before we get into our improved insertion algorithm,
we present the traditional PMR quadtree insertion algorithm in Figure 5. This algorithm can be used
for either a pointer-based implementation or a linear quadtree implementation of a PMR quadtree (e.g.,
the Morton Block Index). Of course, the definitions of the various utility routines (i.e., ADDTOLEAF,
ISLEAF, MAKENONLEAF, OBJECTCOUNT, and OBJECTLIST) would be different, as would the rep-
resentation of node. In the MBI implementation, node is represented with a Morton block value, and
these routines obtain their results by accessing the B-tree. In particular, ADDTOLEAF inserts into the B-
tree, MAKENONLEAF deletes from the B-tree, ISLEAF performs a lookup, while OBJECTCOUNT and
OBJECTLIST perform a lookup followed by a linear scan. Observe that in the case of a linear quadtree
implementation, the nonleaf nodes are not physically present in the MBI. However, the insertion algo-
rithm is based on a top-down traversal of the tree and thus simulates their existence by constructing their
corresponding Morton block values.

procedure INSERTOBJECT(object) !
INSERT(root, object)

procedure INSERT(node, object)!
if (INTERSECTS(object, node)) then

if (ISLEAF(node)) then
ADDTOLEAF(node, object)
if (OBJECTCOUNT(node) > threshold) then

SPLIT(node)
endif

else
foreach (childNode of node) do

INSERT(childNode, object)
endfor

endif
endif

procedure SPLIT(node)!
objList OBJECTLIST(node)
MAKENONLEAF(node)
foreach (childNode of node) do

foreach (object in objList) do
if (INTERSECTS(object, childNode)) then

ADDTOLEAF(childNode, object)
endif

endfor
endfor

Figure 5: Pseudo-code for PMR quadtree insertion.

The single largest contributor to the CPU cost of the algorithm (besides the cost of updating the B-
tree in the MBI implementation) is the intersection test performed by the INTERSECTS function. It is
implemented by first converting the Morton block value for node into object space coordinates. The
number of intersection tests when inserting an object is bounded from above by 2d �Dmax �q, where Dmax
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is the maximum depth of a leaf node and q is the number of leaf nodes intersected by the object (recall
that each nonleaf node has 2d children). However, the average is typically more like 2d �Dave, where
Dave is the average leaf node depth, which is on the order of log2d N if the data distribution is not too
skewed. Another significant contributor to CPU cost in the MBI implementation is the computation of
child blocks, i.e., the determination of childNode from the Morton block value node (in a pointer-based
quadtree, this cost can be avoided since the Morton block values or some other representation for the
quadtree regions can be stored in the nodes). The number of these computations is similar to the number
of intersection tests. Thus, they contribute considerably to the CPU cost, especially if this computation
is not highly optimized.

The number of intersection tests, as well as the number of Morton code computations, can be dra-
matically reduced by exploiting the structure of the quadtree. The key insight is that based only on the
geometry of an object, we can compute the quadtree block that minimally bounds the object. This is il-
lustrated in Figure 6a, where we indicate potential quadtree partition boundaries with broken lines. We
can look up the Morton block value of this block in the B-tree of the MBI, which will locate a quadtree
leaf block containing the object, if any exists. Two cases can arise: the minimally enclosing quadtree
block can be inside (or coincide with) an existing leaf node (e.g., Figure 6b), or there may be more than
one leaf node contained in the minimal enclosing quadtree block (e.g., Figure 6c).

(a) (b) (c)

Figure 6: (a) Computation of the minimum bounding block for an object, de-

noted by heavy lines. Broken lines indicate potential quadtree block boundaries.

The minimum bounding block can (b) be enclosed by a leaf node or (c) coincide

with a nonleaf node.

4.1 Algorithm

An algorithm based on the idea of minimum enclosing quadtree block is shown in Figure 7. In partic-
ular, procedures INSERTOBJECT and SPLIT in Figure 7 replace the procedures with the same name in
Figure 5. Again, the same algorithm can be applied to any representation of the PMR quadtree. Proce-
dure INSERTOBJECT uses the functions COMPUTEENCLOSINGBLOCK and FINDENCLOSINGNODE to
locate the smallest node in the quadtree index that contains object. If this node is a leaf node, object is
directly added to it (subject to a split if the node contains more objects than the splitting threshold). Oth-
erwise, INSERT (from Figure 5) is invoked on the child nodes of node. The task of locating the smallest
node containing the object is divided into two functions since it naturally decomposes into two subtasks.
The first, COMPUTEENCLOSINGBLOCK, is based only on the geometry of the object and computes its
minimum enclosing quadtree block, while the second, FINDENCLOSINGNODE, accesses the quadtree
index to locate an actual quadtree node.
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The number of intersection tests is also reduced in procedure SPLIT in Figure 7 through the use of
COMPUTEENCLOSINGBLOCK. If enclosingBlock, returned by COMPUTEENCLOSINGBLOCK for an
object, is smaller than the leaf node, then we know that enclosingBlock is properly contained in node and
only intersects one of its child nodes. This child node is determined by the function CHILDCONTAINING.
When the nodes are encoded with Morton block values, CHILDCONTAINING can be computed using
simple bit manipulations. Once childNode has been determined, object is added to it and deleted from
the list of objects6. After the first foreach loop in procedure SPLIT is completed, the objects that remain
on objList have enclosing blocks that are equal to or larger than node. Since these objects can intersect
more than one child node of node, we apply the regular split method to them (i.e., SPLIT in Figure 5).

procedure INSERTOBJECT(object) !
enclosingBlock COMPUTEENCLOSINGBLOCK(object)
node FINDENCLOSINGNODE(enclosingBlock)
if (ISLEAF(node)) then

ADDTOLEAF(node, object)
if (OBJECTCOUNT(node) > threshold) then

SPLIT(node)
endif

else
foreach (childNode of node) do

INSERT(childNode, object) /* see Figure 5 */
endfor

endif

procedure SPLIT(node)!
objList OBJECTLIST(node)
MAKENONLEAF(node)
foreach (object in objList) do

enclosingBlock COMPUTEENCLOSINGBLOCK(object)
if (SIZE(enclosingBlock) < Size(node)) then

childNode CHILDCONTAINING(node, enclosingBlock)
ADDTOLEAF(childNode, object)
DELETE(objList, object)

endif
endfor
/* apply regular split method to objects remaining in objList */
foreach (childNode of node) do

foreach (object in objList) do
if (INTERSECTS(object, childNode)) then

ADDTOLEAF(childNode, object)
endif

endfor
endfor

Figure 7: PMR quadtree insertion with dramatically lower CPU cost.

6Recall that in the PMR quadtree, the child nodes resulting from a split are not split again as a result of reinserting the objects
in the split node, even if the threshold is exceeded.
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Of the procedures and functions first used in INSERTOBJECT and SPLIT in Figure 7, only procedure
FINDENCLOSINGNODE depends on the actual quadtree representation. Recall that FINDENCLOSINGN-
ODE looks for a node in the quadtree index that spatially encloses enclosingBlock (or is equal to it). In
the case of the MBI, this is accomplished by a single access to the B-tree. In particular, we search for
the leaf block having the largest Morton block value smaller than or equal to that of enclosingBlock. If
one is found (e.g., Figure 6b), FINDENCLOSINGNODE returns its Morton block value; otherwise, en-
closingBlock corresponds to a nonleaf node in the quadtree so its value is returned (e.g., Figure 6c). The
ISLEAF test in procedure INSERTOBJECT can be executed by making use of information returned by
FINDENCLOSINGNODE, so that no additional B-tree accesses are needed. Observe that if empty leaf
nodes are not represented in the MBI, the definition of FINDENCLOSINGNODE is slightly more com-
plicated, since enclosingBlock may fall into an empty leaf block. In addition to reducing the number
of intersection tests, the improved insertion algorithm also results in fewer invocations of ISLEAF (in
procedure INSERT in Figure 5), and thus fewer B-tree lookups. However, the saving that this results in
is mostly in CPU cost, since the B-tree nodes that get accessed will frequently already be in the B-tree
buffer.

When applied to pointer-based quadtrees, procedure FINDENCLOSINGNODE must descend the pointer-
based quadtree from the root until it encounters a node whose region encloses the region computed by
COMPUTEENCLOSINGBLOCK. If Morton block values are used to represent the node regions (either
stored within the tree or computed on the fly), the descent can be guided by the Morton block value re-
turned by COMPUTEENCLOSINGBLOCK. In particular, at a nonleaf node, the next child to visit can be
determined from bits in the Morton code of the minimum enclosing Morton block value. Thus, the de-
scent is relatively inexpensive.

4.2 Discussion

The reduction in the number of intersection tests performed by the INSERT and SPLIT procedures in the
improved insertion algorithm depends on D0

ave, the average depth of the quadtree nodes (leaf or nonleaf)
in the final quadtree that minimally enclose each object. For example, in Figure 6b, the object is mini-
mally enclosed by a leaf node at depth 1 (i.e., the leaf node is a child of the root), whereas in Figure 6c,
the object is minimally enclosed by a nonleaf node at depth 2. For an object o minimally enclosed by a
node n0 at depth D0, the original PMR quadtree insertion algorithm must perform 2dD0 intersection tests
to determine that o is contained in n0. In contrast, our improved algorithm avoids all of these intersection
tests, and thus achieves an average reduction of 2dD0

ave per object in the number of intersection tests. If o
is contained in a leaf node n at depth D, the number of intersection tests performed is at least 2d(D�D0),
since all child nodes of the nonleaf nodes on the path from n0 to n must be tested for intersection with o
(e.g., in Figure 6c, the leaf nodes containing o are one level down from n0, so only 22 = 4 intersection
tests are needed). Hence, the number of intersection tests performed by the improved algorithm on the
average per object can be expected to be approximately p(Dave�D0

ave), where Dave is the average depth
of leaf nodes, 2d � p� 2dq, and q is the average number of q-objects per object. If the objects are very
small compared to the size of the data space, D0

ave will be nearly as high as Dave, so the number of in-
tersection tests will be small. In the extreme case of point objects, no intersection tests are needed and
Dave � D0

ave
7.

Figure 8 shows values of Dave and D0
ave for six line segment data sets used in our experiments (for

more details, see Section 9). For these data sets, we found that p ranged from 6 to 6.5, but in general

7Dave and D0

ave are typically not exactly equal for points, since Dave is an average over leaf nodes while D0

ave is an average
over objects. Alternative, and perhaps more accurate, definitions of Dave that make it equal to D0

ave for points are as follows: 1)
over all q-objects, the average depth of the leaf node containing them, or 2) over all objects, the average depth of the smallest
leaf node intersecting them.
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its value probably depends on the data distribution. As an example of the reduction in intersection tests,
the average depth of minimally enclosing nodes for the “PG” data set is more than 7, so the number
of intersection tests for each object is reduced by 4 � 7 = 28. The value of Dave�D0

ave is about 1:4 for
“PG”, and the number of intersection tests actually performed for each object is about 6 �1:4� 8:5 on the
average. On the other hand, the original insertion algorithm performs about 28+8:5= 36:5 intersection
tests per object. Thus, the improved algorithm reduces the number of intersection tests by a factor of
more than 4. For the other data sets, the reduction factor ranged from 3 to 5.
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The CPU cost saving due to the reduction in number of intersection tests is tempered by the cost of
invoking COMPUTEENCLOSINGBLOCK (whose CPU cost is similar to that of INTERSECTS). This is
especially true for procedure SPLIT, since COMPUTEENCLOSINGBLOCK must be recomputed for each
object, and the intersection tests must be invoked anyway if the enclosing block is larger than or equal
to the leaf node being split. To reduce unnecessary invocations of COMPUTEENCLOSINGBLOCK we
can retain the value computed by the COMPUTEENCLOSINGBLOCK invocation in INSERTOBJECT, so
it need not be computed again in SPLIT. Of course, this is usually not practical as it increases the storage
requirement for the objects. Nevertheless, this technique is useful in our bulk-loading algorithm, since
only a limited number of nodes is kept in memory, while the nodes that have been written to disk are
never split again.

5 Bulk-Loading PMR Quadtrees

Our implementation of the PMR quadtree as described in Section 3.3 is very flexible in several respects,
and we found its performance to be respectable for dynamic insertions and a wide range of queries. How-
ever, for loading a large number of objects at once (i.e., bulk-loading), its performance was somewhat
lacking. As we looked for reasons for the poor performance, we identified several sources of inefficien-
cies, both in terms of CPU cost and I/O cost. The main reason for excessive CPU cost is the high cost
of quadtree node splitting. When a quadtree node is split, references to objects must be deleted from
the B-tree, and then reinserted with Morton block value identifiers of the newly created quadtree nodes.
The deletions from the B-tree can cause merging of B-tree nodes, and the subsequent reinsertions of the
objects with their new Morton block values will then cause splitting of these same nodes. Such B-tree
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reorganizations are expensive in terms of CPU time if frequent enough, and add a considerable overhead
as we shall see in Section 9.

The basic idea of our bulk-loading approach is to reduce the number of accesses to the B-tree as much
as possible by storing parts of the PMR quadtree in main memory. Our approach can be characterized as
buffering quadtree nodes, which contrasts to the normal buffering of B-tree nodes. Thus, we sometimes
refer to our approach as quadtree buffering.

The remainder of this section is organized as follows: In Section 5.1 we present an overview of our
quadtree buffering approach. Next, in Section 5.2, we present the details of our flushing algorithm, which
frees up space if none is left in the main memory buffer. In Section 5.3 we describe an alternative method
for freeing memory which is used if the flushing algorithm fails to do so. Our bulk-loading approach
requires sorted input, so we discuss two efficient external sort algorithms in Section 5.4. Finally, in Sec-
tion 5.5 we show how the MBI B-tree can be built efficiently and with a high storage utilization.

5.1 Quadtree Buffering

In the quadtree buffering approach, we build a pointer-based quadtree in main memory, thereby bypass-
ing the MBI B-tree. Of course, this can only be done as long as the entire quadtree fits in main memory.
Once available memory is used up, parts of the pointer-based quadtree are flushed onto disk (i.e., inserted
into the MBI). When all the objects have been inserted into the pointer-based quadtree, the entire tree is
inserted into the MBI and the quadtree building process is complete. In order to maintain compatibility
with the MBI-based PMR structure, we use Morton block values to determine the space coverage of the
memory-resident quadtree blocks. Note that it is not necessary to store the Morton block values in the
nodes of the pointer-based structure, as they can be computed during traversals of the tree. However, a
careful analysis of execution profiles revealed that a substantial percentage of the CPU time was spent on
bit-manipulation operations on Morton block values. Thus, we chose to store the Morton block values
in the nodes, even though this increased their storage requirements.

