
COIIfierenCfi? Record of the Fifth AnnUal ACM Symposium on Principles of Programming Languages

OFF-LINE AND ON-LINE ALGORITHMS FOR DEDUCING EQUALITIES

Peter Downey
+

The Pennsylvania State University, University Park, Pennsylvania 16802

Hanan Samet

University of Maryland, College Park, Maryland 20742

Ravi Sethi

Bell Laboratories, Murray Hill, New Jersey 07974

Abstract

The classical common subexpression problem in

program optimization is the detection of identical

subexpressions. Suppose we have some extra infor–

mation and are given pairs of expressions e. =e.
11 12

which must have the same value, and expressions
f, Zf which must have different values.

31 j2
We ask

if as a result,
%=h2 ‘ ‘r %zh2”

This has been

called the uniform word problem for finitely pre–

sented algebras, and has applicaticm in theorem–

proving and code optimizat~on. We show that such

questions can be answered in O(nlogn) time,

where n is the number of nodes in a graph

representation of all relevant expressions. A

linear time algorithm for detecting common sub-

expressions is derived. Algorithms which process

equalities, inequalities and deductions on-line

are discussed.

1. Introduction

Some compilers will recognize that b xc

is a subexpression of both (a+b)/(b Xc) and
bxc-d. Such common subexpressions tend to

arise when address computations are made ex-

plicit in commands like A[i,j]: =B[i,j]– C[i,j].

In the context of array references, another

interesting phenomenon occurs; this time at the

source level. Instead of looking for identical

subexpressions, we need to find expressions that

are equivalent subject to some conditions.

For example, whenever a=b;a, as it is

when a=2; b=4 or a=-5; b=25, then it fol-

lows that axc=(b:a) Xc. A less direct

implication is a =b + (b :a). Iterating

further, a=b:(b+(b: a)), and soon.

In inferring ~X~=(b+~)X~ and
a=b+(b;a), we do not use any properties of

division or subtraction. For that matter,

whenever i=$(j,i), then +(k,$(j,i)) =~(k,i),

where @ and $ can be any

+
The work of this author

by the National Science

Number MCS75-22557.

two functions.

was partially supported

Foundation under Grant

In this paper we suppose we are given

certain pairs of expressions e. =e l<i<m,
11 i2’ — —

called axioms or equalities, and ask whether

these axioms together imply g=h, where g and

h are some expressions. Also of interest is the

case when we are given inequalities f. zf.
~1 J2’

l<j <n, and ask whether ei1=ei2 for all i,— —

and f. #f for all j ,
~1 j2

together imply either

g=h (the equality problem), or g zh (the

inequality problem).

The above problems arose during investigation

by Downey and Sethi [DS1 of opt~mization of

programa that manipulate data structures. For

example, consider the following simple program:

A[i]:=i+j;

A[k-!l,]: =k-l+j;

m: =A[i];

The value assigned to m is given by the condi–

tional if i=k-~ then k–f,+j else i+j.

The ass~nment to m can safely be replaced by
m: = i+j; demonstrating this involves showing

that whenever i=k–j,, it follows that

k-f,+j=i+j. Both equalities and inequalities

must be considered while simplifying the nested

conditionals which occur with more complicated

programs, or with multiple subscripts:

A[el,fl]: =gl;

A[e2,f2]: =g2;

h: ‘A[el,fl];

Here h is assigned if ~=e2Af1=f2 ~ g2

~ gl, which simplifies to gl if we can show

that assuming ~ ~e .e and f1=f2, it follows

that g2=g1.

Samet [Sal] considers the equivalence of

Lisp–based programs where all predicates are

tests for equality. Showing that two programs

are equivalent again reduces to showing that

two nested conditionals (with equality tests) are

equivalent, thereby involving the equality and
inequality problems. Shostak [%] considers a

deductive system for solving these problems as a

necessary component of a program verification

system.

158

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1978 ACM 0-12345-678-9…$5.00

The interactive deductive systems [Go] and

the symbolic execution systems [Ki] used in pro-

gram verification require efficient methods for

deducing equality or inequality between expression

instances. These applications require that a data

base of “known” equalities be maintained to de-

termine whether a new equality or inequality is

consistent with, or deducible from, the current

data base [NOl, N02]-

Our object is to give time efficient algo–

rithms for deducing equalities or inequalities

of expressions from axioms. we stress that the

expressions considered are free of variables,

and involve only constant symbols.

The following examples suggest the scope of

the problems.

Example 1: Given that
X=y, it is immediate

that sin(x) =sin(y). However, given sin(m) =

= sin(3w), we cannot “climb down” and infer T= 3%

Similarly, given that a*b ~ a, we cannot “climb

UP” and infer aX c z (b+ a) X c since c may

be O. But given a x c # (b + a) X C, it follows

that a#b+a. Using tests by contradiction,

we can turn inequality questions into equality

questions.

Suppose for example we are given ixk z

* (j + i) xk, and are asked if as a result,

i#j+i?

For a test by contradiction, suppose that
i#j+i is false i.e. in fact i=j+i. It is
immediate from i=j+i that ixk=(j+i)Xk,

which contradicts the given statement
iXk#(j:i)Xk. Consequently, our supposition
i=j+i must be false i.e. i#j+i is true. II

As in Example 1, we show (Appendix A) that

the inequality problem reduces to the equality

problem. Furthermore, the given inequalities
f. Zf.

-jl 32
play a very minor role, so the equality

problem reduces to the uniform word problem de-

fined by: given axioms ei1=ei2, l~i~m, does
.!.

it follow that g=h?’

Example 2: Conceptually, the basic technique
for testing equality is substitution of expres–
sions. Given the following set of axioms,

suppose we are asked whether cxd=(b:a-d)xd:

c=(c+b-a):a-d

b=c:b-(d:c-b)
a=d:~-b

Substituting a for d+c-b in the second

~vi;~awe infer b=c+b -a. Substituting b fOr
in the first axiom yields c=b +a-d. One

final substitution of c for b:a-d in the ex-

pression (b+a-d) xd yields cxd, thereby

answering “c xd= (b ;a–d) xd?” in the affirma-

tive. n

The implementation of substitution raises a
number of algorithmic issues, since we wi+l employ

+
The precise term is uniform word problem for

finitely presented algebras.

some bookkeeping device to keep track of equiva-

lent expressions rather than performing actual

substitutions. The nature of the bookkeeping

device depends critically on the representation of

expressions.

Before discussing the merits of various

representations, let us review what is known about

the uniform word problem. The problem has long

been observed to be decidable; Ackermann [A] gave

an exponential decision algorithm. Kozen [KO1]

shows that the uniform word problem is logspace

complete for P , the class of polynomial time

recognizable languages,and gives a polynomial time

algorithm. Kozen [K02] also shows that the

problem requires O(n/logn) space in one “natural”

proof system. Nelson and Oppen [NO1] have in-

dependently discovered an O(n”e) time algorithm

using the methods of Section 5 below, have dis-

cussed the connection of the pzoblem with

theories of LISP-like data structures,and have

implemented a simple polynomial-time algorithm

for program verification studies.

