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ABSTRACT
STEWARD (“Spatio-Textual Extraction on the Web Aiding
Retrieval of Documents”), a system for extracting, querying,
and visualizing textual references to geographic locations in
unstructured text documents, is presented. Methods for re-
trieving and processing web documents, extracting and dis-
ambiguating georeferences, and identifying geographic focus
are described. A brief overview of STEWARD’s querying
capabilities, as well as the design of an intuitive user inter-
face, are provided. Finally, several application scenarios and
future extensions to STEWARD are discussed.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Storage and Retrieval

General Terms
Algorithms,Design,Performance

Keywords
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1. INTRODUCTION
Search technology today is dominated by search engines

such as the one provided by Google, where documents are
retrieved with the aid of an algorithm that ranks documents
related to the query string on the basis of how many other
documents link to it [4]. We are interested in developing a
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search engine where the query string contains a geograph-
ical entity, and we wish to find other documents that are
related to it by spatial proximity. For example, a docu-
ment containing“Los Angeles” is deemed relevant to a query
string containing “Hollywood”, even though the query string
“Hollywood” might not even be mentioned in the document.
In this paper, we describe the anatomy of STEWARD (de-
noting “Spatio-Textual Extraction on the Web Aiding the
Retrieval of Documents”), a spatio-textual document search
engine.

Existing work in this area generally focuses on finding
the geographic scope of web sites containing multiple doc-
uments, and is usually done by examining their link struc-
ture. Instead, our focus is on the contents of individual
documents. Moreover, we are not only interested in find-
ing a geographic focus sufficiently general to span the entire
document, but also wish to identify as many references to
geographic locations, or geolocations, as possible. We also
wish to provide the ability to browse through the documents
in order of proximity to the query string and specified geo-
graphical entities.

STEWARD uses a document tagger, a program that takes
an unstructured text document and assigns tags to phrases
which are potential references to geographic locations. The
tagger is aware of sentence structure, so that proper nouns,
which often correspond to geographic locations, can be
found. The determination of which of these nouns or word
combinations represent geographic locations is facilitated
with the aid of a gazetteer; STEWARD uses the Geographic
Names Information System (GNIS) [1] for United States ge-
ographical entities, and its analog, Geonet Names Server
(GNS) [2], for non-US entities. Of course, there is still the
issue of distinguishing between multiple locations with the
same name, such as “Springfield, IL” and “Springfield, MA”,
which is a difficult problem, but can be done with the aid of
contextual information.

Queries to STEWARD can have a purely geographical
component, a keyword component, or a combination of both.
When the query string is purely a geographical entity, we
wish to find documents that are related to it by spatial prox-
imity. The documents that are returned are ranked by the
extent to which STEWARD determines that the geographic
entity in the query serves as the geographic focus of the
document. This is based on many factors, including the
number of times that the proximate geographic locations
are mentioned in the document, as well as their distribution
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throughout the document.
When the queries consist only of non-geographic key-

words, STEWARD ranks result documents according to the
frequency and distribution of the keywords. In addition,
STEWARD also identifies all of the references to geographic
locations in each document, and ranks them in the order in
which it determines that they serve as the geographic fo-
cus of the document. Rankings are based, in part, on the
frequency of their occurrence, and the distribution of their
occurrences in the document.

When both a geographic location and input keywords are
provided to STEWARD as a query, relevant documents (i.e.,
those containing the input keywords) are ranked in increas-
ing order of distance of their geographic focus from the ge-
ographic location component of the query string. The geo-
graphic location component of the input query can be ex-
pressed in terms of latitude/longitude, or as a textual refer-
ence to a spatial object. For example, the user could search
for “Housing Projects” in the vicinity of “College Park, MD”.
The results would only return such documents that qualify
both the content and location specifier that was provided to
the system by the user.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a detailed overview of previous and related
research. Section 3 describes the architecture of STEWARD,
including modules that perform the preprocessing, database
architecture, and query processing, and the design of the
user interface. In Section 4, we describe sample application
scenarios that can be built using the STEWARD system.
Finally, concluding remarks are drawn in Section 5.