How do we choose which quadtree blocks to flush when available memory has been exhausted?
Without some knowledge of the objects that are yet to be inserted into the quadtree, it is impossible to
determine which quadtree blocks will be needed later on, i.e., which quadtree blocks are not intersected
by any subsequently inserted object. However, carefully choosing the order in which the objects are
inserted into the tree provides exactly such knowledge. This is illustrated in Figure 9, which depicts a
quadtree being built. In the figure, the shaded rectangle represents the bounding rectangle of the next
object to insert. If the objects are ordered in Z-order based on the lower-left corner of their minimum
bounding rectangle (i.e., the corner closest to the origin), we are assured that none of the quadtree blocks
in the striped region will ever be inserted into again, so they can be flushed to disk. The reason why this
works is that the lower-left corner of a rectangle has the lowest Morton code value of all points in the
rectangle. Thus, using this order, we know that all points contained in the current object, as well as in all
subsequently inserted objects, have a higher Morton code value, and we can flush quadtree blocks that
cover points with lower Morton code values.

When using Hilbert or Gray codes, we also would use the lowest code value for points in the mini-
mum bounding rectangle of an object as a sort code. However, in this case the lowest code value occur-
ring in a rectangle is typically not in the lower-left corner, but can occur anywhere on its boundary. Thus,
the lowest code value is somewhat more expensive to compute when using Hilbert or Gray codes than
when using Morton codes. One way to do so is to recursively partition the space, at each step picking
the partition having the lowest code value that intersects the rectangle.

The flushing process is described in greater detail in Section 5.2. Under certain conditions, this flush-
ing method fails to free any memory, although this situation should rarely occur. In Section 5.3 we ex-
plain why, and present two alternative strategies that can be applied in such cases.
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Figure 9: A portion of a hypothetical quadtree, where the leaf nodes are labeled

in Z-order. The shaded rectangle is the bounding rectangle of the next object

to insert.

5.2 Flushing Algorithm

Informally, the flushing algorithm can be stated as follows:

1. Let p be the lower-left corner of the bounding rectangle of the object to insert next (see Figure 9).

2. Visit the unflushed leaf blocks in the pointer-based quadtree in increasing order of the Morton code
of their lower-left corner (e.g., for Figure 9, in increasing order of the labels).

(a) if the quadtree block intersects p (e.g., the leaf block labeled 20 in Figure 9), then terminate
the process;

(b) otherwise, insert the leaf block into the MBI.

Figure 10 presents a more precise portrayal of the algorithm in terms of a top-down traversal of the
pointer-based quadtree. The flushing algorithm is embodied in the function FLUSHNODES in Figure 10
and is invoked by INSERTOBJECT when the pointer-based quadtree is taking too much space in memory.
For each nonleaf node, FLUSHNODES recursively invokes itself exactly once, for the child node whose
region intersects p, while it invokes FLUSHSUBTREETOMBI to flush the subtrees rooted at all unflushed
child nodes that occur earlier in Morton code order. Thus, FLUSHNODES traverses the pointer-based
tree down to the leaf node whose region intersects p. For example, in Figure 9, the function traverses
the tree down to the node labeled 20, while it flushes the entire subtrees containing nodes 1 through 10
and nodes 11 through 17, as well as the leaf nodes labeled 18 and 19. The FLUSHSUBTREETOMBI
function removes the given subtree from the buffer memory, and marks it flushed. That way, we will
know in subsequent invocations whether a given quadtree node is merely empty, or has already been
flushed. When all objects have been inserted into the quadtree, FLUSHSUBTREETOMBI is invoked on
the root node, resulting in the final tree on disk.

The function CONTAINS used in procedure FLUSHNODES can be efficiently implemented using the
Morton code of p, which can be computed before flushing is initiated (i.e., in procedure INSERT). In
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procedure INSERTOBJECT(object) !
if (memory is low) then

p lower left corner of the bounding rectangle of object
FLUSHNODES(root, p)

endif
/* remainder of procedure same as in Figure 5 or Figure 7 */

procedure FLUSHNODES(node, p)!
if (not ISLEAF(node)) then

foreach (unflushed childNode of node) do
/* child nodes are visited in Morton code order */
if (CONTAINS(childNode, p)) then

/* childNode is on the path from root to leaf containing p */
FLUSHNODES(childNode, p)
return /* exit function */

else
/* childNode has a smaller Morton code than p */
FLUSHSUBTREETOMBI(childNode, false)

endif
endfor

endif

procedure FLUSHSUBTREETOMBI(node, freeNode)!
if (node has already been flushed) then

return
endif
if (ISLEAF(node)) then

foreach (object in node) do
MBIINSERT(node, object)

endif
else

foreach (childNode of node) do
FLUSHSUBTREETOMBI(childNode, true)

endfor
endif
if (freeNode) then

FREENODE(node)
else

mark node as having been flushed and turn into empty leaf node
endif

Figure 10: Pseudo-code for ushing process.

particular, let mp be the Morton code of p, and let mlo and mhi be the smallest and largest Morton codes,
respectively, for a quadtree block b (mlo is the Morton code of its lower-left corner, while mhi is the Mor-
ton code of the “pixel” in the upper-right corner). For example, for the block of size 4 by 4 with lower-left
corner (0;0), mhi is the Morton code for the point (3;3). Testing for intersection of b and p is equivalent
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to checking the condition mlo � mp � mhi. This test can be efficiently implemented with bit-wise oper-
ations. Specifically, if the size of b is 2wb� 2wb , then all but the low-order 2wb bits of mlo and mp must
match (the 2wb low-order bits of mlo are all 0 and those of mhi are all 1).

5.3 Reinsert Freeing

The problem with the flushing algorithm presented in Section 5.2 is that it may fail to flush any leaf nodes,
and thus not free up any memory space. In the example in Figure 9 this would occur if all the nodes in
the striped region have already been flushed. In this case, the objects that remain in the pointer-based
quadtree intersect leaf nodes labeled 20 or higher, but the lower-left corners of their minimum bounding
rectangles fall into leaf nodes labeled 20 or lower (due to the insertion order). Thus, if r is a bounding
rectangle of one of these objects, then either r intersects the boundary of the striped region or the lower-
left corner of r falls into the leaf node labeled 20 (i.e., the unflushed leaf node with the lowest Morton
code value). This condition rarely applies to a large number of objects, at least not for low-dimensional
data and reasonable buffer sizes as discussed in Section 8. Nevertheless, we must be prepared for this
possibility.

If the flushing algorithm is unable to free any memory, then we cannot flush any leaf nodes without
potentially choosing nodes that will be inserted into later. One possibility in this event is to flush some
of these leaf nodes anyway, chosen using some heuristic, and invoke the dynamic insertion procedure
on any subsequently inserted objects that happen to intersect the flushed nodes. The drawback of such
an approach is that we may choose to flush nodes that will receive many insertions later on. Also, this
means that we lose the guarantee that B-tree insertions are performed in strict key order, thereby reduc-
ing the effectiveness of the B-tree packing technique introduced in Section 5.5 (i.e., adapted to tolerate
slightly out-of-order insertions). Furthermore, our PMR quadtree bulk-insertion algorithm would not be
applicable (although a usually more expensive variant could be used; see Section 6.3). The strategy we
propose instead, termed reinsert freeing, is to free memory by removing objects from the quadtree (al-
lowing empty leaf nodes to be merged) and scheduling them for reinsertion into the quadtree at a later
time. This strategy avoids the drawbacks mentioned above, but increases somewhat the cost of some
other aspects of the bulk-loading process as described below.

In reinsert freeing, we must make sure that objects to be reinserted get inserted back into the quadtree
at appropriate times. We do this by sending the objects back to the sorting phase, with a new sort key (in
Section 5.4 we discuss how to extend a sorting algorithm to handle reinsertions). This is illustrated in
Figure 11 where the shaded rectangle is the bounding rectangle of an object that is to be reinserted (broken
lines indicate the bounding rectangle of the last inserted object). The object intersects nodes labeled 18
and 21 through 24. Since node 21 is the existing node with the lowest Morton code that intersects the
object, the appropriate time for inserting the object back into the quadtree is when all nodes earlier than
node 21 in Morton order have already been inserted into. Thus the location used to form the new sort
key of the object should intersect node 21. One choice is to compute the lower-left intersection point
of the bounding rectangle and the region for node 21, shown with a dot and pointed at by the arrow.
Alternatively, to avoid this computation, we could simply use the lower-left corner of node 21 as the
new sort key. Observe that in either case, the new sort key is larger than the original sort key for the
object. As the example illustrates, we must make sure to reinsert each object only once, even though it
may occur in several leaf nodes, and the sort key is determined from the leaf node intersecting the object
having the smallest Morton block value. Notice that when the object in the figure is eventually inserted
again into the quadtree, it is not inserted into node 18, since that node has already been flushed.

A second issue concerning reinsert freeing is how to choose which objects to remove from the quadtree.
Whatever strategy is used, it is important that we not reinsert the objects occurring in the leaf node b
intersecting the lower-left corner of the most recently inserted object; e.g., the leaf node labeled 20 in
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Figure 11: An example of an object that is to be reinserted (shaded rectangle).

The striped region represents quadtree nodes that have been ushed, while the

broken lines indicate the bounding rectangle of the object that was inserted last.

Figure 11. A simple, but effective, strategy is to remove all objects except those occurring in leaf node
b, and merge all child nodes of non-leaf nodes not on the path from the root to b. Thus, the only nodes
retained in the pointer-based quadtree are the nodes on the path from the root to b, and their children.
This is the strategy that we use in our experiments (see Section 9.2.6). Another possible strategy is to
visit the leaf nodes in decreasing Morton order (i.e., the ones with the highest Morton code values first),
and remove the objects encountered until some fraction (say, 50%) of the quadtree buffer has been freed.
One complication in this strategy is that once we have made enough buffer space available, we must then
remove the objects chosen for reinsertion from the leaf nodes that remain in the buffer. Although perhaps
somewhat counter-intuitive, we found that the second strategy (which frees only a portion of the buffer)
usually led to a higher number of reinsertions than the first (which frees nearly the entire buffer), unless
a large fraction of the buffer was freed. At best, the reduction in the number of reinsertions of the second
strategy was only marginal, and even in those cases, the first strategy was usually slightly faster since
reinsertion freeing was invoked less often.

An important point is that an object can only be reinserted a limited number of times, thus guarantee-
ing that we do not reinsert the same objects indefinitely. To see this, observe that the leaf node intersecting
the sort key used last for an object to be reinserted will always have been flushed (e.g., leaf node 18 in
Figure 11). This is guaranteed by the fact we do not remove objects occurring in the leaf node intersect-
ing the search key of the object inserted last (e.g., objects occurring in leaf node 20 in Figure 11 are not
reinserted). Thus, some progress always occurs between two successive reinsertions for the same object
(i.e., some leaf nodes will have been flushed). The total number of insertions (original and reinsertions)
for an object is never more than than q+ a0, where q is the number of corresponding q-objects and a0

is the number of ancestors of the leaf nodes containing the q-objects, not including the ancestors that
completely enclose the object.

20



5.4 Sorting the Input

Our bulk-loading approach requires the input to be in a specific order for it to be effective when the entire
quadtree cannot fit in the amount of memory allotted to the bulk-loading process. The input data will
usually not be in the desired order, so it must be sorted prior to bulk-loading. Since we cannot assume
that the data fits in memory, we must make use of an external memory sorting method. Whatever method
is used, instead of writing the final sorted result to disk, it is preferable that the sorting phase and quadtree
building phase operate in tandem, with the result of the former pipelined to the latter. This avoids the I/O
cost of writing the final sorted result, and permits dealing with reinsertions (see Section 5.3).

Sorting a large set of objects can be expensive. However, as we will see in our experiments, sorting
a set of objects prior to insertion is often a much less expensive process than the cost of building the
spatial index. More importantly, the savings in execution time brought about by sorting far outweigh its
cost. Note that some form of sorting is commonly employed when bulk-loading spatial access structures
(e.g., [3, 30, 33, 34, 46, 52, 53]). Aggarwal and Vitter [2] established a lower bound on the I/O cost of
external sorting, O(N

B logM=B
N
B ), where

� N is the number of data objects;

� M is the number of objects that fit into an internal memory buffer used for sorting;

� B is the number of objects that fit into a disk page (or some other unit of block transfers).

We implemented two external sorting algorithms suitable for our application. The first algorithm
is a variation of the standard distribution sort [2], where we employ an application-specific partitioning
scheme. This is the algorithm that we used in most of our experiments, where we found it to have very
good performance. Unfortunately, our partitioning scheme is not always guaranteed to distribute suffi-
ciently evenly to yield optimal cost (although it works well for typical data sets). Also, the algorithm is
difficult to adapt to support reinsertions (Section 5.3) in an efficient manner. The second algorithm that
we implemented is external merge sort [2]. This algorithm has the advantage of being provably optimal.
Furthermore, in the presence of reinsertions, it is at worst only slightly suboptimal. Below, we briefly
describe the external merge sort algorithm and how it can be modified to handle reinsertions.

5.4.1 Merge Sort

The external merge sort algorithm [2] first sorts the data in memory, generating short sorted runs on disk.
These are then merged to generate longer runs, until we have a single sorted run. More precisely, the
initial runs are of length M, and there are approximately N=M of them. In each merge pass, groups of R
runs are merged together, reducing the number of runs by a factor of R. During a merge, B objects from
each run must be kept in memory8, so R = M=B. A depiction of the process is shown in Figure 12a.

As we mentioned above, this algorithm is I/O optimal. Each iteration decreases the number of runs by
a factor of M=B, so we need about logM=B(N=M) iterations until we have a single run. The initial forma-

tion of runs as well as each iteration require about N=B I/Os, so we have a total of O(N
B (1+ logM=B(N=M)) =

O(N
B logM=B(N=B)) I/Os.