In this paper, our object is to give improved

time efficient algorithms for the uniform word

problem.

In designing an algorithm there are three

choices that need to be made: the representation

of expressions, the representation of equality

information between expressions, and the mechanism

for deciding when an expression f can be derived

from an expression e by substituting for a

subexpression.

In Example 2, in order to infer
c xd= (b +a-d) xd, we need to establish the

equality of the subexpressions c and b+a-d,

as well as b and c~b-a. In general, even

though we may be interested in testing the

equality of expressions g and h only, it will

be necessary to examine all subexpressions of g,

h and the axioms. A tree representation makes

it easy to refer to subexpressions. Each leaf in

the tree represents an input name, and each non-

leaf node represents an operator.

The representation of expressions we will

actually use is a generalization of a tree called

a directed acyclic graph (dag). Dags are formed

from trees by collapsing identical subtrees.

Figure 1 gives an example of a dag. In the con-

text of dags we will refer to nodes rather than

to expressions. Both nodes u and x represent

the subexpression b+a.

b a b a c

Figure 1: Collapsing identical subtrees yields a

directed acyclic graph (dag). The above dag can

be collapsed further.

159

The dag representation of expressions arises

naturally in the translation of sequences of

assignments [AU, Cu]. A dag is also a much more

economical representation -- there are dags with

n nodes whose equivalent trees have 2n nodes.

Consider thedag in Figurel. The two leaves

representing b necessarily have the same value,

as do the two leaves representing a. One way of

recording these facts is to assign a number, called a

value number, to each node. Nodes wirh the same

valuewillhave the samevalue number. An axiom like
~ =b ta ~anbe recorded by forcing the nodes repre–

senting a and b: a to have the same value number.

Since nodes u and x have the same

operator, and their respective sons have the same

value number, it follows that nodes u and x

must have the same value. If nodes u and x

initially had different value numbers, we must now

change the value number of u to that of x (or

vice versa). But there may be a set of nodes with

the same value number as u and a set of nodes

with the same value number as x, so we need to

merge sets of equivalent nodes. The UNION-FIND

algorithm of McIlroy, Morris and Tritter, shown by

Tarjan [Tarj2] to have a practically linear running

time, can be used for the purpose.

The final issue we must confront is the tech–

nique used to locate nodes like u and x in

figure 1 which have the same operator and whose

corresponding sons are equivalent. Suppose leaves

labelled b, a, c, in Figure 1 have value numbers

1, 2, 3, respectively. We can form a string for

each node using the operator for the node and the

value numbers of the sons of the node. Thus the

strings for u and x will be +12 and the string

for z will be x23. The problem now becomes one

of locating identical strings. Cocke and Schwartz

[CS] usehashingof strings which takes linear

expected time, but quadratic worst case time. If

the strings to be checked for equality are all

available at the same time, then the lexicographic

string sorting algorithms of [AHU] are guaranteed

to take linear time, but hashing may be more

attractive in practice. Methods which do not

explicitly set up the strings to be sorted, but

rely on controlled edge traversals are also

available, The data structures needed are

similar to those in Sethi [Se2] where an algo–

rithm in the context of processor scheduling is

given.

Our objective in this paper is to show how

the solution of the uniform word problem reduces

to these two issues: the maintenance of

equivalence relations, and the detection of nodes

like u and x which have the same operator and

equivalent sons.

With operators like + and x there is a

constant bound on the number of operands. For

this case, the uniform word problem can be solved

in O(nlogn) time, where n is the number of

nodes in a dag representation of the expressions

to be tested. An algorithm is given in section

4. A linear algorithm is given to detect identical

subexpressions in section 5.

Design of algorithms to handle processing of

equalities on-line involves some different design

choices which are discussed in section 6. Section7

places the uniform word problem in perspective by

relating it to results on other problems.

2. The Problem

An expression will be viewed as a tree,

where each leaf is labelled with an input name

chosen from a finite set S , and each nonleaf

node is labelled with an operator chosen from a

finite set 0. As usual, the number of operands

of each operator ~ in~ is given by an integer
r>l called the rank of @ , and all nodes

la~elled with ~ have exactly r sons. The

order in which the sons of a node appear is

significant.

The semantics of expressions are also stan-

dard. Expressions denote elements of a set V of

values. We define the value of an expression in

terms of an interpretation i that maps each name

to an element of V and ope~ator @ of rank c

to a function from Vr to V.

Definition 1: The value under i of an

expression e , denoted by q(e), is ~iven by

1. ~(a) =:(a) if a is in S,

2. ~(+el . . . er) = (:V)(~el, ger) if

‘1’ ‘“-’ ‘r
are expressions.

An equality is a string of the form e=f ,

where e and f are expressions. The equality

is satisfied under i provided g(e) = ~(f) under

i. Given a set of e~ualities A , interpretation
;

is said to satisfy A if every equality in A

Is satisfied under i.—

With these definitions we can formulate the

uniform word problemf mentioned in the introduc–

t ion.

UNIFORM WORD PROBLEM (for a single equality):

~h ;:+i::;;~:erLet A={e. and the equality g=h

be given. e “ g=h is satisfied

for all ~ satisfying A? U

Since the other problems mentioned in the

introduction (equality, consistency, inequality)

reduce to instances of the uniform word problem,

we have chosen to defer a discussion of them to

Appendix A.

There exist several ways of describing the uw

problem, dependiug on one’s point of view and

favorite field. It can be phrased as: the problem

of assigning identical value numbers to the nodes

of a dag that are equivalent under a set of
equalities; the problem of deri~ing all valid

implications from a set of axioms [Kol]; the

problem of calculating the smallest congruence

generated by a set of axioms; or the decision

.
‘We use the phrase “uniform word problem” as an

abbreviation of the phrase “uniform word problem

for finitely presented algebras”. “Finitely pre–

sented” comes about because A isafinite setof

equalities between variable-free expressions. The

adjective ’’uniform” stresses that A is a parameter

to the problem. The further abbreviated phrase “UW

problem” will sometimes beused for’’uniformword

problem”.

160

problem for the quantifier–free theory of equality

with uninterpreted function symbols [A, NO1]. The

formulation we will actually use facilitates

proving the correctness and analyzing the com-

plexity of algorithms for the problem.

Sincewe will represent expressions by dags,

then nodes represent subexpressions. With each

node x of a dag is associated a unique expres-

sion (tree) Tx. The value ~(x) of a node

under i is ~(Tx) . Let A be a given set of

equalit~es. If node x
g

has expression g , and

if node Xh has expression h , then testing

whether g=h follows from A, reduces to
testing if q(xg) =~(xh) under all ~ satis-

fying A.

A is empty in the classic common subexpres–

sion problem, and we are interested not so much in

determining if g =h , as in finding all redundant

computations. The related statement ~terms of

dags is that we want to partition the nodes of a

dag representing the relevant expressions so that

two nodes u and x are in the same class if

and only if y(u) =m(x) under all i satisfying

A. Such a partitio~ defines an equi~alence re-

lation on nodes.