2. RELATED WORK
Our research focuses on facilitating access to documents

on the web in terms of the geographical references that they
contain, and determining their principal geographic focus or
scope. One approach is to examine the link structure of
the sites pointing to the page/document, and those pointed
at by the page/document (e.g., [7, 9, 20, 38]). Instead, our
method focuses on using the actual contents of the docu-
ments. This process can be broken into two components.
The first consists of identifying names in the text that cor-
respond to geographic locations, while the second involves
determining the geographic focus of the document – that is,
providing some ranking of the different geographic locations
that are mentioned in the document, in terms of which one
best describes the document’s geographic scope.

The identification of words in the text that correspond to
geographic locations is related to what is termed Named-
Entity Recognition (NER) [37], which is concerned with the
identification of abstract entities, such as person and or-
ganization names. There are many ways to proceed, in-
cluding the use of techniques grounded in both statisti-
cal learning [5, 18, 21, 36, 37] and natural language process-
ing [8, 26, 31], as well as hybrid approaches [24]. Regardless
of which technique is used, we are concerned with two issues.
The first is aliasing – the use of multiple names for the same
geographic location, such as “Los Angeles” and “LA”. The
second is ambiguity, also known as polysemy, which occurs
when a particular name is used to denote more than one
geographic location [12–17, 23, 25, 30–32, 35]. For example,
“Springfield” is the name of a city in many states of the US.

The Web-a-Where system of Amitay et al. [3] addresses
the issue of ambiguity by making use of a gazetteer con-

taining 30,000 entries, corresponding to names of geoloca-
tions around the world. Each entry in the gazetteer is a
hierarchical representation of other geographical references
that encompass it (i.e., a containment hierarchy). For ex-
ample, an entry corresponding to “College Park, Maryland”
is represented as “College Park/Maryland/US”, where “Col-
lege Park” is contained in the state of “Maryland”, which in
turn is contained in “US”. For each term in the document,
Web-a-Where executes a lookup operation in the gazetteer,
and ignores it if it the term is not found. Otherwise, if the
usage is ambiguous, an attempt is made to use the contain-
ment information to disambiguate it. For example, if two
related references are found next to each other in the doc-
ument (e.g., “Chicago, Illinois”), the combined location is
assigned a high confidence score. However, if an ambiguous
reference to geographic location occurs in isolation (i.e., it
does not agree with the next word in the document), it re-
mains unresolved, in the sense that Web-a-Where is not sure
of the correct instance of it, or even if it is actually used as
a geographic location. If after the first pass the document
contains unresolved references, each unresolved reference is
serially replaced with the geographic entities that contain it.
Attempts are then made to resolve the resulting set of geo-
graphic entities. For example, if “London” and “Hamilton”
are a pair of unresolved geographic references in a document,
“London” may correspond to either “London/UK” or “Lon-
don/Ontario/Canada”, while “Hamilton”may refer to either
“Hamilton/Ohio/US” or “Hamilton/Ontario/Canada”. The
fact that “Ontario, Canada” is common to both “London”
and “Hamilton” leads Web-a-Where to conclude that the
occurrences of “London” and “Hamilton” correspond to the
interpretations of “London, Ontario, Canada” and “Hamil-
ton, Ontario, Canada”, respectively, due to their relative
proximity in the document as well as their spatial proxim-
ity.

Unfortunately, the small size of the gazetteer used by
Web-a-Where does not expose it to some of the real engi-
neering and research challenges posed by this problem. The
Web-a-Where gazetteer has just 30,000 entries, which pales
when compared with the GNIS and GNS gazetteers, con-
taining 2.06 million US references and 1.08 million references
to locations around the world, respectively. Note that the
number of entries in the gazetteer is directly related to the
ability to identify more geographical references in a docu-
ment. Increasing the size of the gazetteer means that most
terms in the document will be found in the gazetteer, consid-
erably slowing the tagging process and potentially reducing
its accuracy.