5.4.2 Handling Reinsertions

The merge sort algorithm can be modified to handle reinsertions so that the result is only slightly sub-
optimal. In particular, if N� is the number of objects plus the number of reinsertions, the modified al-
gorithm achieves comparable I/O performance to sorting N� objects from scratch. Observe that while

8Buffer space for 2B objects is needed for each run when using asynchronous I/O and double buffering.
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Figure 12: Depiction of external merge sorting: (a) regular, and (b) with rein-

sertions. In (a), squares represent runs created from the input while circles

represent merged runs. In (b), the white squares represent active runs, the

white circles represent future merged runs, and the shaded square represents a

partial run being created in memory.

N� is larger than N in the presence of reinsertions, the number of “pending” objects (i.e., ones that have
not yet been delivered in their proper order) is never larger than N. Figure 12b illustrates our modified
merge sort algorithm. The sort proceeds as before until reaching the final iteration, where we deliver the
result of merging up to M=B runs to the bulk-load process. From this point on, we maintain a hierarchy of
runs, as depicted in the figure. The runs at level 1 — the children of the root in Figure 12b — initially are
the sort runs resulting from the final iteration, the runs at the bottom are created from reinserted objects,
while the runs at intermediate levels are created by merging all existing runs at the level below. Notice
that the active runs are continuously being read from to produce the input to the bulk-load process. This
means that reinserted objects do not necessarily travel up the entire hierarchy, and runs at lower levels
may become depleted and thereby removed from the hierarchy. A space of B objects from the sort buffer
is allotted to each active run, so there can be a total of at most M=B active runs at all levels. We impose
a lower limit of M=2 on the size of the runs being created at the bottom level, so we require up to half
of the sort buffer to be available for that purpose. When no buffer space is available when an object is
reinserted, the action depends on the total number of active runs: 1) if active runs total 1

2 M=B or more,
merge the runs at the level containing the largest number of runs, creating one run at the next highest
level; 2) otherwise, create a new run at the lowest level from the reinserted objects in the buffer, which
will number at least M=2.

A benefit of our method is that the allocation of the sort buffer is dynamically adapted to the number
of reinsertions and the number of active runs at each level. When merging, the number of runs being
merged may be as high as M=B, but never fewer than M

2hB , where h is the height of the hierarchy, initially
about logM=B(N=M). In order for our method to be optimal, the number of runs being merged each time

must be sufficiently high. In particular, log( M
2hB) = log(M=B)� log(2h) must be O(log(M=B)), or in

other words, logh = loglogM=B(N=M) must be a constant. Unfortunately, this is not quite the case, but
for all practical purposes it is. For example, even if M is only 10 times larger than B, h is less than 16 as
long as N is less than 1016 times larger than M (for comparison, note that a terabyte is around 1012 bytes),
so log2 h is less than 4. Thus, log M

2hB < 5, and log M
2hB

N�

B < 2logM=B
N�

B . In other words, the number of
I/Os is at most doubled given the assumptions, which are virtually guaranteed to hold.
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5.5 B-tree Packing

As a byproduct of sorting the input and using the flushing algorithm described in Section 5.2, the leaf
blocks will be inserted into the MBI, and thus the B-tree, in strict Morton code order. Since Morton
codes are the sort key of the B-tree, this has the unfortunate effect that most of the nodes in the B-tree
become only about half full. The reason for this is that the conventional B-tree node splitting algorithm
splits a node so that the two resulting nodes are about half full. However, since insertions occur in strict
key order, the node receiving entries with smaller key values will never be inserted into again, and thus
will remain only half full. Therefore, in general all nodes will be half full, except possibly the right-
most nodes on each level (assuming increasing keys in left-to-right order). This low storage utilization
increases build time, since more nodes must be written to disk, and decreases query efficiency, as more
nodes must be accessed on average for each query.

The seemingly negative behavior of inserting in strict key order can easily be turned into an advan-
tage, by splitting nodes unevenly. In other words, instead of splitting an overflowing node so that each
resulting node is about half full, we split the node so that the node storing entries with lower key values
receives more entries than the other. In this way, we can precisely determine the storage utilization of all
but the right-most nodes on each level, setting it to be anywhere between 50% to 100% (but see below).
Thus, we can achieve substantially better storage utilization than that typically resulting from building
B-trees, which is about 69% for random insertions [54].

The algorithm for packing the B-tree as sketched above is shown in Figure 13. The procedure PACK-
INSERT is invoked to insert items. As long as the items arrive approximately in key order, PACKINSERT

always inserts them into the rightmost leaf node in the B-tree. A pointer to the rightmost leaf node can
be maintained by the algorithm, thereby making it immediately accessible. Procedure PACKSPLIT per-
forms the uneven splitting of nodes, with the global variable splitFraction controlling the distribution
of entries among the two result nodes. In the algorithm, we assume that an overflowing node contains
one more record than the capacity of the disk pages. Thus, if splitFraction is 100%, we split a node into
one full node and one empty node, with the record with the largest key being inserted into the parent as
a discriminator. The drawback here is that we can end up with a B-tree in which the right-most nodes
at some of the levels are empty, containing nothing but a pointer to a child node (if a nonleaf node). To
alleviate this, we can either always split in such a way that there is at least one record in the right node
(and thus one less than the maximum in the left node), or we can move entries to empty nodes from their
siblings (via rotation) once all records have been inserted into the tree.

procedure PACKINSERT(item)!
node rightmost leaf node in B-tree
INSERTINTONODE(node, item)
if (OVERFLOW(node)) then

PACKSPLIT(node)
endif

procedure PACKSPLIT(node) !
splitIndex splitFraction � maxEntries
parent SPLITNODE(node, splitIndex)
if (OVERFLOW(parent)) then

PACKSPLIT(parent)
endif

Figure 13: Pseudo-code for B-tree packing.
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The only actions performed on the B-tree by the algorithm are to insert into the rightmost leaf node
and to split the rightmost node at a level in the tree. In other words, any node other than a rightmost node
at a level is never changed by the algorithm. Thus, by merely buffering one B-tree node at each level, we
can ensure that each node in the B-tree is written only once to disk. Another benefit of inserting in sorted
order is that we avoid repeated traversals of the B-tree, thereby reducing CPU time as no key comparisons
are needed.

As mentioned above, our flushing algorithm is guaranteed to lead to B-tree insertions that are strictly
in key order. In other circumstances, insertions into the B-tree are mostly in key order but sometimes
slightly out of order. For example, the alternative to reinsert freeing mentioned in Section 5.3 (i.e., flush-
ing nodes that may be needed later using a heuristic) can cause out of order insertions. As another exam-
ple, in Section 6.3, we discuss a variant of our bulk-insertion approach that involves updating an existing
B-tree. There, the insertions are strictly in key order, but usually do not get inserted into the rightmost
B-tree leaf node. The packing algorithm can be adapted to handle these situations, by locating the B-tree
node that should receive the item being inserted, instead of always assuming that it should be inserted
into the rightmost B-tree leaf node. In order to avoid unnecessary B-tree traversals, the algorithm can
keep track of the B-tree leaf node into which the last insertion was made, and check if the item being
inserted falls into the range of items stored in that leaf node. The drawback to this modification of the
algorithm is that the B-tree node receiving fewer items as a result of splits may remain underfull, which
may be undesirable. Nevertheless, the average storage utilization is often improved by the uneven node
splits, at least if splitFraction is not too high (e.g., we have found that 85% often works well).

Although there are differences in some details, the algorithm in Figure 13 is similar to that of [44].
Their algorithm was presented in terms of compacting a 2-3 tree, a precursor of B-trees, but it can easily
be adapted to building a B-tree from sorted data. The main difference between our algorithm and theirs is
that they maintain an array of nodes that have not yet been fully constructed (at most one for each level),
and these nodes are not yet connected to the main tree. In contrast, our algorithm always maintains a fully
connected tree structure, which is an advantage if B-tree insertions potentially occur out of order. The
B-tree packing algorithm of [33] is not applicable in our scenario, since it requires knowing in advance
the number of records to insert. In addition, it is more complicated to implement than ours.

6 Bulk-Insertions for PMR Quadtrees

Our PMR quadtree bulk-loading algorithm can be adapted to the problem of bulk-inserting into an exist-
ing quadtree index. In other words, the goal is to build a PMR quadtree for a data set that is a combination
of data that is already indexed by a disk-resident PMR quadtree (termed existing data) and data that has
not yet been indexed (termed new data). This may be useful, for example, if we are indexing data re-
ceived from an earth-sensing satellite, and data for a new region has arrived. Frequently, the new data is
for a region of space that is unoccupied by the existing data, as in this example, but this is not necessarily
the case. The method we describe below is equally well suited to the case of inserting into previously
unoccupied regions and to the case of new data that is spatially interleaved with the existing data.

6.1 Overview

Recall that our flushing algorithmwrites out the quadtree leaf nodes in Morton code order. This is also the
order in which leaf nodes are stored in the B-tree of the MBI. The idea of our bulk-insertion algorithm is
to build a quadtree in memory for the new data with our PMR quadtree bulk-loadingalgorithm. However,
the flushing process is modified in such a way that it essentially merges the stream of quadtree leaf nodes
for the new data with the ordered stream of quadtree leaf nodes in the PMR quadtree for the existing data.
The merging process is somewhat more complicated than this brief description may imply. In particular,
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in order to merge two leaf nodes they must be of the same size, and the content of the resulting merged leaf
node must obey the splitting threshold. Below, we use the terms old quadtree when referring to the disk-
resident PMR quadtree for the existing data, new quadtree when referring to the memory-resident PMR
quadtree for the new data, and combined quadtree when referring to the disk-resident PMR quadtree
resulting from the merge process (which indexes both the existing data and the new data). Similarly, we
use old leaf node and new leaf node for leaf nodes in the old and new quadtrees, respectively.

Figure 14 illustrates the three cases that arise in the merging process, where the new data is denoted
by dots (the old data is not shown). The square with heavy borders denotes a leaf block from the old
quadtree, while the squares with thin borders denote leaf blocks in the new quadtree. The first case arises
when an old leaf node bo coincides with a node bn in the new quadtree, where bn is either a nonempty
leaf node or a nonleaf node, implying that bo intersects new data (see Figure 14a, where bn is a nonempty
leaf node). Thus, the objects contained in bo must be inserted into the subtree rooted at bn, subject to the
splitting threshold. The second case arises when an old leaf node bo is contained in (or coincides with)
an empty leaf node bn in the new quadtree (see Figure 14b). When this occurs, the contents of bo can be
written directly into the combined quadtree, without the intermediate step of being inserted into the new
quadtree. The third case arises when an old leaf node bo is contained in a larger nonempty leaf node bn

in the new quadtree (see Figure 14c). In this case, bn is split, and bo is recursively checked against the
new child nodes of bn (in Figure 14c, case 1 would apply to the new SW child of bn).

(a) (b) (c)

Figure 14: A simple PMR quadtree Tn consisting of points and the three cases

that arise when merging with an existing quadtree To with our bulk-insertion

algorithm: (a) A leaf node in To coincides with a nonleaf node or a nonempty

leaf node in Tn, (b) a leaf node in To is contained in an empty leaf node in Tn,

and (c) a leaf node in To is contained in a larger non-leaf node in Tn. Squares

with a heavy border correspond to leaf nodes in To, but the objects in To are not

shown.

6.2 Algorithm

Our merge algorithm is shown in Figure 15. The algorithm modifies procedures FLUSHNODES and
FLUSHSUBTREETOMBI from Figure 10, while the actual merging is coordinated by procedure MERGE-
SUBTREES. The parameter oldTree in the procedures is a reference to the old quadtree. The old quadtree
is accessed in MERGESUBTREES by the functions CURLEAFNODE and CURLEAFOBJECT, which re-
turn the current node region and object, respectively, for the current leaf node item, and by the procedure
NEXTLEAFNODE, which advances the current leaf node item to the next one in the order of Morton
block values. Observe that two successive leaf node items can be two objects belonging to the same leaf
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node. For simplicity of the presentation, we assume in Figure 15 that empty leaf nodes are not repre-
sented in the disk-based quadtree. Also, we do not explicitly test for the condition that the entire content
of the existing quadtree has already been read, assuming instead that the current leaf node region is set to
some special value when that happens so that it does not intersect any of the leaf nodes in the memory-
resident quadtree. The three cases arising in merging enumerated above are represented in MERGESUB-
TREES. The first case triggers the first do loop, where objects in the old quadtree are inserted into the new
memory-resident quadtree (which may cause node splits). The second case triggers the second do loop,
where leaf node items are copied directly from the old quadtree and into the combined quadtree. The
third case triggers an invocation of SPLIT, which splits the new leaf and distributes its content among
the child nodes as appropriate. Procedure MERGESUBTREES will be invoked later on the child nodes.
Since MERGESUBTREES is invoked on nodes in the new quadtree in top-down fashion, CURLEAFN-
ODE(oldTree) is never larger than node, and the leaf node splitting (for case 3) ensures that, eventually,
either case 1 or case 2 will apply to every leaf node in the old quadtree.

6.3 Discussion

One way of evaluating the efficiency of our bulk-insertionalgorithmis to compare bulk-loadinga quadtree
from scratch on the combined data set to first bulk-loading the old data and then bulk-inserting the new
data. From the standpoint of CPU cost, we believe that our algorithm is very efficient in this regard.
Nevertheless, there is some overhead, mainly related to B-tree operations on the intermediate B-tree (i.e.,
writing it during bulk-loading and reading during bulk-insertion), as well as memory allocation and han-
dling of nodes in the new quadtree that are also present in the old tree. However, the number of intersec-
tion tests, which are a major component of the CPU cost, would not be increased much over bulk-loading
the combined data set. Furthermore, the bulk of the CPU cost of MERGESUBTREES is involved in up-
dating the disk-resident combined quadtree and the memory-resident new quadtree, and accessing the
disk-resident old quadtree, while other operations performed by it take little time if implemented effi-
ciently (typically less than 5% of the total CPU cost of MERGESUBTREES in our tests). From the stand-
point of I/O cost, performing both bulk-load and bulk-insert operations carries the overhead of writing
out the intermediate quadtree (during bulk-loading) and reading it back in (during bulk-insertion), when
compared to bulk-loading the combined data set. This can be expected to be partially offset by slightly
lower I/O cost of sorting the two smaller data sets as opposed to the combined set.