All equalities between expression will be

translated to relations between nodes. A given

set of equalities between expressions

A={ei1=ei211~i~m} will be represented as a

symmetric binary relation on the nodes of a dag.
We agree to call this relation A also. Inter-

pretation i is said to satisfy A if ~(u) =

= g(x) when~ver UAX .

We can now restate the uw problem in the

setting of dags.

UNIFORM WORD PROBLEM (full version): Given

a dag D and a binary relation A on the nodes

ofD, find a relation R such that URX if

and only i~ g(u) =~(x) under all i_ satisfying

A. D

At this time, we will not pursue the dis–

tinction between the full version of the uw

problem which determines a partition on the

nodes of a dag, and the single equality version

which checks two given nodes for equality. A

similar distinction applies to finite automata,

where the best known algorithms for the two

versions have different time complexities: “

Hopcroft and Karp [HK] give a practically

linear algorithm for determining equivalence of

two finite automata, and Hopcroft [H] gives an

O(nlogn) algorithms for partitioning the states

of a finite automaton into equivalence classes.

3. Basic Lemmas

Given a=b and b=c it immediately follows

that a=c since equivalence is transitive.

Equally obvious is that we can always substitute

equals for equals within an expression. These

two observations form the basis of two trans-

formations -t (transitive) and SC (collapsing or

congruence) . We will show in this section that
+ t and d are exactly what is needed to solve

c

the uw problem; efficiently computing the
closur~ of these transformations then becomes

our goal.

Consider the dag in Figure 1. The two leaves

representing b necessarily have the same value,

as do the two leaves representing a. Once leaves

representing the same name have been related, we

can infer that nodes u and x must have the

same value under all interpretations, These ob–

servations lead to the following collapsing

transformation +
c“

Definition 2: Let R be a binary relation on

the nodes of dag D. R transforms to

R U{(U,X)(X,U)} under +C if and only if URX is

false, and

1. u and x are leaves representing the same

name a, or

2. u and x representing the same operator +,

have sons W13WZ9 dr and Y1, Y2,Yti

respectively, and for all j, 1 <j <r , wjRyj ,——

or w. =
J

n
‘j”

We also need a transitive transformation.

Definition 3: Let R be abinary relationon

thenodesofadag D. R transforms to R U{(U,X),

(x,u)} under -t if and only if URX is false, and

for some node z, URZ and ZRX are both true. D

Since we will apply both~c and at we use +

to denote+c_J+ t i.e. P dR ifand only if P~cR

or P*tR. By definition, anapplication of * adds

a Pair Of nodes to a relation, so starting with any
relation P , scan only

of times in succession.

under a if and only if

We write P *-R. when p
cible under + .T

be applied a fini~e number”

We say P is irreducible

for all R, P SR is false.
+*R and R is irredu-

A major advantage of not fixing the order

of application of *C and +
t

is that the

correctness of any algorithm that applies *C and

+
t

in any order, until no longer possible, fol-

lows from Theorem 1. The price to be paid for

this advantage ia a modest one: we have to verify

that the order in which the transformation * adds

pairs does not matter. More precisely, from the

properties of +C and at , we can verify that if

P +*R and P +*S by adding different pairs to

P, then there exists T

S **T. Thus if P +-T1

?
P +OR if and only if

P +’lR if and only if

We write P S*R if P

such that R *%T and

and P *-T2, we can

R is P. For i>O,

P * P’ and pr ~i-lR.

*iR for some i>O.—

161

show that
‘1

must be the same as
‘2”

A system

such as the one we are working with in which each

object transforms to a unique irreducible element

is said to have the finite Church Rosser property

(See Sethi [Sel] for details).

Since irreduc~ble elements are unique under

~,we will write P for the irreducible relation

that P transforms to under * .

The rest of this section shows (Theorem 1)

that starting with a given relation A , the

solution to the full version of thg uniform word

problem is given by the relation A.

LEPD4A 1: For all nodes u and x , &

implies that ~(u) = ~(x) under all ~ satisfying

A.

Proof: Let AO be A , and let
‘o’Al’ ““”’%

be some sequence of symmetric re~ations such that

for i>O, Ai_l >Ai , and Ak=A. We prove the

le~a by inductfon on the least ~ such that UAiX.

basis, i=O: Then UAOX , so by definition,

m(u) =m(x) unde.rail ~ satisfying A..

inductive steD, i >0: If A 3A then
i–1 t i’

there exists z such tihat uAi_lz and XA
i-lz “

From the inductive hypothesis, ~(u) =m(z) =m(x)

under all i satisfying A.— If ‘Ai_la–cAi ,

then u and x either represent the same input

name, or they represent the same operator, and

(from the inductive hypothesis) son of u
‘j

has the same value as son of x, for all j.
‘j

The lemma follows. O

The interesting part is showing that the con–

verse of the above lemma is true. In other words,

if u and x have the same value unde$ all

interpretations satisfying A , then u.&. Some

insight can be gained by considering the case

where no two nodes are assumed equal so A is

the empty relation. Then we can use a “free”

interpretation that assigns the expression of

node u as the meaning of u , so that u and

x have the same value exactly when they have

identical expressions. Since the transformation
+ collapses identical subexpressions, the last

statement translates to “. . exactly when uk”.

A similar idea works with any A. We will pro-

ceed by defining a particular interpretation &

satisfying A , under which nodes u and x will

have the same value exactly when u gnd x are

in the same equivalence class under A.

Definition 4: Given a relation A let ~

partition the nodes of D into i equivalence

classes. Assign an integer from 1 through i to

each equivalence class: let rI(x) give the

number of the equivalence class for node x.

Define ‘
‘A

as follows:

1. If some leaf x represents name a , then let

&A(a) = ~(x).

2. If some node x represents operator + , and

has sons Yl, Y2, Yr, let the

map (~yl, TlY2, ~Yr) to rl(x)

Before we use the above defin:

verify that
‘A

is a function.

LEMMA 2:
‘A

is an interpret:

A.

function LA@

n

tion, we must

tion satisfying

Proof: By definition, all leaves representing

the same name are in the same equivalence class,

so for any name a, Q(a) is unique.

Suppose that there are two nodes u and x

representing the same operator $,with sons

w~? W29 Wr and Yl, Y2, Yr,

respectively, such that rIw j=nYj. Since A is

irreducible under =5
c’

it follows that rIu=rlx.

Thus &A~ is a function.

Sigce A is a subset of A , if UAX , we

have UAX , so vu=nx. Therefore
4A

satisfies

A. n

THEOREM 1 (Completeness of +): For all

nodes u and x in D , UAX if and only if

~(u) =m(x) under all : satisfying A.

Proof: One direction is Lemma 1. Conversely,

suppose g(u) =y(x) under all ~ satisfying A.