The containment disambiguation resolution technique has
a number of shortcomings. First of all, although the small
size of the gazetteer used by Web-a-Where enables it to at-
tribute the references to “Hamilton” and “London” to loca-
tions places in “Ontario, Canada”, this technique fails when
using a complete gazetteer. In particular, we found 10,774
unique matches for “Hamilton” and 2,572 matches for “Lon-
don” in our gazetteer. Moreover, 47 states in the US and 16
countries in the world have at least one reference to both
“Hamilton” and “London”. The fact that the GNIS and
GNS gazetteers contain over 3 million references means that
most terms in the document will be found in the gazetteer,
thereby considerably slowing the tagging process, as even
the lookup process becomes more expensive. In [34], Volz et
al. relate their experiences in disambiguating geographical
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references using the GNIS [1]. Second, if two references are
geographically close to one another, but belong to different
containment entities, Web-a-Where assigns them low confi-
dence scores. For example, the US cities of “Trenton/New
Jersey” and “New York City/New York” are within a few
miles of each other, and frequently occur in the same docu-
ment, without mention of their containing states. However,
as they belong to different states, Web-a-Where [3] does not
consider them to be relevant matches. This leads us to con-
clude that the containment disambiguation method is not
the most effective, and thus may not be worth the overhead
imposed by its use.

An alternative approach is to use linguistic natural lan-
guage processing (NLP) techniques to identify references to
geographical entities in web-documents. In particular, such
methods can be used to weed out non-geographic terms,
such as prefixes like “Mr.” which denote names (e.g., [15,
16, 31]). The NLP approach is taken in MetaCarta [25],
which is a commercially available system for discovering
geographic references in documents. MetaCarta starts by
first building disambiguation histories, using the occur-
rence of geographic location references in a corpus of doc-
uments. Using these histories, MetaCarta assigns proba-
bilities of the form p(name, place), denoting the probabil-
ity that a textual reference name in the document corre-
sponds to a particular place. For example, by process-
ing a large collection of documents, MetaCarta is able to
determine that p(“London”,“London, UK”) is much higher
than p(“London”,“London, Ontario”). MetaCarta uses these
probabilities, along with cues in sentence construction (e.g.,
“Olympia which is 15 miles west of Washington”), to disam-
biguate references and arrive at a final confidence measure.
Note that their probability-based paradigm, based on the
frequency of occurrence of geographic references in a corpus
of documents, makes it almost impossible to identify rela-
tively unknown locations on a map. For example, a reference
to “London” in “Ontario, Canada” would never be assigned
a sufficiently high confidence score, as the system would al-
ways always associate it with “London, UK”. In contrast,
our system assigns a relevancy score primarily based on the
other spatially proximate references in the document.

Determining the geographic focus of a document is con-
siderably harder than identifying the geographic locations
that it references. As mentioned earlier, many systems de-
termine a document’s geographic focus from its originating
web site, or the web sites that link to it (e.g., [7, 9, 20, 38]).
Such a solution, although well suited for a general purpose
search engine, such as Google or Yahoo!, may not be suitable
for documents in the hidden web – a set of documents, usu-
ally proprietary, intended for internal use in an organization.
These documents are often not available on the Internet.

One of the problems with determining the geographic fo-
cus of a document is that not all documents have an easily
identifiable focus. Moreover, not all geographic locations
that are referenced in a document may be related to its
focus. For example, the location “Singapore” may not be
related to a document corresponding to an article on Hur-
ricane Katrina that appeared in the Singapore Strait Times
newspaper. There are several approaches that can be taken
to overcome these problems. Web-a-Where [3] identifies the
focus locations of a document using a simple scoring algo-
rithm that takes into account the confidence score of each
of the locations, which is the probability that a location in

the document has been correctly identified. Once a set of
focus locations has been identified, it makes use of the in-
formation provided by the containment hierarchy to assign
common locations to them. A similar approach is used by
Ding et al. [9]. MetaCarta [25] has no notion of the focus of a
document; instead, it enables users to map the document, to
see the geographic locations that it references. Google Book
Search takes a similar approach, mapping what it believes
are references to locations in a book’s text.