In our quadtree merging algorithm, we chose to write out a new combined disk-resident quadtree. It
would be easy to modify our algorithm to instead update the old disk-resident quadtree: 1) after inserting
objects from the old quadtree into the new memory-resident quadtree, the corresponding B-tree entries
would be deleted, 2) instead of the second do loop (where entries in the old quadtree are copied into the
combined quadtree), we would look up the next B-tree entry that does not intersect node. Unfortunately,
in the worst case, we would still need to read and modify every B-tree node. Furthermore, the B-tree
packing technique discussed in Section 5.5 is less effective when adapted to handle updates of an exist-
ing B-tree. Thus, the overall I/O cost overhead is often higher than with our method due to worse storage
utilization, in addition to the CPU cost incurred for updating the existing B-tree nodes. A further advan-
tage of our approach over updating the old quadtree is that the old quadtree index can be used to answer
incoming queries while the bulk-insertion is in progress, without the need for complex concurrency con-
trol mechanisms. Nevertheless, as we shall see in Section 9.2.7, this update-based variant is sometimes
more efficient than our merge approach when the new data covers previously unoccupied regions in the
existing quadtree.

A drawback of our quadtree merging approach is that it results in a quadtree structure that corre-
sponds to first inserting all the new data and then the existing data (due to the INSERT invocations in
the first do loop). Since the structure of a PMR quadtree depends on the insertion order, the resulting

26



procedure FLUSHNODES(node, p, oldTree)!
if (not ISLEAF(node)) then

MERGESUBTREES(node, oldTree)
/* remainder of procedure is same as in Figure 10 */

endif

procedure FLUSHSUBTREETOMBI(node, freeNode, oldTree)!
MERGESUBTREES(node, oldTree)
/* remainder of procedure is same as in Figure 10 */

procedure MERGESUBTREES(node, oldTree)!
if (CONTAINS(node, CURLEAFNODE(oldTree))) then

if (SIZE(node) = SIZE(CURLEAFNODE(oldTree)) and
not (ISLEAF(node) and ISEMPTY(node))) then

/* node regions are equal (see Figure 14a) */
do

INSERT(node, CURLEAFOBJECT(oldTree))
NEXTLEAFNODE(oldTree)

while (EQUALCOVERAGE(node, CURLEAFNODE(oldTree)))
elseif (ISLEAF(node)) then

if (ISEMPTY(node) then
/* CURLEAFNODE(oldTree) is same size or smaller (see Figure 14b) */
do

MBIINSERT(CURLEAFNODE(oldTree))
NEXTLEAFNODE(oldTree)

while (CONTAINS(node, CURLEAFNODE(oldTree)))
else

/* CURLEAFNODE(oldTree) is smaller (see Figure 14c) */
SPLIT(node)

endif
endif

endif

Figure 15: Pseudo-code for quadtree merging.

structure may be different than when first inserting the existing data and then the new data. However,
this should not be much of a concern, as the difference is usually slight: only a small percentage of the
quadtree blocks will be split more in one tree than in the other. Another potential problem is that the size
of the memory-resident quadtree (in terms of occupied memory) may increase during the merging, before
any parts of it can be freed. To see this, let bn be the non-empty leaf node in the new memory-resident
quadtree with the smallest Morton code (among unflushed leaf nodes). Without merging, bn would be
the first leaf node to be flushed. Also, let bo be the next leaf node in the old quadtree, and assume that
the region of bo intersects that of bn. Before bn can be flushed and its content freed from memory, the
memory-resident quadtree can grow in two ways: 1) if the region of bn is larger than that of bo, then bn

is split, and 2) if bo is non-empty, then its contents are inserted into the memory-resident quadtree. Since
the numbers of objects in bn and bo are limited, the amount of memory consumed by these actions should
not be very large. Furthermore, most or all the extra memory consumed is freed soon afterwards. Thus,
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it should be sufficient to allow for only a small amount of extra memory to handle such cases and thus
prevent a memory overflow situation.

7 Bulk-Loading PR Quadtrees

The bulk-loading method for quadtrees described in Section 5 can be used to bulk-load a PMR quadtree
for any type of spatial objects. However, it is possible to do better for point data if we use the PR quadtree [48]
(or, more accurately, the bucket PR quadtree) instead of the PMR quadtree. In the PR quadtree (see Sec-
tion 3.1), a fixed bucket capacity is established for the leaf nodes instead of a splitting threshold. The
method we describe is related to the bulk-loading method for PK-trees described in [53]. Our descrip-
tion is in terms of a PR quadtree stored in an MBI (see Section 3.3), but can easily be adapted to any
other representation. Thus, the quadtree blocks are represented with Morton block values.

7.1 Overview

When bulk-loading the PR quadtree, we assume that the data is sorted in Morton code order prior to being
inserted, just as we do in our PMR quadtree bulk-loading method. However, rather than first building a
pointer-based quadtree in main memory, we can directly construct the leaf blocks of the quadtree. Briefly,
the algorithm works by adding points, one by one, to a list of candidates for the current leaf node, ex-
panding the node’s region as needed. If adding a new point causes overflow (i.e., more than c points,
where c is the bucket capacity) or causes the node’s region to intersect a previously created node, then
we construct a new leaf node in the MBI with the largest possible subset of the candidates.

Figure 16 illustrates the insertion of a sequence of points 1–4 into the candidate list (in increasing
order), and how the current leaf node region is expanded to encompass new points. In the figure, the
square with a heavy border denotes the current leaf node (being built in memory), while the square with
a broken border denotes the previous leaf node, i.e., the current leaf node prior to its last expansion. The
most recently inserted point is denoted with an� symbol, while the other candidate points are shown as
dots. Figure 16a shows what happens when a point is inserted into an empty candidate list: the current
leaf node region is set to the smallest possible quadtree region around the point, i.e., of size 1 by 1. In
Figures 16b and 16d, the inserted point is not contained in the current leaf node region. Thus, the current
leaf node region is expanded so that it contains the new point. As we shall see below, the previous region
may be needed later, so it must be remembered. In Figure 16c, the new point is contained in the current
leaf node region, so no expansion takes place. Observe that the current leaf node region is always the
smallest enclosing quadtree block containing the points in the candidate list.

(a) (b) (c) (d)

1
2

3

4

1 1 1
2 2

3

Figure 16: Example of insertions into candidate list, of points 1-4 (in order),

demonstrating expansion of the current leaf node region (shown with heavy

lines). The square with broken lines denotes the current leaf node region prior

to its last expansion.

Figure 17 illustrates the conditions that lead to the construction of a new leaf node in the MBI. The
shaded square in the figure denotes the last leaf node that was built. In this example, we assume a bucket
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capacity of 8. Thus, in Figures 17a and 17b we have exceeded the bucket capacity, as the new point leads
to the candidate list containing nine points. In Figure 17a, the new point is contained in the current leaf
node region. Since we have an overflow in that region, we must use the previous leaf node region (shown
with broken lines) to construct a new leaf node, containing the three points inside it. In Figure 17b, on
the other hand, the new point is outside the current leaf node region, so we can build a new leaf node
containing the eight points in the current leaf node region. In Figure 17c, we do not have an overflow, so
the current leaf node region gets expanded to contain the new point. However, this results in the current
leaf node region overlapping the previously constructed leaf node. This is not permitted, so we construct
a new leaf node for the six points inside the current leaf node region as it was prior to the expansion.
For all three cases, the points in the candidate list that are outside the newly constructed leaf node are
reinserted into the candidate list (which is first emptied), in the same manner as described above (i.e.,
recall Figure 16). However, for the case illustrated in Figure 17a, we could optimize the process slightly
by immediately constructing leaf nodes for the two points above and the two points to the right of the new
leaf node (i.e., the NW and SE quadrants of the current leaf node region, which is denoted by a heavy
boundary).

(a) (b) (c)

new leaf
new leaf

new leaf

last leaf
built

last leaf
built

last leaf
built

Figure 17: Conditions for constructing a new leaf node where the most recently

inserted point is denoted by x: (a) candidate list overows and the new point is

in the current leaf node region, (b) candidate list overows and the new point is

not in the current leaf node region, and (c) expansion of the current leaf node

region causes overlap of the leaf node that was last built.

When a new leaf node is constructed for a set of points A, the leaf node region is the smallest one
covering the points. However, the PR quadtree is defined so that the leaf node regions are maximal, i.e.,
as large as possible without intersecting other leaf nodes. Figure 18 illustrates the case where the leaf
node region for a set of points is not maximal. Thus, the leaf node region must be expanded until it is the
largest possible region that does not overlap any points not in A. As shown in Figure 18, we use the last
leaf node to be constructed and the most recently inserted point in the candidate list to guide how far to
expand the leaf node region. In the figure, we expand the leaf node region once, to the square drawn with
heavy lines. If we expanded it once more, it would overlap both the last leaf node and the most recently
inserted point. However, overlap with either one suffices to halt the expansion.

7.2 Algorithm

The algorithm is shown in detail in Figure 19. For simplicity, we assume in the figure that there are never
more than c points in quadtree blocks of the minimum size (which have a side length of 1). The algorithm
can easily be extended to handle the extreme case when this assumption does not hold. The algorithm
employs the following global variables to maintain its state:
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last leaf
built

Figure 18: Expansion of the current leaf node region to cover maximal area.

The most recently inserted point is denoted by x.

� candidateList: an array of up to c+ 1 candidate points for the current block (always occurring in
Morton order),

� listLen: the number of points in candidateList,

� currentLeafBlock: the smallest quadtree block enclosing points on candidateList (i.e., the square
with heavy border in Figures 16 and 17),

� smallerLeafBlock: a smaller block than currentLeafBlock containing a subset of the points in can-
didateList (i.e., the broken square in Figures 16 and 17),

� smallerCount: the number of points in smallerLeafBlock,

� lastLeafBlock: the last quadtree leaf block inserted into the MBI (i.e., the shaded square in Fig-
ures 17 and 18),

� leafCount: the number of quadtree leaves that have been constructed (i.e., inserted into the MBI).

The build process is initialized by setting both listLen and leafCount to 0. Once procedure INSERTPOINT

has been invoked for all points in the data set, the candidate list will contain up to c points. To build
the final leaf with those points, we invoke “BUILDLEAF(listLen, currentLeafBlock, NIL)”, where NIL
indicates a null point value.

The algorithm uses several functions for manipulating and testing Morton block values: MINIMU-
MENCLOSING, EXPANDTOCONTAIN, and CONTAINS. These are most efficiently implemented if the
Morton codes of the inserted points are computed in advance (this need only be done once for each in-
serted point). In this case, they merely involve simple bit manipulations and comparisons. The proce-
dure MBIINSERT inserts an item into the Morton Block Index. Procedure INSERTPOINT implements
the control structure of the algorithm. An inserted point is added to the candidateList array. If it is the
sole element, currentLeafBlock is initialized to only contain the point. If the number of points in can-
didateList exceeds c, we build a new leaf by invoking BUILDLEAF. The number of points in the new
leaf depends on whether or not the inserted point is contained in the current leaf block (e.g., Figures 17a
and 17b, respectively). If the number of points in the candidate list is between 2 and c, we test whether
the inserted point is contained in the current leaf block. If not, we remember the current leaf block (which
may be needed later), and extend the region of the current leaf block to include the inserted point (e.g.,
Figure 16d). If extending the current leaf block makes it overlap the previously created leaf block (e.g.,
Figure 17c), we invoke BUILDLEAF using the previous value of currentLeafBlock. BUILDLEAF must
start with enlarging the leaf block region as much as possible, in order to adhere to the definition of the
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procedure INSERTPOINT(point)!
listLen listLen+1
candidateList[listLen] point
if (listLen = 1) then

currentLeafBlock MINIMUMENCLOSING(point)
elseif (listLen > c) then

if (CONTAINS(currentLeafBlock, point)) then
BUILDLEAF(smallerCount, smallerLeafBlock, point) /* see Figure 17a */

else
BUILDLEAF(c, currentLeafBlock, point) /* see Figure 17b */

endif
elseif (not CONTAINS(currentLeafBlock, point)) then

smallerLeafBlock currentLeafBlock
smallerCount listLen-1
currentLeafBlock EXPANDTOCONTAIN(currentLeafBlock, point)
if (leafCount > 0 and CONTAINS(currentLeafBlock, lastLeafBlock)) then

BUILDLEAF(smallerCount, smallerLeafBlock, point) /* see Figure 17c */
endif

endif

procedure BUILDLEAF(pointCount, leafBlock, point)!
/* make leafBlock as large as possible (see Figure 18) */
parentBlock PARENT(leafBlock)
while (not CONTAINS(parentBlock, point) and

not (leafCount > 0 and CONTAINS(parentBlock, lastLeafBlock))) do
leafBlock parentBlock
parentBlock PARENT(parentBlock)

endwhile
/* insert first pointCount candidates into MBI */
for (i = 1..pointCount) do

MBIINSERT(leafBlock, candidateList[i])
endfor
lastLeafBlock leafBlock
leafCount leafCount+1
/* recursively reinsert remaining points */
oldListLen listLen
listLen 0
for (i = pointCount+1..oldListLen) do

INSERTPOINT(candidateList[i])
endfor

Figure 19: Pseudo-code for the PR quadtree bulk-loading algorithm.

PR quadtree (e.g., Figure 18). Next, it inserts the requested points into the MBI, while recursively invok-
ing INSERTPOINT on the remaining points in the candidate list. This is necessary in order to construct
the proper value for currentLeafBlock.
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The above algorithm can be extended to handle bulk-insertions into an existing PR quadtree, by us-
ing a merge process analogous to that for the PMR quadtree bulk-insertion algorithm (see Section 6). As
INSERTPOINT generates new leaf nodes, the contents of some nodes in the existing PR quadtree have
to be inserted into the candidate list, while existing leaf nodes not containing any of the new points can
be copied directly into the new PR quadtree (as in MERGESUBTREES in Figure 15). In addition, IN-
SERTPOINT and BUILDLEAF must make sure that currentLeafBlock and leafBlock, respectively, are not
extended so much as to contain the next leaf node in the existing PR quadtree (in the same way as they
prevent the leaf blocks from containing lastLeafBlock).

8 Analytic Observations

In this section we make some observations about the execution cost of our PMR quadtree bulk-loading
algorithm. Many of the considerations apply to the PR quadtree bulk-loading algorithm as well. The
discussion is for the most part informal, and is meant to give insight into general trends, rather than being
a rigorous treatment. Our experiments suggest that I/O cost and CPU cost both contribute significantly
to the total execution cost (although the I/O cost contribution is usually higher). Therefore, we discuss
each separately below.