Then ~(u) =~(x) under
h“

By the definition of

%4’
it is clear that ~(z) =~(z) under

2A
for

all z. Thus rI(u) =rI(x) and ~x. Cl

Relation ~ which is formed from A by

taking the closure under s c and +
t

is the

minimal congruence relation on expressions which

satisfies A [Kol, NOI.]. In an independent

development Shostak [Sh] gives a result similar

to Theorem 1, using a least binary relation closed

under conditions similar to * c and +t . The

interpretation
%

of Definition 4 corresponds to

the Herbrand model given by Shostak. Our use of

transformations makes it easy to connect Theoreml

with algorithms.

4. An O(nlogn) Algorithm

From Theorem 1, the uniform word problem can

be solved by starting with a given set of equal-

ities A and applying transformations ac and

+ in any order,
t-

until no longer possible, to

yield A. For then tw~ nodes are in the same

equivalence class of A if and only if they have
the same value subject to the equalities of A.

If we can find a sequence of ever “coarser”

equivalence relations that starts with A and

converges to A , then we can give an easy upper
bound on the length of the sequence. Given a

symmetric relation A , let A. be the equivalence
relation formed by taking the reflexive, transi-

tive closure of A. Consider a sequence of
equivalence relations

‘O’ ‘1’ ““”’ ‘k ‘n ‘he

162

nodes of D such that Aj >* A and
j~l ‘k ‘s

irreducible. Then Ak must be A. Clearly,

A
j +1

is formed by merging equivalence classes of

A ,. If for each
3

.j , Aj+l has at least one less

equivalence class than A. , then we are assured
J

that k<n , where n is the number of nodes of D.—

For operators like + and x there is a

constant bound (two) on the number of operands.

For simplicity of exposition we will give the

algorithm and its analysis assuming all operators

have rank two.

Algorithm Atilde in Figure 2 starts by par–

titioning the nodes into equivalence classes based

on
‘o ‘

the reflexive, transitive closure of the

given equalities A. All nodes in a particular

equivalence class are given a common value number,

represented by the array VW indexed by nodes.

The nodes are then processed in some topologically

sorted order. As a new node u is encountered,

a string U consisting of the operator of u

followed by the current value numbers of the sons

of u , is constructed. For the purposes of

this discussion, the strings are hashed into a

table ACL (for Available Computations List). If

D is in the table, then there must be some other

node x with the same string u , so the

equivalence classes for u and x have to be

merged by procedure Merge. When value numbers

are changed to put u and x in the same class,

the strings for the fathers may have changed, so

procedure Merge examines the fathers.

Let D be a dag with n vertices and e

edges. Let A be a set of node pairs, and let

IAI give the number of elements of A.

LEMMA 3: Algorithm Atilde correctly computes

L.

Proof: The value numbers in the array VN

define an equivalence relation on nodes. Let Ri

be the equivalence relation defined by VN just

before the i + 1st call to Merge.

It is clearly the case that Ri_l ~*Ri , so

that uRix only if u~.

Conversely, let tix. Let A. be the re-

flexive closure of A and let
‘O’ ‘l’- -.’Akbe

some sequence of relations such that Ai_l *Ai

and Ak = A. We prove by induction on i that:

for all i there is some r such that UAix

implies uRr X .

Suppose uAix.

basis, i=O: Here r =0 suffices.

inductive step, i>O: If Ai_l @tAi then

there exists z such that uA. z and zA. X.
1–1 1.-1

From the induction hypothesis, there is a r such

that u~z and z~x , so’ that

UR XX . If Ai_l +cAi then u and x have the

same label and their corresponding sons are re-

lated by Ai_l. From the induction hypothesis, cor–

responding sons are related by Rr, for some least

integer, r , i.e., they have the same value number

just before the r + 1st call to Merge.

Consider the rth call to Merge. From the

choice of r , a pair of corresponding sons of u
and x get placed in the same equivalence class

by being assigned the same value number. If both

u and x have been marked by Atilde, then there

is an appropriate string for each of u and x

on ACL. When all nodes on FATHERS(j) are con-

sidered in Merge, u and x will be placed in

the same equivalence class. Alternately, if u

and x have not both been marked by Atilde, then

when the last of u and x to be marked is sub–

sequently processed by Atilde, it will be placed

in the same equivalence class as the other node.

The above induction establishes that if

& then uRrx for some r , and at termination

u and x have the same value number. U

THEOREM 2: Given a dag D and a set of

equalities A , let D have n nodes. Assume

each nonleaf-node has two sons. Algorithm Atilde

determines A in O(lA\ + nlogn) time.

Proof; From Lemma 3, Algorithm Atilde de-

termines A , so we just need to verify the time

bound. Step 1 requires O(n+\Al) time since each

equality must be looked at, and the components

of an undirected graph can be found in linear

time [Tarjl]. Aside from the time taken to check

entries on ACL and the time spent in Merge, the

time taken in the while loop is proportional to

the number of nodes.

In order to ensure that an entry can be added

or retrieved from ACL in constant time, organize

the ACL as a trie [Kn]- Each node in the trie

will be an array of length n , with each element

of the array being a pointer to the appropriate

son of the node. Since there is a constant bound

2 on the number of sons of a node, the lengthof

each string is bounded by 2. Given strings of

length 2 the space required by the trie is O(n2).

We avoid initialization costs using a pointer

stack as in [AHU, exercise 2.12]. Thus the overti

time taken in procedure Atilde is linear.

Consider the calls to procedure Merge. Calls

of the form Merge (k,k) talce constant time and can

be charged to the point at which the call occurs.

If lFATHERS(k)l <lFATHERS(j)l, then in constant

time the call Merge (k,j) is converted to Merge

(j,k). Since the value numbers define an

equivalence class on nodes, there may be at most

n calls in which value numbers are changed. So

all we have to verify is that the total time spent

over these n calls is O(nlogn).

When two classes are merged, we are careful

to merge the class with fewer fathers into the

other class. Thus , every time a father x is

163

reprocessed because of son y , the FAT.HERS list

for the class of y doubles in size. Since there

are a linear number of edges in the dag, and the

number of entries on a FATHERS list is limited by

the number of edges, node x is reprocessed at

most O(logn) times because of y. Since there

are at worst two sons of x , node x is repro-

cessed at most O(logn) times. It follows that

the total time charged to Merge is O(nlogn).

Summing the time taken by Atilde and Merge,

we get O(IAI +nlogn). o

/~~Input: A dag D and a set A of node pairs

that are given to have the same value. The

nodes of D are assumed to have been given

numeric identifiers in the range 1 to n,so

that they can be bucketed efficiently. Since

lexical analyzers normally assign internal

names to variables, this assumption is not

felt to be unreasonable.

output : Equivalence ~ where ~y if and only if

VW(x) =VN(y), i.e. x and y have the same

value under all interpretations satisfying A.

Structures: VN(l:n) maintains the value numbers of

nodes. Each element ofarrays FATHERS (l:n) and

NODES(l:n) isa linked list ofnodes. ACL, the

available computations list, contains pairs

(o, m), where o is a string, and m is a

value number. The two operations performed on

ACL are the insertion of a new entry on AC~

and the retrieval of an entry for a string G.