Some spatio-textual search engines rely primarily on street
addresses for determining the focus of the documents, and
have modules to detect them. For example, Google Books
(http://books.google.com), Google Local (http://local.
google.com) and Yahoo Yellow Pages (http://yp.yahoo.
com) index online yellow pages (see also [27]), and use
geocoders that recognize and geocode addresses into points
on a map. However, in reality, online yellow pages are re-
ally semi-structured documents with properly formatted ad-
dresses. Note that addresses are not necessarily a reliable
indicator of geographic focus, especially if the document
contains references to additional geographic locations. For
example, the presence of an address such as “1600 Penn-
sylvania Ave, Washington DC” has no relation whatsoever
to the state of “Pennsylvania”. However, we have observed
that some systems, such as MetaCarta [25], place an unwar-
ranted emphasis on address information to determine likely
geographic locations in a document.

3. ARCHITECTURE
The architecture of the STEWARD system is divided into

several processing stages, such that each stage is data inde-
pendent. This lends well to processing using a cluster of
computers, since each processing stage can be assigned to a
dedicated node in the cluster. In this section, we describe
the various document processing stages in the STEWARD
system. We also describe the various queries that can be
handled by STEWARD, as well as STEWARD’s user inter-
face, which is shown in Figure 1.

3.1 Document Retrieval and Standardization
A web spider program retrieves all publicly available doc-

uments from a specified website. Once a document is down-
loaded, it is first standardized to a set of document formats,
so that further processing of the document is not depen-
dent on its initial document format. For example, further
processing of PDF documents should not be different from
that of HTML, or DOC documents. This standardization
is achieved by using an ASCII format of the document for
further processing of the document, while a HTML version
is used for display and annotation purposes. Whenever pos-
sible, additional metadata is extracted from the document,
such as the title of the document, authors, publication time
stamp, and modification date.

After a document has been suitably standardized, it is
stored in a local database along with its URL, any available
metadata, the ASCII and HTML versions of the document,
and a uniquely generated document identifier, henceforth
referred to as doc ID. The doc ID is used in all subsequent
stages in the processing pipeline to unambiguously refer to
a particular document in STEWARD.
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Figure 1: A screen shot of the STEWARD user interface, available at http://mithra.cs.umd.edu/steward.

3.2 Feature Vector Extraction
Rather than processing every word in a document, we

wish to discard most of the words in the document that
most likely are not textual references to geographic locations
(e.g., “the”, “and”, etc.). Removing such words substantially
reduces the amount of work required to process a document.
To this end, this stage in the STEWARD pipeline focuses
on identifying and extracting only those words and phrases
from the document that are most likely textual references
to geolocations, and are referred to as the features of the
document. Collectively, the set of features is referred to
as the feature vector of the document, and the process of
extracting the feature vector of a document is termed feature
vector extraction.

The most popular method for feature vector extraction of
a document d is to compute the Term Frequency-Inverse
Document Frequency (TF-IDF) [11, 28] measure for each
word in the document. The TF-IDF measure emphasizes
those words and phrases which are frequent in d, but ap-
pear infrequently in a document corpus, which is a set of
representative documents from the collection of documents.
Given a set of words in d, the TF-IDF of a word w can be
computed as the ratio of the number of times w appears
in d to the number of documents in the corpus containing
w. Only those words that occur frequently in d, but are
infrequent in the corpus, have a large TF-IDF score. The
feature vector of a document can be obtained by extract-
ing only those words whose TF-IDF score is greater than
a pre-determined minimum threshold. The biggest draw-
back of this method is that it does not take linguistic cues
into account, which can be deduced by parsing the sentence
constructs in d.

To account for this, we use two Natural Language Pro-

cessing (NLP) based techniques. We examined the use of a
Part-Of-Speech (POS) [6] and a Named-Entity Recognition
(NER) [37] tagger to aid document feature vector extrac-
tion. A POS tagger examines a stream of words and assigns
a part-of-speech label (e.g., verb, noun, adjective, etc.) to
each word in the stream. It makes use of a n-gram Hid-
den Markov Model (HMM) [11]. The tagger assigns part-
of-speech labels based on the most likely path through the
HMM, given the input sentence’s word sequence.