8.1 I/O Cost

The performance of bulk-loading algorithms is frequently characterized by their I/O cost [8, 13]. Such
an analysis seeks to evaluate the number of I/O operations (reads and writes) performed by the algorithm,
each affecting a disk block that contains a maximum of B records. The algorithm is assumed to use an in-
ternal memory buffer accommodating M records, and the number of data records to load is N. Below, we
make some observations on the I/O cost of our bulk-loading algorithm when used with a linear quadtree
such as the Morton Block Index (MBI).

Besides the cost of reading the actual data file, the I/O cost of our bulk-loading method has two com-
ponents: sorting I/O cost and quadtree I/O cost. In the case of the MBI, the quadtree I/O is really B-tree
I/O, so this is the designation we use below. Before we proceed, we must point out that the values of
B, M, and N for each of these components is different. First, the values of B for the B-tree are slightly
lower than for sorting (assuming a constant disk page size in bytes), since each entry in the B-tree occu-
pies somewhat more space. They differ by a constant factor, however, so this does not affect asymptotic
results. Second, if the sorting phase and the tree building phase are executed simultaneously, with the
result of the first pipelined to the second, both will require their own internal memory buffer. Thus, each
component really has a buffer of M=2 records, assuming we allocate the same amount to each compo-
nent. Also, as with B, the values of M for the two components are different due to different record sizes
(assuming the same buffer size in bytes). For both of these issues, the difference in M is constant, and
thus can be ignored. Third, the value of N is generally higher for the B-tree than for sorting, since the
former represents the number of q-objects rather than objects. In addition, empty quadtree leaf blocks
may be represented in the B-tree (recall from Section 3.3 that this is optional). Neither of these factors
can be ignored. For the present, we will use N0 to denote the number of entries in the B-tree. Later, we
attempt to relate N0 to N, the number of data objects.

Sorting N items in external memory can be done in O(N
B logM=B

N
B ) I/O operations (see Section 5.4).

Reinsertions may add to this cost. Recall from Section 5.3 that the total number of insertions into the
quadtree (original and reinsertions) for object o is no more than q+ a0, where q is the number of cor-
responding q-objects and a0 is the number of ancestors of the leaf nodes containing the q-objects, not
counting those ancestors that completely enclose the object. Since a0 is no higher than wq, where w is
the maximum height of the quadtree, the total number of insertions is at most wNq, where Nq denotes the
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number of q-objects. However, since the q-objects for an object typically share most of their ancestors,
we can expect the total number of reinsertions to be O(Nq). As we outlined in Section 5.4.2, the I/O cost

of sorting N objects and reinserting O(Nq) objects is O(sNq=B logM=B
Nq

B ), where s is less than 2 for all
practical values of N, M, and B.

In our PMR quadtree bulk-loading approach, each B-tree node in the MBI is written only once and
never read, due to the use of B-tree packing (see Section 5.5). This means that the B-tree I/O cost is
between N0=B and 2N0=B, depending on the split fraction, and thus O(N0=B).

The overall I/O cost of our bulk-loading algorithm is therefore O(N0

B + s Nq
B logM=B

Nq
B ). Below, we

argue that reinsertions are unlikely to occur, so the presence of s and Nq (instead of N) in the formula
generally greatly overestimates the sorting cost. Furthermore, the values of N0 and Nq are often on the
same order as N. Therefore, in many cases, the actual I/O cost of the bulk-loading algorithm is about the
same as that of external sorting, i.e., O(N

B logM=B
N
B ).

8.1.1 When are Reinsertions Needed?

As we saw above, the sorting cost can increase substantially in the presence of reinsertions. However,
reinsertions only occur if the flushing algorithm fails to free any memory. The informal analysis below,
although simplistic, suggests that this will rarely happen.

Recall that the flushing algorithm is unable to free any memory if all the objects stored in the pointer-
based quadtree intersect the boundary (referred to as flushing boundary below) between flushed and un-
flushed nodes; e.g., the boundary of the striped region in Figure 9. This condition never arises if the data
objects are points and is unlikely to occur if the “space” between adjacent data objects is generally larger
than their size. In general, however, we must make some assumptions about the distribution of the loca-
tions and sizes of non-point objects to be able to estimate the number of objects that intersect the flushing
boundary. We will make the simplifying assumption that the data objects are all of the same size, and are
equally spaced in a non-overlapping manner so that they cover the entire data space. In other words, for
a two-dimensional object, the bounding rectangle is approximately a square with area L2

N , and thus side
lengths Lp

N
, where L is the side length of the square-shaped data space. The length of the flushing bound-

ary is at most 2L, since starting from its top-left corner, the boundary is monotonically non-decreasing
in the x axis and non-increasing in the y axis (refer to Figure 9 for an example)9. Given the assumptions
above, the number of objects intersected by the flushing boundary is at most 2L

L=
p

N
= 2
p

N, since the

boundary is piecewise linear. For that many objects, the quadtree buffer would be full if M� 2
p

N. Put
another way, given a buffer size of M, the buffer can be expected to never fill if N�M2=4. For example,
with a buffer capacity of 10,000 objects, we can expect the buffer never to fill for a data file of up to
50 million objects. If each object occupies 50 bytes, these numbers correspond to a buffer size of about
500K and a data file size of about 2.3GB.

In general, for d dimensions, the object’s bounding hyper-rectangles (which are nearly hyper-cubes
in shape) have a volume of about Ld=N, so each of their d� 1 dimensional faces has a d� 1 dimen-
sional volume of approximately (Ld=N)

d�1
d = Ld�1=N

d�1
d . The flushing boundary has a d� 1 dimen-

sional volume of at most dLd�1, so the number of objects intersected by it can be expected to be less
than dLd�1

Ld�1=N
d�1

d
= dN

d�1
d . Unfortunately, if N is smaller than dd, this value is larger than N. However, for

the relatively low-dimensional spaces for which quadtrees are practical, N is typically much larger than
dd so dN

d�1
d is smaller than N. Furthermore, it is not common to be working with non-point objects in

spaces of higher dimensionality than 3. For three-dimensional space, we can expect a buffer of size M

9It is possible to show that the maximum length is even less than this (3L=2) and the average length is still less (L), but the
bound 2L suffices for our purposes.
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to never fill if N � (M=3)3=2. For example, a buffer capacity of 10,000 objects can be expected to be
enough to handle data files of up to approximately 190,000 objects (about 9MB for objects of 50 bytes
each). Although this may not seem as dramatic as in the two-dimensional case, the difference between
N and M is still more than an order of magnitude.

8.1.2 Relationship between N, Nq, and N0

The I/O cost of the bulk-loading algorithm given above was in terms of Nq and N0, the number of q-
objects and the number of B-tree items, respectively. In order to get a better picture of the I/O cost, it is
useful to establish the relationship between the three quantities N, Nq, and N0. In this section we explore
this issue.

First, consider N, the number of objects, and Nq, the number of q-objects. Note that for points,
Nq = N. For non-point objects, the value of Nq depends on many factors, including 1) the splitting
threshold, 2) the relative sizes of objects, 3) how closely clustered the objects are, 4) the complexity
of the boundaries of objects, and 5) the degree of overlap. As an extreme example, if all the objects were
squares (hypercubes for d > 2) that covered the entire data space, then the space would be maximally
partitioned into the smallest allowable cells. In other words, we would get 2wd leaf nodes, where w is the
maximum height of the quadtree, assuming N is at least w+ t, where t is the splitting threshold value.
Thus, each object is broken up into 2wd q-objects, and Nq = 2wdN. As another example, if the data ob-
jects are square-shaped (cube- or hypercube-shaped for d > 2), all of the same size, the largest number
of q-objects for a square is 6, or 2 � 3d�1 in general (assuming t � 2d); the average number will depend
on t. In this example, the ratio between N and Nq is still exponential in d. However, non-point data is
rarely used in spaces with dimensionality above 3.

As to the relationship between Nq and N0, the difference between the two is the number of empty
quadtree leaf nodes, if we choose to represent them in the B-tree. Unfortunately, there can be a large
number of empty leaf nodes in the tree. As an extreme example, suppose that all the objects lie in a
single cell of the minimum size. This would cause node splits at all levels of the tree until we have all the
objects in a single leaf node at the lowest level. Thus, given a two-dimensional quadtree with a maximum
depth of w, we would have 3w empty leaf nodes for the single non-empty leaf node. We can extend this
example to a tree of k non-empty leaf nodes having as many as 3(w�blog4 kc)k empty leaf nodes10, or in
general for a d-dimensional quadtree, (2d�1)(w�blog2d kc)k empty leaf nodes. In quadtrees that give
rise to such a high number of empty leaf nodes, most internal nodes have 2d�1 empty leaf nodes as child
nodes while only one child is either a non-empty leaf node or an internal node. Thus, such quadtrees are
rather contrived and unlikely to actually occur. A more reasonable assumption is that for the majority of
quadtree nonleaf nodes, at least two child nodes are non-empty. Given this assumption, an upper bound
of about 2d+1 empty leaf nodes for each non-empty leaf node can be established. Since the number of
empty leaves tends to grow sharply with d, it is inadvisable to store empty quadtree nodes in the B-tree
for quadtrees of dimension more than 3 or 4.

It is interesting to consider the values of Nq and N0 relative to N for actual data sets. In Section 9
we use six data sets consisting of non-overlapping two-dimensional line segment data, three of which
are real-world data and three of which are synthetic. With a splitting threshold of 8, the value of Nq was
at most about 2N for the real-world data sets, while it was about 2:63N for the synthetic data sets. The
number of empty leaf nodes was rather small, ranging from 2.2% to 4.7% of N for the real-world data
sets and 3.2% to 3.8% for the synthetic ones. With a splitting threshold of 32, the value of Nq ranged from
1:3N to 1:6N, while the number of empty leaf nodes was negligible. In the experiments, we also used
a real-world data set comprising two-dimensional polygons representing census tracts in the US. The

10This is realized by having k trees with one non-empty leaf node, all of height w�blog4 kc, and a complete quadtree of
height blog4 kc down to the roots of these k trees.
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spatial extent of these polygons had a wide range, the polygon objects touched each other’s boundaries,
and their boundaries were often very complex (up to 3700 points per polygon, with an average of about
40). Thus, this data set represents an extreme in the complexity of non-overlapping two-dimensional
data. With a splitting threshold of 8, both Nq and N0 were about 4N, while with a splitting threshold of
32 they were less than 2N (more precisely, about 1:9N). Thus, the values obtained for Nq and N0 were still
relatively close to the value of N, at least for the larger splitting threshold. Finally, we experimented with
highly overlapping synthetic line segment data. Not surprisingly, the number of q-objects for each object
is very high for such data. Even with a relatively large splitting threshold of 32, the value of Nq was about
110N. This strongly suggests that quadtrees are not very suitable for such data, but the performance of
other spatial index structures will also degrade for such data.

8.2 CPU Cost

Three factors contribute to the CPU cost of the algorithm: 1) sorting the objects, 2) building the pointer-
based quadtree, and 3) building the B-tree of the MBI. For each of these factors, the techniques that we
outlined are very efficient.

The CPU cost of the external merge sorting algorithm given in Section 5.4.1 is roughly proportional
to the number of comparison operations. Using the symbols N, M, and B as described in Section 5.4,
the average number of comparison operations per object when constructing the initial runs is O(logM).
In each merge step, we need O(log M

B ) comparisons for each object on average since at most M=B runs

are merged each time. Thus, recalling that the number of merge steps is O(logM=B
N
M) = O(

log(N=M)

log(M=B)), the

overall number of comparisons per object on average is O(logM+
log(N=M)

log(M=B) log M
B ) =O(logM+ log N

M) =

O(logN), and the total cost is O(N logN), which is optimal. Even in the presence of reinsertions (Sec-
tion 5.4.2), sorting remains nearly optimal.

Assuming for the moment that the original insertion algorithm is used instead of our improved one,
the total cost of building the pointer-based quadtree is roughly proportional to the number of intersection
tests. Recall that the intersection tests are needed to determine whether an object should be inserted into
a certain node. If oq is a q-object of object o that intersects a leaf node n, the number of intersection tests
on o is at least 2d �Dn, where Dn is the depth of n. Thus, in the worst case, the total number of intersection
tests needed on o is 2d �Dmax times the number of q-objects for o. To analyze this further, we resort to
a gross simplification: assume that the objects are non-overlapping equal-sized squares in two dimen-
sions, and that they are uniformly distributed over the data space. In this simple scenario, the number of
q-objects for an object is O(1), while the number of empty leaf nodes tends to be very low. Thus, the
expected number of leaf nodes (and thus all nodes) is roughly proportional to N. Since the objects are
uniformly distributed, the leaf nodes will tend to be at a similar depth in the tree, so the average height
is approximately proportional to logN. Therefore, the total number of intersection tests is O(N logN)11.
Note that in our improved PMR quadtree insertion algorithm, the total number of intersection tests is typ-
ically much smaller, and can potentially be as small as O(N). Nevertheless, some work is still expended
in traversing the pointer-based quadtree down to the leaf level for each object.

When traversing the pointer-based quadtree during flushing, most of the nodes visited are deleted
from the tree, and thus are never encountered during subsequent flushing operations. The visited nodes
that are retained (or at least a similar number of nodes) are also visited by the insertion operation that
initiated the flushing, so the cost of visiting them is accounted for in the cost of the insertion operation.
Thus, the total additional cost of tree traversal during flushing is proportional to the number of quadtree
nodes (O(N) in the simplified scenario above). During flushing, some work is also expended for every

11Of course, for arbitrary dimensions, a 2d factor would be involved. However, recall that the quadtree is only used for
relatively modest values of d.
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q-object in the flushed nodes. However, this work is accounted for in the cost of building the B-tree.
In the B-tree packing algorithm introduced in Section 5.5, the CPU cost is proportional to the num-

ber of inserted items. To see this, observe that procedures PACKINSERT and PACKSPLIT in Figure 13
both expend a constant amount of work for each invocation (if the split fraction is not 100%, the cost
of PACKSPLIT is proportional to B, but the amortized cost per object in the split node is still constant).
PACKINSERT is only invoked once per item, while PACKSPLIT is invoked h times for an item that even-
tually is stored in a node at height h. If the total number of B-tree items is N, then the number of items
at height h is about N=Bh, where B is the number of items in each B-tree node. Therefore, the number
of invocations for items at height h is approximately hN=Bh. Thus, the total number of invocations of
PACKSPLIT is roughly ∑hmax

h=1 hN=Bh�N∑∞
h=1 h=Bh =N=(B�2+1=B), which is O(N) for B� 3. Hence,

the total CPU cost of B-tree packing is O(N).
To summarize, we saw that the asymptotic CPU cost was O(N logN) for sorting the objects, O(N logN)

for constructing the quadtree in memory (given our simplifying assumptions), and O(N) for building the
B-tree. Thus, we see that in an ideal situation (i.e., if the data distribution is not too skewed), we can
expect the total CPU cost of our bulk-loading algorithm to be approximately O(N logN).