G(l:n) is the adjacency structure for an un–

directed graph. NX(D) enumerates the nodes

of D in topological order, starting with the

leaves. It returns ~ when there are no

more nodes. *I

procedure Atilde (D,A)
/*initialize A. fc/

1. for each pair (x,y)&A do add edge (x,y) to—
G end

Locate the connected components of G using

depth–first search.

Set the VN of each node in the first

component to 1, in the second component to

2, etc.

2. x:=NX(D);

while x # null do

Mark ~

Let !,, r be the sons of x ,

left to right.

Add x to the list.FATHERS(VN(j?,))

and FATHERS (vN(r))/* if x

is a leaf, do nothing*/
if the ACL has an entry for—

O= OP(x)VN(J?,)VN(r)

then Merge (VN(x),m), where

m is the value number

entered for D

else insert (0, VN(x)) on ACL

and add x to the list

NODES(VN(X)).

x:=NX(D)

end

end Atilde;

procedure Merge (k,j):

if k=j then return

~seif \ FATHERS(k) < I FATHERS(j) I then

Merge(j,k)

else for all y on NODES(j) do VN(y):=k@;

for all x on FATHERS(j) d=

Let x have sons ,L, r-left to right.

if the ACL has an entry for—
o=OP(x)VN(L)VN(r)

then Merge (VN(x),m), where m is

the value number entered for 0.

end

Append list NODES(j) to NODES(k).

Append list FATHERS(j) to FATHERS(k).

end Merge;

Figure 2: Algorithm for the uniform word problem

In practice, ACL might well be implemented

as a hash table, not as a trie. But then only the

expected time to search the ACL is constant, not

the worst case time.

To extend the above algorithm to the case of

dags D with other than binary operators, we use

an observation due to Tarjan [Tarj3]. Replace

each node x with label $ and r sons by a

chain of binary nodes and dummy operator symbols,

as suggested in Figure 3. The resulting dag D’

can be processed by Algorithm Atilde. Since

every r-ary node of D gives rise to r–1 binary

nodes in D’ , then D’ has no more vertices than

D has edges. This yields an O(e loge+ IAI)

time overall.

D D’

Figure 3: Transforming r-ary to binary nodes.

Suppose that the operators (3 are assumed

to be commutative, i.e., the ordering on the sons

at each node is immaterial. We can readily ex-

tend Algorithm Atilde to cover this case.

COROLLARY 1: When operators are commutative,

~ can be computed from A without affecting the
time bound.

Proof: Instead of constructing string

o= OP(x)VN(J?,)VN(r) in procedures Atilde and

Merge, sort VN(!L), VN(r) to get string

‘Ivz
in decreasing order. Use string

0P(X)V1V2 instead of o when checking strings

against ACL.

164

5.

The time bound does not change. U

A Linear Alporithm for the Common Subexpression

Problem

For particular cases of the uniform word prob

problem, more efficient algorithms can b~ written

If the set A of pairs is empty then xAy if and

only if the trees rooted at x and y are iden-

tical. Such nodes are called strongly equivalent.

The problem of computing ~ has been called

“common subexpression detection”. Cocke and

Schwartz [CS] use hash table searching to solve

this problem in expected linear time, and worst

case time 0(n2). Here we give an algorithm,

Partition, with linear performance in worst case.

Let the height of a node x in D be the

length of the longest path from x to a leaf.

Any two strongly equivalent nodes of D must be

at the same height. Thus Algorithm Partition needs

to discriminate only nodes of a given height.

Each node is assigned a value number which never

changes. To assign value numbers to nodes at

height i , the algorithm needs to lexicograph–

ically sort only the height i nodes, and needs

to use only as many buckets as these nodes have

sons. The algorithm is given in Figure 4.

Algorithm Partition generalizes the algorithm

from Aho et. al. [AHU, p. 84] for determining——
whether two labelled, unordered trees are iao–

morphic. Algorithm Partition solves the “subdag

isomorphism problem” for labelled, ordered dags

(and for trees as a special case).

THEOREM 3: Let A be an empty relation on

the nodes of dag D , with n nodes and e edges.

Algorithm Partition correctly determines ~ in

time O(n + e).

Proof: (correctness). Any two strongly

equivalent nodes must be at the same hieght. On

the first iteration, the leaves are correctly

identified. Assuming Partition has identified

strongly equivalent nodes at height i , it is

easy to see that the strongly equivalent nodes

at height i+l are correctly identified.

(analysis). Let ni be the number of nodes

of height i. Let ei be the total number of

edges from nodes of height i to their sons.

Clearly Eni = n and Ze. = e.
1

Consider the loop body. Step 2 takes time

O(ni + ei) on iteration i. The size of the

LIST built is \LISTl .~n. + e.. Step 3 adds to

QUEUE strings with total~leng~h ni+e. in time
1

O(ni+ei). Thus Step 4 sorts strings of total

length ni+ei using ILISTI buckets. This takes

O(ni + ~i + ILISTI) = O(ni + ei) time. Step 5 can

clearly be done in O(ni+ei) , and Step 6 is

bounded by O(lLISTl). The loop body takea

O(ni+ei) overall. Since Step 1 takea O(n), the

Algorithm requires O(n+ Zi(ni+ei)) =

= O(n+e) time total. O

/*Input: A dag D with n nodes. The leaves of

D have labels from a set S of names, and

the nonleaves have labels from a set 8.

For convenience assume each element ~ of

G US haa been assigned an integer NR(~)

between 1 and n.

output : An array VN(l:n) where x is strongly

equivalent toy if and only if VN(x) =VN(y).

Structures: BUCKET(l:n) and QUEUE are needed for

lexicographic sorting. BBIT(l:n) is an array

of bits. LIST is a linked list of bucket

indices. */

procedure Partition(D)

1.

while

2.

3.

4.

5.

6.

Find the height of all nodes in D. Let

h = maximum height of any node.

i:=O

COUNT:=l

LIST:=null

Set al~CKETS to ~
Set all BBITS to falSe

QUEUE:=-

i<h ~—

Scan the nodes at height i , collecting in

LIST the value numbers of sons of these

nodes. Set BBIT(i) each time value

number i is encountered and add i to

LIST only the first time, Add NR(V)

to LIST for each distinct element ~

of O US encountered.

For each node x at height i with label

@ and sons yl, yr, add string

NR($)VN(Y1) . . . VN(yr) to QUEUE. (Note

r=O for leaves.) Call this the string

of x.

Lexicographically sort the strings on

QUEUE , using only the BUCKETS with

indices on LIST.

Scan the QUEUE , assigning distinct suc-

cessive value numbers to those nodes with

distinct strings on QUEUE. Increment

COUNT accordingly.

for each i on LIST do—
unset BBIT(i) —

BUCKET(i):=~

end

LIST : =~

i:=i+l

end
return (VN)
& Partition

Figure 4: Algorithm for Common Subexpresaion

Detection

165

Algorithm Partition can beused asa subroutine

to provide an algorithm for theuniform word problem,

that doesnot require hashing or triesas inthe proof

of Theorem2. Nelsonand Oppen [NO1] have independent-

ly discovered an algorithmwith the same time bound.