9 Empirical Results

9.1 Experimental Setup

We implemented the techniques that we presented in Sections 5 and 7 in C++ within an existing linear
quadtree testbed (described in Section 3.3). Our quadtree implementation has been highly tuned for ef-
ficiency, but this primarily benefits dynamic PMR quadtree insertions (i.e., when inserting directly into
the MBI). Thus, the speedup due to bulk-loading would be even greater than we show had we used a less
tuned implementation. This is partly the reason why we obtained lower speedup than reported in [26].
The source code was compiled with the GNU C++ compiler with full optimization (–O3) and the ex-
periments were conducted on a Sun Ultra 1 Model 170E machine, rated at 6.17 SPECint95 and 11.80
SPECfp95 with 64MB of memory. In order to better control the run-time parameters, we used a raw
disk partition. This ensures that execution times reflect the true cost of I/O, which would otherwise be
partially obscured by the file caching mechanism of the operating system. The use of raw disk partitions
is another reason we obtained lower speedup than in [26], since the reduction in CPU cost is much greater
than the reduction in I/O cost. The maximum depth of the quadtree was set to 16 in most of the experi-
ments, and the splitting threshold in the PMR quadtree (bucket capacity in the PR quadtree) to 8. Larger
splitting thresholds make our PMR quadtree bulk-loading approach even more attractive. However, as 8
is a commonly used splitting threshold, this is the value we used. B-tree node size was set to 4KB, while
node capacity varied between 50 and 400 entries, depending on the experiment.

The sizes of the data sets we used were perhaps modest compared to some modern applications.
However, we compensated for this by using a modest amount of buffering. In our PMR quadtree bulk-
loading algorithm, we limited the space occupied by the pointer-based quadtree to 128K. The flushing
algorithm was always able to free substantial amounts of memory (typically over 90% but never less
than 55%), except in experiments explicitly designed to make it fail. In all other experiments, this level
of buffering proved more than adequate and a larger buffer did not improve performance. The sort buffer
was limited to 512K. A sort buffer size of 256K increased running time only slightly (typically less than
3% of the total time). For the B-tree, we explored the effect of varying the buffer size, buffering from
256 B-tree nodes (occupying 1MB) up to the entire B-tree. For the bulk-loading methods, however, only
one B-tree node at each level needed to be buffered, as described in Section 5.5.

In reporting the results of the experiments, we use execution time. This takes into account the cost of
reading the data, sorting it, establishing the quadtree structure, and writing out the resulting B-tree. The
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reason for using execution time, rather than such measures as number of comparisons or I/O operations, is
that no other measure adequately captures the overall cost of the loading operations. For each experiment,
we averaged the results of a number of runs (usually 10), repeating until achieving consistent results. As
a result, the size of the 99% confidence interval for each experiment was usually less than 0.4% of the
average value, and never more than about 1%. In particular, the confidence intervals are always smaller
than the differences between any two loading methods being compared.

9.2 Findings

Below, we detail the results of a number of experiments which show the performance of the two bulk-
loading techniques presented in this paper, for PMR and PR quadtrees (Sections 5 and 7, respectively),
as well as our technique for improving the performance of PMR quadtree insertions (Section 4). With the
exception of Section 9.2.5, the improved insertion method is used in all experiments involving the PMR
quadtree, both in our bulk-loading algorithm and when performing dynamic insertions (i.e., updating the
MBI directly). Unless otherwise specified, the experiments in this section use the PMR quadtree and the
bulk-loading algorithm presented in Section 5.

The remainder of this section is organized as follows: In Section 9.2.1 we go into considerable detail
on bulk-loading two-dimensional line segment data, as well as describe the specifics of the PMR quadtree
loading methods used in these and subsequent experiments. In Section 9.2.2 we repeat the same experi-
ments in SAND, our prototype spatial database system, in order to examine the effects of using the object
table approach. In Sections 9.2.3 and 9.2.4 we show how well our method does with other types of data,
multidimensional points and two-dimensional polygons, again using SAND. The performance of the PR
quadtree bulk-loading algorithm (for multidimensional points) is also presented in Section 9.2.3, and
compared with using the PMR quadtree bulk-loading algorithm. In Section 9.2.5 we investigate how
much our improved PMR quadtree insertion algorithm improves the performance of the PMR quadtree
bulk-loading algorithm and of dynamic insertions. In Section 9.2.6, we study the performance of the al-
gorithm when no node can be flushed and reinsert freeing must be used. In Section 9.2.7 we examine how
well our bulk-insertion algorithm for PMR quadtrees performs. In Section 9.2.8, we establish how our
bulk-loading algorithm compares to two bulk-loading techniques for R-trees. Finally, in Section 9.2.9
we summarize the conclusions drawn from our experiments.

9.2.1 2D Line Segment Data

In the first set of experiments, we used two-dimensional line segment data, both real-world and synthetic.
In these experiments, we stored the actual coordinate values of the line segments in the quadtree. The
real-world data consists of three data sets from the TIGER/Line File [15]. The first two contain all line
segment data — roads, rail lines, rivers, etc. — for Washington, DC and Prince George’s County, MD,
abbreviated below as “DC” and “PG”. The third contains roads in the entire Washington, DC metro area,
abbreviated “Roads”. The synthetic data sets were constructed by generating random infinite lines in
a manner that is independent of translation and scaling of the coordinate system [37]. These lines are
clipped to the map area to obtain line segments, and then subdivided further at intersection points with
other line segments so that at the end, line segments meet only at endpoints. Using these data sets enables
us to get a feel for how the quadtree loading methods scale up with map size on data sets with similar
characteristics.

Table 1 provides details on the six line segment maps: the number of line segments, the average num-
ber of q-edges per line segment, the file size of the input files (in KB), and the minimum and maximum
number of nodes in the MBI B-trees representing the resulting PMR quadtrees. Recall that a q-edge is
a piece of a line segment that intersects a leaf block. The average number of q-edges per line segment
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is in some sense a measure of the complexity of the data set, and a sparse data set will tend to have a
lower average. The number of items in the resulting B-tree is equal to the number of q-edges plus the
number of white nodes. Notice the large discrepancy in the B-tree sizes, reflecting the different storage
utilizations achieved by the different tree loading methods. In the smallest trees, the storage utilization is
nearly 100%. In the trees built with the dynamic PMR quadtree insertion method, the storage utilization
ranged from 65% to 69%, and thus these trees were about 45% larger than the smallest trees.

Number of Avg. q-edges MBI B-tree size (nodes)
Data set line segments per segment File size (KB) Min Max
DC 19,185 2.08 384 301 532
PG 59,551 1.86 1176 843 1529
Roads 200,482 1.76 3928 2691 4859
Rand64K 64,000 2.61 1264 1259 2152
Rand128K 128,000 2.62 2512 2525 4322
Rand260K 260,000 2.63 5088 5146 8674

Table 1: Details on line segment maps.

Table 2 summarizes configurations used for loading the PMR quadtree in the experiments. Three of
them use dynamic quadtree insertion (i.e., updating the MBI directly) with varying levels of buffering
in the MBI B-tree (denoted “BB-L”, “BB-M”, and “BB-S”), while two use our quadtree buffering bulk-
loading method (denoted “QB-75” and “QB-100”). In one of the B-tree buffering configurations, “BB-
S”, we sorted the objects in Z-order based on their centroids prior to insertion into the quadtree. This
has the effect of localizing insertions into the B-tree within the B-tree nodes storing the largest existing
Morton code values, thus making it unlikely that a node is discarded from the buffer before it is needed
again for insertions. Thus, the sorting ensures that the best use is made of limited buffer space. The
drawback is that the storage utilization tends to be poor, typically about 20% worse than with unsorted
insertions. Since deletions occur in the B-tree and insertions do not arrive strictly in key order, the regular
B-tree packing algorithm could not be used. When we adapted the B-tree packing approach to handle
slightly out-of-order insertions (see Section 5.5), and set it to yield storage utilization similar to that of
unsorted insertions, the speedup was at best only slight. Nevertheless, we do not make use of this in our
experiments, since it has the undesirable property of causing underfull nodes. For quadtree buffering,
the B-tree packing algorithm (see Section 5.5) was set to yield approximately 75% (“QB-75”) and 100%
(“QB-100”) storage utilization. In this experiment, as well as most of the others, we used the distribution
sort algorithm mentioned in Section 5.4.

Method B-tree buffering Quadtree buffering Sorting
BB-L yes (unlimited) no no
BB-M yes (1024 nodes) no no
BB-S yes (256 nodes) no yes
QB-75 limited yes (� 75% B-tree storage utilization) yes
QB-100 limited yes (� 100% B-tree storage utilization) yes

Table 2: Summary of PMR quadtree loading methods used in experiments.

Table 3 shows the execution time for loading PMR quadtrees for the six data sets using the five load-
ing methods. Figure 20 presents this data in a bar chart, where the execution times are adjusted for map
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size; i.e., they reflect the average cost per 10,000 inserted line segments. Two conclusions are imme-
diately obvious from this set of experiments. First, the large difference between “QB-75” and “BB-L”,
which both write each B-tree block only once (“QB-75” due to B-tree packing and “BB-L” due to un-
limited B-tree node buffering) and have a similar B-tree storage utilization, shows clearly that quadtree
buffering achieves large savings in CPU cost. Second, the dramatic increase in execution time between
“BB-S” and “BB-M”, in spite of the latter using four times as large a B-tree buffer, demonstrates plainly
that unsorted insertions render buffering ineffective, especially as the size of the resulting B-tree grows
with respect to the buffer size. The reason why the execution time of “BB-M” is lower for the real-world
data sets than the synthetic ones is that the real-world data sets have some degree of spatial clustering,
while the synthetic data sets do not. The cost of sorting in “BB-S” is clearly more than offset by the saving
in B-tree I/O, even though the storage utilization in the B-tree becomes somewhat worse. Within the same
loading method, the average cost tends to increase with increased map size. This is most likely caused by
increased average depth of quadtree leaf nodes, which leads to a higher average quadtree traversal cost
and more intersection tests on the average for each object. The rate of increase is smaller for quadtree
buffering (“QB-75” and “QB-100”), reflecting the fact that quadtree traversals are more expensive in the
MBI than in the pointer-based quadtree used in quadtree buffering. Curiously, the average cost for Roads
is smaller for all five loading methods than that of R64K, even though the size of the R64K data set is
smaller, and so is the average depth of leaf nodes in the resulting quadtree (8.53 for R64K vs. 9.24 for
Roads). The reason for this appears to be primarily the larger average number of q-edges per inserted
line segment for the R64K data set (see Table 1).

Data set BB-L BB-M BB-S QB-75 QB-100
DC 12.24 14.62 11.87 4.47 3.68
PG 35.62 71.49 37.15 13.80 11.53
Roads 120.78 221.55 134.38 46.14 38.92
R64K 52.49 136.18 56.07 19.37 16.04
R128K 109.41 349.48 116.62 39.47 32.85
R260K 229.31 853.34 254.58 82.31 68.81

Table 3: Execution times (in seconds) for building quadtrees for the six data

sets.

A better representation of the experiment results for comparing the five different loading methods is
shown in Figure 21. The figure shows the speedup of “QB-100”, quadtree buffering with nearly 100%
B-tree storage utilization, compared to the other four methods. Compared to “BB-L” and “BB-S”, the
speedup of “QB-100” is by a factor of between three and four, and the speedup increases with the size
of the data set. Compared to “BB-M”, the speedup is by a factor of at least four, and up to over 12 when
“BB-M” performs the most B-tree I/O. Overall, “QB-75” was about 20% slower than “QB-100”, which
was to be expected since the MBI B-tree produced by “QB-75” is about 33% larger.

The proportion of the execution time spent on I/O operations is shown in Figure 22. We obtained
these numbers by recording the I/O operations performed while building a PMR quadtree, includingread-
ing the data, and then measuring the execution time needed to perform the I/O operations themselves.
For the loading methods that use sorting, we include the I/O operations executed by the sort process. For
B-tree buffering, except for “BB-M”, the relative I/O cost is small, or only about 20-30%, compared to
between 65% and 75% for quadtree buffering. This shows that the savings in execution time yielded by
quadtree buffering are, for the most part, caused by reduced CPU cost (the time for performing I/O is only
1.3 to 2.9 seconds per 10,000 insertions for all but “BB-M”). For “BB-M”, the proportion of time spent
on I/O gradually increases with larger data sizes as B-tree buffering becomes less effective on unsorted
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Figure 21: Speedup of \QB-100" compared to the other four loading methods

for line segment data.

data.

9.2.2 Line Segment Data in SAND

In the first set of experiments, we stored the actual geometry of the objects in the PMR quadtree. As men-
tioned in Section 3.3, our quadtree implementation also allows storing the geometry outside the quadtree.
The second set of experiments was run within SAND, our spatial database prototype, using the same
data. This time, we stored only tuple IDs for the spatial objects in the quadtree, rather than the geome-
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Figure 22: Proportion of execution time spent on I/O operations for the �ve

loading methods for line segment data.

try itself. Storing the geometry in the quadtree with SAND yields results similar to that of our previous
experiments, the difference being that SAND also must store the tuple ID, thereby making for slightly
larger B-tree entries and lower fan-out. An additional difference is that in the experiments above, we
used 4-byte integers for the coordinate values of the line segments, while SAND uses 8-byte floating
point numbers for coordinate values. For this set of experiments, we used the configurations “BB-L”,
“BB-S”, and “QB-100”, described in Table 2. In keeping with the modest buffering in the latter two,
we only buffered 128 of the most recently used disk pages for the relation tuples, where each disk page
is 4KB in size, while for “BB-L” we used a buffer size of 512 disk pages. The PMR quadtree indexes
were built on an existing relation, which consisted of only a line segment attribute, and where the tuples
in the relation were initially inserted in unsorted order. Since the objects were not spatially clustered in
the relation table, objects that are next to each other in the Morton order are typically not stored in close
proximity (i.e., on the same disk page) in the relation table. This had the potential to (and did) cause
excessive relation disk I/O during the quadtree construction process when we inserted in Morton order
(i.e., in “BB-S” and “QB-100”). A similar effect arises for objects in a leaf node being split, regardless of
insertion order. Thus, in “BB-S” and “QB-100” we built a new object table for the index, into which the
objects were placed in the same order that they were inserted into the quadtree; this effectively clusters
together on disk pages objects that are spatially near each other. When measuring the execution time for
the quadtree construction, we took into account the time to construct the new object table.

Figure 23 shows the speedup of “QB-100” compared to “BB-L” and “BB-S” for building a PMR
quadtree index in SAND for the line segment data, using the object table approach described above. This
time, the speedup for “QB-100” compared to “BB-S” is somewhat smaller than we saw earlier, being a
little less than 3 instead of 3 to 4 before, but the same general trend is apparent. The smaller speedup is
due to the fact that the execution cost of activities common to the two is higher now than before, since the
coordinate values in these experiments were larger (8 bytes vs. 4 bytes before), leading to a higher I/O
cost for reading and writing line segment data. On the other hand, “BB-L” is now considerably slower
in comparison to “QB-100” for the “R128K” and “R260K” data sets, which is caused by a much larger
amount of relation I/O, in spite of “BB-L” having four times as large a buffer. This clearly demonstrates
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the value of using a spatially clustered object table, as is the case in “QB-100” and “BB-S”. Interestingly,
the clustering was obtained as a by-product of sorting the objects in Z-order, providing a further example
of the importance of this sorting order.
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Figure 23: Speedup of \QB-100" compared to the other methods for line seg-

ment data, using object table approach.

9.2.3 Multidimensional Point Data

Next, we examine the effect of the dimensionality of the space on the performance of our bulk-loading
methods (for both the PMR quadtree and the PR quadtree), using synthetic point data sets of 100,000
points each, in dimensions ranging from 2 to 8. The sets of points form 10 normally-distributed clus-
ters with the cluster centers uniformly distributed in the space [18]. We used SAND for these experi-
ments, storing the point geometry directly in the index. We compare using the loading methods “BB-L”,
“BB-S”, and “QB-100” in Table 2, in addition to the PR quadtree bulk-loading algorithm described in
Section 7 (denoted below by “PB-100”). Figure 24 shows the execution time of building the quadtree,
while Figure 25 shows the speedup of “QB-100” compared to “BB-L” and “BB-S”. The speedup is con-
siderable for the lowest dimensions (factors of about 4 and 2.5 for “BB-L” and “BB-S”, respectively),
but becomes less as the number of dimensions grows. However, this is not because quadtree buffering
is inherently worse for the larger dimensions. Rather, it is because the cost that is common to all load-
ing methods (disk I/O, intersection computations, etc.) keeps growing with the number of dimensions.
Figure 26 shows the speedup of “PB-100” compared to “QB-100”. The speedup is initially about 17%
but gradually decreases as the number of dimensions increases.

9.2.4 Complex Spatial Types (Polygons)

In the next set of experiments we built PMR quadtrees for a polygon data set consisting of approximately
60,000 polygons. The polygons represent census tracts in the United States and contain an average of
about 40 boundary points each (which meant that each data page contained only about six polygons on
the average), but as much as 3700 for the most complex ones, occupying over 40MB of disk space. We
performed this experiment in SAND with the same loading methods as before. This time, we used a
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splitting threshold of 32, leading to an average of about two q-objects for each object. In contrast, the
complex boundaries of the polygons led to an excessively large number of q-objects for a splitting thresh-
old of 8, about four for each object on the average (however, the speedup achieved by our bulk-loading
algorithm over the dynamic insertion method was better with the lower threshold value). As polygons
have different numbers of edges, we had to use the object table approach, where we only store object
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references in the quadtree.
In the first experiment with the polygon data, the polygon relation was not spatially clustered. In this

context, spatial clustering denotes the clustering obtained by sorting the objects in Z-order, as is done by
“BB-S” and “QB-100”. For this data, more I/Os were required for building a spatially clustered object
table for “BB-S” and “QB-100” than when accessing the unclustered relation table directly. To see why
this is so, we observe that when building a new clustered object table for a large data set, the sorting
process involves reading in the data, writing all the data to temporary files at least once, reading it back
in, and then finally writing out a new object table. Thus, at least four I/Os are performed for each data
page, half of which are write operations. In contrast, when the unclustered relation is accessed directly,
the data items being sorted are the tuple IDs, so the sorting cost is relatively small. Nevertheless, in
our experiment, this caused each data page to be read over three times on the average for “BB-S” and
“QB-100”12. The difference between the polygon data and the line segment data, where building a new
clustered object table was advantageous, is that in the polygon relation there is a low average number
of objects in each data page. Thus, the average I/O cost per object is high for the polygon data when
building a new object table, whereas the penalty for accessing the unclustered object table directly is not
excessive as there are relatively few distinct objects stored in each page. As a comparison, when using
“BB-L” to build the PMR quadtree, which does not sort the data and for which we used a large relation
buffer of 2048 data pages (occupying 8MB), the overhead in data page accesses was only about 17%
(i.e., on the average, each page was accessed about 1.17 times).

The first column (“Polys (unclust.)”) in Figure 27 shows the execution times for the experiment de-
scribed above. The large amount of relation I/O resulted in “QB-100” being nearly twice as slow as “BB-
L”. Nevertheless, “QB-100” was slightly faster than “BB-S” (by 10%). In order to explore the additional
cost incurred by “QB-100” and “BB-S” for repeatedly reading many of the data pages (due to the sorted

12Each data page is read once when preparing to sort the polygons, since their bounding rectangles must be obtained. The
remaining two I/Os per page (out of the three we observed on the average for each data page) occur when each polygon is
initially inserted into the quadtree or when a node is split.
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insertions), we measured the cost of building a PMR quadtree when the polygon relation was already
spatially clustered (“Polys (clust.)”) as well as building it on the bounding rectangles of the polygons
(“Rectangles” in Figure 27). In the former case, we did not need to sort the data again for “QB-100” and
“BB-S”, thus only incurring 29% overhead in data page accesses, while in the latter case, each polygon
was accessed only once, i.e., to compute its bounding rectangle. The geometry of the bounding rect-
angles was stored directly in the quadtree. Of course, the PMR quadtrees for the bounding rectangles
are somewhat different from those for the polygons themselves, since some leaf nodes may intersect a
bounding rectangle but not the corresponding polygon. In both cases, “QB-100” and “BB-S” take much
less time to build the PMR quadtree, and the speedup of “QB-100” compared to “BB-S” is by a factor
of 2. However, the speedup of “QB-100” over “BB-L” is not quite as high when building the quadtree
on the clustered polygon relation (by a factor of 1.7) as when building it on the bounding rectangles (by
a factor of 2.5).
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notes building it on an spatially clustered polygon relation, while \Rectangles"

denotes building it on the bounding rectangles of the polygons.

9.2.5 Improved PMR Quadtree Insertion Algorithm

In Section 4 we presented a technique for improving the performance of PMR quadtree insertions, which
significantly reduces the number of intersection tests. Figure 28 shows the speedup in execution time that
results from using our technique with the line segment data sets when building a PMR quadtry with dy-
namic insertions (“BB-S”) as well as with our bulk-loading algorithm (“QB-100”). The speedup is con-
siderable, ranging from 30% to nearly 55% for “BB-S” and slightly less for “QB-100”. Observe that, due
to sorting, “BB-S” performs fewer I/Os than the dynamic insertion algorithm typically performs (with-
out sorting) with a similar B-tree buffer size, so the speedup for dynamic insertions without sorting can
be expected to be somewhat less in most cases. For “QB-100”, the speedup in CPU time is about twice
that shown in the figure, since performing I/Os takes about half the execution time when not using our
improved insertion algorithm (recall that our technique does not affect I/O cost). Figure 29 shows the
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speedup in execution time when building a PMR quadtree for the point data sets of varying dimensional-
ity (see Section 9.2.3). For the two-dimensionaldata set the speedup is about 50% when using “QB-100”.
More importantly, as the dimensionality increases, the speedup grows, reaching a factor of nearly 8 for
the eight-dimensional point data set. The speedup of dynamic insertions (“BB-S”) for the point data is
somewhat less than for the bulk-loading algorithm, but still substantial.
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9.2.6 Reinsert Freeing

In Section 5.3 we described a strategy we termed reinsert freeing that is used if the flushing algorithm
fails to free any memory. The next set of experiments explores how well reinsert freeing performs. We
used two synthetic line segment data sets, and stored their geometry in the PMR quadtree. The first
data set, R260K, was described earlier. In order to cause the flushing algorithm to fail when building a
PMR quadtree for R260K, we set the buffer size for quadtree buffering to only 8K. The second data set,
R10K, consists of 10,000 line segments whose centroids are uniformly distributed over the data space,
and whose length and orientation are also uniformly distributed. Thus, this data set exhibits a large de-
gree of overlap and therefore a large number of q-edges, causing the MBI B-tree to occupy a large amount
of disk space. For instance, the B-tree resulting from building a quadtree for R10K with “QB-100” occu-
pied over 8000 nodes or about 32MB. For R10K, we used a splitting threshold of 32, as a lower splitting
threshold led to an even higher number of q-edges (the speedup achieved by quadtree buffering was bet-
ter at lower splitting thresholds, however). For both data sets, we used the merge sort algorithm to sort
the objects, since it is better suited for handling reinsertions.

The number of reinsertions for R260K was about 21,000, while it was over 72,000 for R10K (i.e.,
each object was reinserted over seven times on the average). In spite of such a large number of rein-
sertions, Figure 30 shows that quadtree buffering yields significant speedup over B-tree buffering. In
fact, B-tree buffering was so ineffective for R10K, that we increased the buffer size of “BB-S” to about
3000 B-tree nodes, which is about 25% of the number of nodes in the resulting B-tree. For a data set
of 20,000 line segments constructed in the same way as R10K, the speedup for “QB-100” compared to
“BB-L” was by a factor of more than 8, so it is clear that quadtree buffering with reinsertions scales up
well with data size, even if the data has extreme amount of overlap. With “QB-100”, it took about 4.5
times as long to build the PMR quadtree for the 20,000 line segment data set as for R10K, but the larger
data set also occupied nearly four times as much disk space. For the more typical data set, R260K, the
speedup achieved by “QB-100” is only slightly lower than what we saw in Figure 21, where reinsertions
were not needed.
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9.2.7 Bulk-Insertions

The next set of experiments investigates the performance of PMR quadtree bulk-insertions (see Sec-
tion 6). We used two pairs of line segment data sets. In the first, comprising the “DC” and “PG” line
segment data sets, the new objects cover an unoccupied area in the existing quadtree. In the second, the
new objects are interleaved with the objects in the existing quadtree. In this pair, the line segments de-
note roads (“Roads” with 200,482 line segments) and hydrography (“Water” with 37,495 line segments)
in the Washington, DC, metro area. For the bulk-insertions, we found that interleaved read and write
operations (to the existing quadtree and the combined quadtree, respectively) caused a great deal of I/O
overhead due to disk head seeks. To overcome this effect, we used a small B-tree buffer of 32 nodes
(occupying 128KB) for the combined quadtree, which allowed writing to disk multiple nodes at a time;
another solution would be to store the existing quadtree and the combined quadtree on different disks.

Figure 31 shows the execution time required to bulk-load and bulk-insert the pairs of data sets in
either order, as well as to bulk-load the combined data set. In the figure, the notation X;Y means that first
X is bulk-loaded, and then Y is bulk-inserted into the quadtree containing X, while the notation X +Y
means that the union of the two sets is bulk-loaded. The execution times of the bulk-load (“BL”) and
bulk-insertion(“BI”) operations are indicated separately on the bars in the figure. In addition, the topmost
portion of each bar, above the broken line, indicates the I/O overhead of the combined bulk-load and bulk-
insertion operations, i.e., the cost of writing (during the bulk-load) and reading (during the bulk-insertion)
the intermediate PMR quadtree. Clearly, the I/O cost overhead represents nearly all the additional cost
of bulk-loading and bulk-inserting compared to bulk-loading the combined data set. Interestingly, the
remaining overhead was very similar in all cases, amounting to 7-11% of the execution time of bulk-
loading the combined data sets. Since the pairs of data sets had different relative space coverage and
size, this demonstrates that the performance of our bulk-insertion algorithm is largely independent of
the space coverage of the bulk-inserted data in relation to the existing data, as well as the relative sizes
of the existing and new data sets (with the exception that the I/O overhead is proportional to size of the
existing data set in relation to the combined data set).