COROLLARY 2: Given a dag D with n nodes

and e edges, and a set of equalities A , the

uniform word problem can be solved in O(n.e+ IAI)

time.

Proof : See Nelson and Oppen [NO1]. O

In the special case of the uniform word

problem in which there is given a single equality

e=f between expressions, linear time suffices.

This problem arises in Downey and Sethi [DS] where

a restricted class of programs with array assign-

ments is studied.

COROLLARY 3: Let A Sontain a single pairof

nodes A= {(U,V)}. Then A can be determined in

time O(n+e).

Proof: Let D and Dv
u

be the subdags of

D rooted at u and v respectively. If neither

of u and v is an ancestor of the other, then

redirect all edges coming into u or v to a new

node x and run Partition on the resulting

modified dag.

Suppose that v isan ancestor of u in D.
Then Du is a subdag of Dv. Call two nodes x

and y equivalen~ if ~y. A node equivalent to

v will be called a v–node. For each node x in

D define the v-height of x to be the eight of

node x above its closest v–node descendant. Nodes
with no descendant v-nodes have v–height ~’. Nodes
u and v have v-height zero.

Let x be a node in D of height i and

v-height j. It is easy to see that if x is

equivalent to any node of height less than i ,

then x is equivalent to some node y of the

same v–height j in Dv.

Given D , we can run Partition on D and

collapse strongly equivalent nodes. So assume

that D is given with distinct nodes having dis-

tinct expressions. Run Partition on subdag Dv ,

assigning value numbers. Assign the same value

number to u and v. Next modify Partition to
proceed to consider nodes in order of v-height

above v. Steps 2 and 3 are modified to scan

nodes of v–height i in Dv and queue up the

appropri~te strings at this v-height’. After

all nodes with v-height less than co have

heen processed, the remaining nodes are pro–

cessed by Partition in order of increasing

height.

To maintain the v-height of each node

above v an array VHT(l:n) is maintained.

The v–height of a node is calculated using the

v-height of its sons, and is set to zero when–

ever the count reaches the v–height of v. O

6. An On-Line Algorithm

any deductions need to be drawn, and that expres-

sions are presented in the form of dags. Thus

the algorithms are off-line. These assumptions

are realistic in contexts involving code opti–

mization; however, for interactive applications

such as theorem proving and symbolic execution,

equalities, inequalities and requests to perform

deductions may arrive in any order. Algorithms

are needed which are on-line and lend themselves

to a dynamically changing environment of “known”

equalities and inequalities. This is especially

true in symbolic execution systems [Ki] where

alternating program paths are explored: in one

path an equality is assumed true and in another

path it is assumed false.

For example, we would like to be able to

process the following transaction stream on-line:

example: 1. f(a) =c

2. f(b) =d

3. a=b

4. deduce: C=d?

5. g(a,b) *g(b,d)

6. h(c) zh(d)

7. deduce: b%d?

The order in which the equalities are en–

countered <? important: if a=b were

encountered before f(a) =C and f(b) =d then

the equality c =d would be quite easy to prove.

An algorithm for the above example is on-line

if each equalj.ty, inequality or deduction request

is completely processed before the next is read.

Thus before input 5 is read, the algorithm must

answer whether or not C=d is deducible from the

information in 1, 2 and 3. Similarly before input

7 is read, the algorithm must respond that

inequality 6 is inconsistent with the information

in 1 to 5.

The basic problem is that of creating and

updating a data base for equalities so that a

simple decision algorithm can be used to determine

if two expressions are indeed equal. Me will use

the notion of equivalence classes to keep track

of all expressions known to be equal. An equiva–

lence class is constructed for each expression

which has been encountered while processing

equalities. A class is represented by a value

numb er, Moreover, the subexpressions of each

expression are represented in terms of their value

numbers.

For example, when the equality f(a) =C is

processed an equivalence class is created for a

(say ~) , for f(a) (say ~ whose member is

f(0)), and for c (say ~). An lvailable Compu-
ta~ion List (ACL) is maintained with the

definitions (a,~)(f(~),~)(c,~), which is accessed

by hashing on the lefthand element. The equality

of f(a) =C is processed by merging the two

equivalence classes ~ and ~, and all subsequent

references to f(a) or c are by use of the

lowest numbered equivalence class which was

merged -- i.e., ~ in our example. This would

result in an ACL altered to (a,~)(f(~),~)(c,~>.

The above algorithms for the uniform word

problem all assume that the given equalities (and

inequalities) between expressions are known before

166

The process of adding an equality to the data

base consists of:

(1)

(2)

(3)

(4)

For each half of the equality determine the

equivalence class in which it is contained

(create one if it is not contained in any

equivalence class). This is done by “parsing”

each expression bottom–up, using the ACL to

assign value numbers to subexpressions. This

is done by routine Parse in figure 5.

Merge the two equivalence classes (by routine

Propagate in figure 5.

Update all references to the merged equivalence

classes to point to the new equivalence class.

Merge all equivalence classes whose equivalence

is a direct consequenceof 2 (by virtue of the

collapsing transformation -c). This may re-

sult in the merge routine Propagate being

called recursively.

As a clarification of (4) consider the case. .
when a=b, and f(a) and f(b) appear in
separate equivalence classes, labelled P and

with ~<g. Then (2) implies that f(a) and

f(b) are to be uniquely represented as f(n)(y

is the name of the equivalence class contai~ing

a and b), and thus the two classes containing

f(a) and f(b) are merged into one class ~.

All ACL references to q are altered to ~.

The process of determining the equivalence

class (value number) of an expression mav be

thoughtof as a form of simple precedence parsing

against the “reductions” available in the ACL.

The algorithm for adding an equality to the

data base is given in Figure 5. The data base

consists of an indexed table ACL , one entry for

each node processed to date. (We will persist in

referring to nodes instead of expressions and

subexpressions) . An entry ACL[j] is of the

form (a,m) where o is a string $V1V2 . . . Vr

consisting of an operator symbol and son value

numbers; m is the value number of the associated

node. ACL is accessed by hashing on the strings

0.

All references to a member of an equivalence

class are in terms of its value number. Pro-

cedure Propagate insures that the value number

of any class equals the smallest index of any

node in the class.

Steps 1 and 2 correspond to the merging of

equivalence classes due to transitivity: al 1

references to the merged value numbers rein, max

are replaced by the minimum value number. Step

3 enforces the propagation of equality by the

collapsing transformation: when two ACL

entries (a,i) and (o,k) with identical strings

are found, the classes i and k are merged by

recursively calling Propagate. There are no

more than IACLI calls of Propagate for each

call to Update.

MODS is a list of ACL indexes of entries

(a,m) which mention max or min in 0; thus it is

a list of father nodes affected by the merge of

max and min. MODS is maintained in ascending

sort to simplify the search for a string match in

Step 3. Step 3 need only be applied to entries

on MODS. Note that duplicate ACL entries caused

by merging of value numbers are deleted (Since

ACL is hashed, we do not actually remove these

duplicates, but only mark them as deleted)..

The process of determining the equivalence of

two expressions is ‘quite simple from a computa-

tional standpoint. Specifically, in parsing an
expression there are exactly as many probes of the

ACL to be made as there are input names and

operator symbols in the expressions.

The process of updating the ACL can be

speeded up significantly by the maintenance of

linked lists NODES[l:n] and FATHERS[l:n].

NODES[i], which links all members of equivalence

class i , obviates, in part, the need for Step 2.

FATHERS[iJ, which links all equivalence classes

having the son i , obviates the need for Step 3

and the preparatory Steps 1 and 2.

Inequalities can also be handled. This is

accomplished by maintaining a table NEQL of

pairs of equivalence classes (value numbers) which

are known to be unequal. The algorithm for

proving equalities needs only a slight modification

to be able to cope with inequality queries such as
bzd? in the above example. In such a case, the

inequality does not appear explicitly in the data

base. Instead, we derive it by contradiction.

We assume that b=d and (temporarily) add this
relationship to our data base. If b zd is true,

then a contradiction will occur. This contra-

diction is detected at the occurrence of an

attempted merge of two equivalence classes which

are known to be unequal(those of g(a,b) and g(b,d)

in the above example).

Each entry in NEQL is a pair of value

numbers. Therefore, whenever a merge of two

equivalence classes occurs, this table must also

be updated. NEQL is updated just before Step 1

of F-ropagate as follows:

for each pair (x,y) in NEQL do replace each

occurrence of max by min ~ (x,Y);

if x=y then “contradiction” ;

end —

Note that the inequality algorithm modifies

the data base ACL. Should a contradiction be

detected, we would like to undo the updating that

has occurred. This is not a problem if the

algorithm operates in a recursive environment.

where dynamic storage allocation and garbage

collection are available (e.g., LISP).

7. RelatedResules

Paterson and Wegman [PW] consider unification,

which can be described informally as follows:

given two expressions g and h containing

variable symbols, substitute subexpressions for

the ~ariables in such a way as to make g and h

identical. In the uniform word problem, we start

with a given set of equalities A and ask if g

and h are equivalent. The unification problemis

to start with expressions g and h and ask if

there exists a (suitably constrained) set of

equtilities A subject to which g and h are

equivalent. The two problems are quite different.

While an O(n) algorithm exists for unification,

O(nlogn) is the best comparable result for the

uw problem. And while assuming operator commuta–

tivity does not affect the uw problem complexity,

it can be shown that unification with commutative

operators is NP-hard.

167

procedure Update (e,f)

/* e,f are expressions; e=f is the axiom to

be added to the data base*/

L:=Parse(e) /* obtain the value numbers

r:=Parse(f) /* of e,f from the ACL&/
Propagate (!,, r,null) /* propagate effect of

new equivalence through the data base*/

end Update;

procedure Propagate (rein, max, MODS)

if—

/*

1.

2.

3.

min >max then swap min and max
/* ~in <a/

rein, ma; are the value numbers of the

equivalence classes being merged. MODS is

a listof ACL indices, in ascending sort,

of entries which mention max or rein*/

for non-deleted j , min+l~j~IACLl do

Let ACL[j]= (O,m)
—

if min occurs in o then insert j—
in MODS

end

for non-deleted j , max~j~\ACLl ~

/*replaceall instances of max bY

rein* /

Let ACL[j]= (O,m}

if m=max then replace m by min
T
lf max occurs in O—

then

Replace all occurrences of
max in o by min

Rehash (0)

Insert j in MODS

I* rehashing needed since

string o has changed*/

end

while MODS znull do— —
/*step through the list of affected

nodes looking for matching

strings and propagate merge*/

Let h be the smallest index on MODS

Delete h from MODS

Let ACL[h]= {o,i)

for each j on MODS do

— Let ACL[j]= (T=)

end

end ——
end Propagate;

if 0= T—
then /*matching string~~/

Delete j from MODS

Mark ACL[j] deleted

from ACL
/*Classes i,k must

be merged*/

%op~g~~e~k, MODS)

Figure 5: Algorithm to Process an Equality

The axioms given in the uniform word problem

are equalities between expressions not involving

any variables. But a law like the commutative

law x+y=y+ x is really a scheme for inferring

many instances of axioms of the form e+f= f-te

where e,f are variable-free expressions.

Let X= {x,y, . ..} be a set of variables.

Equalities between expressions over Qusux

are called axiom schemata. We review the effect

on the complexity of the uniform word problem

which results from admitting schemata.

As wehave seen, introducing only the commutative

axiom schema for operators does nonmaterially affect

the decision procedure for equality. If A is a

set of axioms over S U{.}, then A lJ{x. (yoz)=

= (Xoy)”z} generates a finitely presented semi-

group. The uniform word problem for semigroups is

well known to be undecidable [Tars]. Indeed

there exists a fixed set of axioms A for which

the word problem is undecidable.

What happens when both associativity and

commutativity of operator . are admitted? If

A is a finite set of axioms, A U{XO(y.Z) =

= (x.y).z , x.y=y.x} generates a finitely pre-

sented commutative semigroup. The uniform word

problem for such commutative semigroups is

decidable; however, a recent result shows that

this problem is complete in exponential space

[CLM]. It follows that for infinitely many A,

deciding equality of expressions requires ex–

ponential time.

Kozen [KO1] has shown that inferring schemata

from a set of variable-free axioms is a hard

problem. Knuth and Bendix [KB] and Lankford [L]

give algorithms which work to decide word problems

for some sets of schemata.

Appendix A: Inequalities and the Uniform Word

Problem

Let A= {ei1=ei2\l<i <m} and

B={f
2fj211~j~n} – –

be sets of equalities and
jl

inequalities, respectively. We shall also use A

and B for the conjunctions A= Ai(ei1=ei2) and

B= flj (fjl*fj 2).

Formulas are built up from equalities using

the usual logical connective vsA91 and >.

Formulas of the type _ g=h will be abbreviated

gzh. The meaning function m can readily be

extended to formulas. A form~la F is satisfied

under ~ provided g(F) is true. A formula is

consistent if it is satisfied by some i. A

formula is valid if it is satisfied by ~11 i.—

Consider the following four problems. Given

sets A and B as above, and expressions g

and h:

(a) EQUALITY PROBLEM: Determine whether g=h is

satisfied for all i satisfying AAB.

This is the same as–determining whether

A A B a(g=h) is valid.

(b) CONSISTENCY PROBLEM: Determine whether there

exists i satisfying AAB. This is the

same as ~etermining whether ~ (AA B) is

invalid.

(c) Inequality pROBLEM: Determine whether g #h is

satisfied for all i satisfying AAB. This is

the same as determin%gwhether AAB3(g #h) is

valid.