In Section 6.3 we discussed a variant of our bulk-insertionalgorithm that updates the existingquadtree,
as opposed to the merge-based approach that builds a new quadtree on disk. Figure 32 shows the perfor-
mance of the update-based bulk-insertion variant relative to the merge-based bulk-insertion algorithm,
as well as that of using dynamic insertions into the existing quadtree using “BB-S”. In an attempt to make
a fair comparison we made the alternative methods as efficient as possible. In particular, for the update-
based bulk-insertion variant, we used the adapted B-tree packing approach (see Section 5.5), with a split
fraction of 90%, and the existing quadtree had a storage utilization of 90%. For “BB-S”, the existing
quadtree had a storage utilization of 75% (higher values caused more B-tree node splits). Note that in
Figure 32, we only take into account the bulk-insertion of the new data set and not the bulk-loading of the
existing one. The two alternative approaches for bulk-insertion, that both update the existing quadtree,
are clearly much more sensitive to the relative space coverage of the new data set with respect to the exist-
ing one than our merge-based algorithm. In particular, when the new data set occupies an area that is not
covered by the existing data set (as for “PG,DC”), the update-based methods work much better than when
the new data set is interleaved with the existing data (as for “R,W”). In the latter case, a higher fraction of
the nodes in the MBI B-tree are affected by the update operations, thus leading to more I/O. In addition,
the update-based methods are also less effective when the new data set is larger than the existing data set.
Nevertheless, if we know that bulk-insertions involve data sets that are mostly into unoccupied regions
of a relatively large existing quadtree, then the update-based variant of our PMR quadtree bulk-insertion
algorithm may be preferable.
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9.2.8 R-tree Bulk-Loading

It is interesting to compare the performance of our bulk-loadingalgorithm to that of existing bulk-loading
algorithms for another commonly used spatial data structure, the R-tree. We chose two bulk-loading al-
gorithms for the R-tree: 1) Hilbert-packed R-tree [30] with the space partitioning improvements of [19]13,
and 2) a very simplified version of the buffer-tree approach of [8, 13]. For ease of implementation we
used an unlimited buffer size for the buffer-tree approach, thus building the entire R-tree in memory. The
nodes were written to disk once the tree was fully constructed. The CPU time of our approach is at most
equivalent to that of [8, 13], while the I/O cost is much less. Note that virtual memory page faults were
not a major issue, since the size of the R-trees (at most 27MB) was significantly less than the size of
physical memory (64MB). In order to obtain good space partitioning, we used the R�-tree [10] insertion
rules, except that no reinsertions were performed as they are not supported by the buffer-tree approaches.
Since 4K is the physical disk page size in our system, we used R-tree nodes of that size, which allow a
fan-out of up to 200. However, a fan-out of 50 is recommended in [10], and this is what we used in
the buffer-tree approach. A fan-out of 200 led to a much worse performance, by more than an order of
magnitude. For the Hilbert-packed R-tree, on the other hand, we use a fan-out of 200, as lower levels of
fan-out lead to a higher I/O cost. The two methods are at two ends of a spectrum with respect to execution
time. For the Hilbert-packed R-tree, nearly all the time is spent doing I/O, whereas for the buffer-tree
approach, nearly all the execution time is CPU time. It is important to note that the quality of the space
partitioning obtained by the Hilbert-packed R-tree approach is generally not as high as that obtained by
the R�-tree insertion method. This is in marked contrast to our quadtree PMR quadtree bulk-loading al-
gorithm, which produces roughly the same space partitioning as dynamic insertions (the variation is due
to different insertion order).

Figure 33 shows the execution time performance of the two methods for bulk-loading R-trees for the
data sets listed in Table 1 relative to the execution time of “QB-100”. The buffer-tree technique with
R�-tree partitioning (“B50”) took 10-14 as much time as building the PMR quadtree. However, building
the Hilbert-packed R-tree (“P200” in the figure) took less time, or about 50%-80% as much as building
a PMR quadtree. This was partly due to the small CPU cost of the Hilbert-packed R-tree method, but
primarily due to the fact that in the PMR quadtree each object may be represented in more than one leaf
node and thus stored more than once in the MBI’s B-tree. Thus we see that the price of a disjoint space
decomposition, which is a distinguishing feature of the PMR quadtree, is relatively low when using our
bulk-loading algorithm.

9.2.9 Summary

Our experiments have confirmed that our PMR quadtree bulk-loading algorithm achieves considerable
speedup compared to dynamic insertions (i.e., when updating the MBI directly). The speedup depended
on several factors. One is the effectiveness of buffering the B-tree used in dynamic insertions. When the
nodes in the B-tree were effectively buffered, our bulk-loading algorithm usually achieved a speedup of
a factor of 3 to 4. This speedup was achieved, for the most part, by a dramatic reduction in CPU time. In
fact, in some experiments, only about 25-35% of the execution time of our bulk-loading algorithm was
attributed to CPU cost. However, when B-tree buffering is ineffective so that B-tree nodes are frequently
brought into the buffer and written out more than once in dynamic insertions, our bulk-loading approach
can achieve substantiallyhigher speedups (up to a factor of 12 in our experiments). In situations requiring
the use of reinsert freeing, our bulk-loading algorithm was at worst only slightly slower than in situations

13We only used the first of their improvements, wherein each node is not quite filled to capacity if the addition of an object
causes the bounding rectangle of the node to enlarge too much. The use of re-splitting would involve more CPU cost, while
the I/O cost would stay the same or increase.
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where the flushing algorithm was sufficient.
Another factor affecting the speedup of the bulk-loading algorithm is the relative importance of cost

factors common to any PMR quadtree construction method, such as the cost of reading the input data and
of intersection tests. As these common cost factors become a larger portion of the total cost, the potential
for speedup diminishes. Indeed, we found that for point data, the speedup achieved by our PMR quadtree
bulk-loading approach diminishes as the number of dimensions increases.

As we expected, our PR quadtree bulk-loadingalgorithm outperformed the PMR quadtree bulk-loading
algorithm for point data. However, the speedup in execution time was less than 20% at best, and de-
creased with a higher number of dimensions. The relatively small speedup achieved by the PR quadtree
bulk-loading algorithm over the PMR quadtree bulk-loading algorithm indicates that the overhead (in
terms of execution time) due to the use of the pointer-based quadtree and the associated flushing process
in the PMR quadtree bulk-loading algorithm is minor.

Our experiments with complex polygon data showed that a lack of spatial clustering14 in a spatial
relation has an especially detrimental effect on the amount of I/O when the spatial objects occupy a large
amount of storage space (which means that few objects fit on each data page). Without spatial clustering
on the polygon relation, the PMR quadtree bulk-loading algorithm took about twice as long to build the
quadtree as doing dynamic insertions. The difference in performance was due to the fact that we allotted a
much larger buffer space to the latter, besides the fact that it is less affected by the lack of spatial clustering
since the objects are not sorted prior to inserting them into the quadtree. Nevertheless, when the polygon
relation was spatially clustered as well as when building the quadtree based on the bounding rectangles
of the polygons, the speedup of our bulk-loading algorithm was about a factor of 2 when a comparable
amount of buffer space was used. In situations where the relation to index is not spatially clustered (and
performing clustering is not desired), using bounding rectangles may yield overall savings in execution
time (for building the quadtree and executing queries), even though it means that the quadtree provides

14Recall that in this context, spatial clustering denotes the clustering obtained by sorting the objects in Z-order.
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somewhat worse spatial filtering and thus potentially higher query cost.
The improved PMR quadtree insertion algorithm (that reduces the number of intersection tests) was

shown to yield significant speedup, both for dynamic insertions as well as in our PMR quadtree bulk-
loading algorithm. For line segment data, the speedup when it was used in the PMR quadtree bulk-
loading algorithm ranged between 30-50%. For point data, the speedup was 50% for two-dimensional
data and grew with the number of dimensions up to nearly a factor of 8 for eight-dimensional data.

We verified that our PMR quadtree bulk-insertion algorithm is very efficient. Compared to bulk-
loading the combined data set, most of the extra cost of first bulk-loading the existing data and then bulk-
inserting the new data lies in I/O operations, while the overhead due to larger CPU cost was minor. Fur-
thermore, our bulk-insertion algorithm is more robust and generally more efficient than an update-based
variant of the algorithm that updates the existing quadtree instead of merging the existing quadtree with
the quadtree for the new data. Nevertheless, the update-based variant is more efficient in certain circum-
stances, namely when the amount of new data is relatively small and covers an unoccupied region in the
existing quadtree.

Our bulk-loading algorithm for PMR quadtrees compared favorably to bulk-loading algorithms for
R-trees. In particular, the price paid for the disjoint decomposition provided by the PMR quadtree is
relatively low. An R-tree algorithm having very low CPU cost (the Hilbert-packed R-tree) was at most
about twice as fast as our algorithm. Most of the difference can be explained by higher I/O cost for PMR
quadtree bulk-loading due to the presence of multiple q-objects per object. When we used the object
table approach in the PMR quadtree, in which the actual objects are stored outside the quadtree (i.e.,
each object is stored only once regardless of the number of q-objects), the fastest R-tree bulk-loading
algorithm was typically only 5-30% faster than our PMR quadtree bulk-loading algorithm. Moreover, R-
tree bulk-loading algorithms that expend more CPU time to achieve better space partitioning (e.g., [8, 13]
with R�-tree insertion rules) can be much slower than our algorithm.

9.3 Performance of Spatial Join

In order to test the utility of our PMR quadtree bulk-loading approach, we performed a small experiment
with the spatial join example mentioned in Section 1: given a collection of line segments representing
roads and another representing rivers, find all locations where a road and a river intersect. We used the
road data set already mentioned (“Roads” with 200,482 line segments), and a data set for the hydrography
of the same geographic area (“Water” with 37,495 line segments). Below, we give a description of the
experiments, and in Table 4 we tabulate the time to execute each one. In the table, “BB-S” and “QB-100”
denote quadtree loading methods as summarized in Table 2.

1. Build a spatial index on the Roads and Water data sets.

2. Perform the spatial join with a spatial index on both data sets. This is done by simultaneously
stepping through the MBI for each index.

3. Perform the spatial join with a spatial index on the Roads data set but not on the Water data set.
This method looks up intersecting line segments in the Roads index for each line segment in the
Water data set. In order to reduce the number of I/Os to the Roads index, the line segments in the
Water data set are sorted in Morton order of their centroids.

4. Experiment 3 with the roles of Roads and Water reversed. In other words, we have a spatial join
with a spatial index on the Water data set but not on the Roads data set.
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5. Perform the spatial join with no index on either of the data sets. This is done with a nested loop
method. In the buffered variation, all line segments in the Water data sets were read into memory
at the start of the query to avoid re-reading them.

6. Build a spatial index on the output of the spatial join. Actually, in our experiment, we built the
index after the join had been computed, but building the index simultaneously with the join would
yield the same results.

Data set BB-S QB-100
Roads 134 38.9
Water 17.8 5.75
Join output (points) 2.55 0.89

(a)

Join method Time
Both indexed 8.92
Only Roads indexed 25.9
Only Water indexed 75.8
Neither indexed (buffered) 1420
Neither indexed (unbuffered) 33900

(b)

Table 4: Execution time (given in seconds) for (a) building indexes and (b)

computing a spatial join for the Roads and Water data sets.

If either of the data sets is not indexed prior to executing the query, then we have two alternatives. The
first is to build an index (possibly on both data sets) and then execute the query with the two indexes. The
second alternative is to run the query without building any new indexes. The cost of these alternatives
is shown in Table 4, where part (a) shows the cost of building indexes and part (b) shows the cost of
processing the join query, with or without indexes. Now, let us focus on the case of building indexes
using quadtree buffering prior to computing the spatial join. If an index existed for the Roads data set
but not for the Water data set, then the speedup achieved by building the index prior to running the query
is about 76% (14.7 seconds as opposed to 25.9 seconds). For the converse case (i.e., no index on the
Roads data set), it is about 59% faster to build an index on Roads and run the query (47.8 seconds as
opposed to 75.8 seconds). If neither data set has an index, then it would take 53.6 seconds to build an
index on both and to perform the spatial join with the indexes, which is more than an order of magnitude
faster than computing the join without any indexes. As a comparison, using B-tree buffering (i.e., “BB-
S”), the performance is about the same if an index must be built on Water (26.7 vs. 25.9), but building
an index on Roads and computing the join takes nearly twice as long as computing the join with only
the index in Water (143 vs. 75.8). However, a speedup of nearly 8 times is achieved if an index must be
built on both (161 vs. 1420). Interestingly, even though building two indexes and performing the query
is faster than performing a query without indexes, it takes much longer to build the two indexes than to
perform the query with them.

10 Concluding Remarks

There are three typical situations in which an index must be updated: 1) a new index must be built from
scratch on a set of objects (bulk-loading), 2) a batch of objects must be inserted into an existing index
(bulk-insertion), and 3) one object (or only a few) must be inserted into an existing index (dynamic in-
sertions). In this paper we have presented techniques for speeding up index construction for the PMR
quadtree spatial index in all three situations. Furthermore, we introduced bulk-loadingand bulk-insertion
techniques for the PR quadtree multidimensional point index.

In an informal analysis of the PMR quadtree bulk-loading algorithm, we presented persuasive ev-
idence that both its I/O and CPU costs are asymptotically the same as that of external sorting for rea-
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sonably “well-behaved” data distributions. Indeed, our experiments verified that the execution time per
object grows very slowly with the size of the data sets. Moreover, the speedup of the bulk-loading algo-
rithm over the dynamic algorithm (which updates the disk-resident quadtree directly for each insertion)
is substantial, up to a factor of 12 for the data sets we used. When the dynamic algorithm was enhanced to
better take advantage of buffering, the speedup was still significant, typically a factor of 2 to 4, depending
on the data distribution and other factors (see Section 9.2.9).

Future work includes investigating whether our buffering strategies for bulk-loading may be used
to speed up dynamic insertions and queries. Also, the fact that our system can build PMR quadtrees
efficiently will enable us to build a query engine for SAND that exploits this to construct spatial indexes
for intermediate query results (possibly from non-spatial subqueries), or for un-indexed spatial relations,
prior to spatial operations on them. This is particularly important for complex operations such as spatial
joins.
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[34] S. T. Leutenegger, M. A. Lòpez, and J. Edgington. STR: A simple and efficient algorithm for R-tree
packing. In Proceedings of the 13th IEEE International Conference on Data Engineering, pages
497–506, Birmingham, U.K., April 1997.

[35] S. T. Leutenegger and D. M. Nicol. Efficient bulk-loading of gridfiles. IEEE Transactions on
Knowledge and Data Engineering, 9(3):410–420, May/June 1997.

[36] J. Li, D. Rotem, and J. Srivastava. Algorithms for loading parallel grid files. In Proceedings of the
ACM SIGMOD Conference, pages 347–356, Washington, DC, May 1993.

[37] M. Lindenbaum and H. Samet. A probabilistic analysis of trie-based sorting of large collections
of line segments. Computer Science TR-3455, University of Maryland, College Park, MD, April
1995.

56



[38] G. M. Morton. A computer oriented geodetic data base and a new technique in file sequencing.
IBM Ltd., Ottawa, Canada, 1966.

[39] R. C. Nelson and H. Samet. A population analysis for hierarchical data structures. In Proceedings
of the ACM SIGMOD Conference, pages 270–277, San Francisco, May 1987.

[40] Oracle Corporation. Advances in relational database technology for spatial data management. Or-
acle spatial data option technical white paper, September 1996.

[41] J. A. Orenstein and T. H. Merrett. A class of data structures for associative searching. In Proceed-
ings of the Third ACM SIGACT–SIGMOD Symposium on Principles of Database Systems, pages
181–190, Waterloo, Canada, April 1984.
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