(d) UNIFORM WORD PROBLEM: Determine whether g.h

is satisfied for all ~ satisfying just the

equalities A. Thisis the same as determining
whether Aa(g=h) is valid.

168

All four problems reduce to instances of the

uniform word problem, as may be seen from the

following lemmas.

LEW Al: Given A = Ai(ei1=ei2), and

B = Aj(fj1#fj2), and expressions g and h:

(a) AA B a(g=h) isvalid if and only if,

A~Vj(fj1=fj2) V(g=h) is valid.

(b) y (AA B) is invalid if and only if

A3Vj(fjl=fj2) is invalid.

(c) AA B =(g*h) is valid if and only if

AL (g=h)a Vj(fjl=fj2) is valid.

Proof: Part (a) follows from the logical

equivalence of AA B o (g=h) and Aa7Bv (g=h).

The other parts are similar. O

LEW A2: Let A be a conjunction of equali-

ties. ! (g.=hj) is valid if and only if at

least o~e31f=1 JA>(g. =hj) is valid, for l<j <n.
3 — —

Proof: ‘Ssume ‘hat ‘=v~=l(gj ‘hj)isvalidy

and suppose that all of A o (gj =hj) are invalid.

Then there exist
%’ ““”’%

over value domains

‘1’ ““”’ ‘n’ ‘Uch ‘hat ‘j
satisfies AA (gj #hj).

Consider ~ over VI x . . . xVn, defined by

m(e) =Nl(e)x . . . x%(e) , where gj(e) is the value

of e under ‘ . . For this ~ , the formula
%

AA (glzhl)A . ..A(gn#hn) is satisfied. But then

A>Vj(gj =hj) is not valid –– a contradiction.

The other direction of the lemma is

immediate. D

The above lemmas show that all the problems

(a), (b), (c) reduce to deciding the validity of

formulas of the form A>(g=h), where A is a

conjunction of equalities. Thus a solution to the

uniform word problem solves all the problems.

Acknowledgement

We wish to thank Al Aho, John Bruno,

Don Johnson, Jeff Unman, Mike Garey and

Dave Johnson for helpful discussions.

References

[A]

[AHu]

[AU]

[B]

W. Ackermann, Solvable Cases of the “

Decision Problem, North-Holland,

Amsterdam (1954).

A. V. Aho, J. E. Hopcroft, J. D. Unman,

The Design and Analysis of Computer

Algorithms, Addison Wesley, Reading,

Mass., (1974).

A. V. Aho and J. D. Unman, Optimization

of straight line programs, SIAM J. Com–

~uting 1, 1 (March 1972) 1-19.

M. S. Breuer, Generation of optimal code

for expressions via factorization, CACM

~, 6 (June 1969) 333-340.

[CLM]

[Cs]

[Cu]

[DS]

[Go]

[Hj

[HK]

[Ki]

[Kn]

[KB]

Kol]

K02]

[L]

E. Cardoza, R. Lipton and A. R. Meyer,

Exponential space complete problems for

Petri nets and commutative semigroups,

Proc. 8th Ann. ACM Symp. on Theory of

Computing, Hershey, PA (May 1976) 50-54.

John Cocke and J. T. Schwartz, Programming

Languages and Their Compilers Preliminary

Notes, Second Revised Version, Courant

Institute of Mathematical Sciences, New

York, NY (April 1970).

Karel Culik, Combinatorial problems in the

theory of complexity of algorithmic nets

without cycles for simple computers,

Aplikace Matematiky 16 (1971) 188-202.

P. J. Downey and Ravi Sethi, Assignment

commands and array structures, Proc. 17th

Ann. Symp osium on Foundations of Computer

Science, (October 1976) 57-66.

D. I. Good, R. L. London and W. W. Bledsoq

An interactive program verification syste%

IEEE Trans. on Software Engineering SE-1

(March 1975) 59-67.

J. E. Hopcroft, An nlogn algorithm for

minimizing states in a finite automaton,

in Z. Kohavi and A. Paz (cd.) Theory of

Machines and Computations, Academic Press,

New York, NY (1971) 189-196.

J. E. Hopcroft and R. M. Karp, An

algorithm for testing equivalence of

finite automata, TR-71-114, Dept. of

Computer Science, Cornell Univ. (1971);

see description in Aho et. al. (1974)—
143-145.

J. C. King, Symbolic execution and program

testing, C. ACM 19 (July 1976) 385-394.

D. E. Knuth, The Art of Computer Program-

ming: Volume 3, Sorting and Searching,

Addison Wesley, Reading, MA (1973).

D. E. Knuth and P. B. Bendix, Simple word

problems in universal algebras. In

J. Leech, Ed., Computational Problems in

Abstract Algebra, Pergamon Press, (1970).

D. Kozen, Complexity of finitely pre-

sented algebras, Proc. 9th Ann. ACM Symp.

on Theory of Computing, Boulder, Co.

(May 1977) 164-177.

D. Kozen, Lower bounds for natural proof

systems, Proc. 18th Ann. Symp. on Found–

ations of Computer Science, (Oct. 1977),

254-266.

D. S. Lankford, Canonical algebraic

simplification in computational logic,

Department of Mathematics report,

Southwestern University, Georgetown, TX

(1975) .

[NO1]

LN02]

G. Nelson and D, Oppen, Fast decision

algorithms based on union and find, Proc.

18th Ann. Symp . on Foundations of Computer

Science, (Oct. 1977), 114-119.

G. Nelson and D. oppen, A simplifier for

program manipulation, this proceedings.

169

[PW] M. S. Paterson and M. N. Wegman, Linear

unification, Proc. 8th Ann. ACM Symp . on

Theory of Computing, Hershey, PA (May 1976)

181-186.

[Sal] H. Samet, A normal form for compiler test-

ing Proc. Symp. on Artificial Intelligence

and Programming Languages, Rochester, NY

(August 1977).

[Sa2] H. Samet, Proving the correctness of

heuristically optimized code, Communi–

cations of the ACM, to appear.

[Sel] Ravi Sethi, Testing for the Church Rosser

property, .TACM 21, 4 (October 1974) 671-

679; errata JACM 22, 3(July 1975) 424.

[Se2] Ravi Sethi, Scheduling graphs on two pro-

cessors, SIAM J. Computing 5, 1 (March

1976) 73-82.

[Sh] R. E. Shostak, An algorithm for reas$ning

about equality, Proc. of the Sw p. on AI

and programming Languages, SIGPLAN Notices
12 (Aug. 1977), 155-162.—

[Tarjl] R. E. Tarjan, Depth first search and linear

graph algorithms, SIAM J. Computing 1, 2
(June 1972) 146-160.

[Tarj21 R. E. Tarjan, On the efficiency Of a good
but not linear set merging algorithm,

JACM 22, 2 (April 1975) 215-225.

[Tarj3] R. E. Tarjan, private communication.

[Tars] A. Tarski, A. Mostowski and R. M. Robinso~

Undecidable theories, North–Holland
Publishing Co., Amsterdam (1953).

170