An easy way to extract a document’s feature vector is to
choose only those words in the document that are proper
nouns. The advantage of this method over TF-IDF based
extraction is that the words or phrases in the feature vector
are more likely to be references to geolocations, although the
POS tagger cannot distinguish between names of people, or-
ganizations, or other entities, which are also proper nouns.
Furthermore, because of the n-gram nature of the HMM, a
POS tagger is adept in identifying word phrases – a sub-
stantial improvement over TF-IDF based extraction. The
HMM POS tagger, similar to TF-IDF, relies on a corpus of
documents to build the HMM, and may require extensive
training. The POS tagger used in STEWARD is trained on
the Brown language corpus [10].

The NER tagger overcomes some of the POS tagger’s lim-
itations by providing further classification of proper nouns
into categories, including person, organization, and most im-
portantly, location. As a result, a feature vector extraction
algorithm that uses the NER tagger outputs the words or
phrases in a document that have been classified as locations
by the NER tagger. In spite of the apparent advantages of
the NER based feature extraction over the POS-based fea-
ture extraction, we point out that POS is generally much
faster and more accurate than NER.
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In consideration of the above, we adopt a hybrid approach
that makes use of both a POS and NER based tagger.
All words in a document are first tagged with their corre-
sponding part-of-speech labels. Next, only the proper noun
phrases are extracted, along with their context, and passed
through a NER tagger. If the proper noun phrase is then
tagged as a location, it is added to the feature vector for
that document; otherwise, it is ignored. Combining these
two methods exploits the strengths of both approaches –
the speed of the POS tagger, and the specificity of the NER
tagger.

Once the feature vector has been extracted, it is stored in
a database as a separate relation. For a document d, each
feature f in the feature vector of d is first assigned a unique
Feature ID (FID). The FID is stored with the starting offset
of f in d, the length of f , the context of f , and the doc ID
of d.

3.3 Feature Record Assignment
After extracting the document’s feature vector, STEW-

ARD checks to see if any of the features is a reference
to a geolocation, by searching in a large gazetteer of lo-
cations. As mentioned earlier, STEWARD uses a freely-
available database, provided by the US Board of Geographic
Names, known as the Geographic Names Information Sys-
tem (GNIS). The GNIS contains approximately 2.06 mil-
lion locations in the US, including classification labels for
locations, such as populated place, landmark, and park.
The gazetteer provides the name and geographic coordinates
(i.e., latitude and longitude) of each locations, along with as-
sociated location data, such as a hierarchical categorization
of the location by state and county, as well as population
data.

If a feature is found in the gazetteer, STEWARD extracts
all the possible matching records. We refer to the set of
records in the gazetteer that are associated with a feature f

as the feature records of f . As discussed earlier with the ex-
ample of “London”, a feature may be associated with several
feature records. The problem of determining which feature
record is the correct one is deferred to the next stage in the
processing pipeline (see Section 3.4). Those features that do
not have a feature record are dropped, as they are probably
not geolocations.

3.4 Disambiguation via Semantic Analysis
At this point, most of the features in a document d have

one or more associated feature records. One of the problems
in using a gazetteer as large as ours is that most features in
d may have multiple feature records, even when they are
not geolocations. Moreover, some features in d may have
a long list of feature records, only one of which is correct.
As a result, the disambiguation algorithm has the added
challenge of identifying those features that are not locations,
as well as the added computational costs of identifying the
correct feature from large sets of feature records.

We now present a brief outline of our disambiguation al-
gorithm. Our primary objective is to assign each feature f

to one of the feature records associated with f . A key ob-
servation, exploited in our algorithm, is that when referring
to a relatively unknown geographic location, it is a common
practice to provide nearby references to more identifiable
geographic locations or hierarchical context. These addi-
tional locations provide readers with a familiar geographic

context, so they have a notion of the location’s general area.
For example, when referring to a location “Catonsville”, it is
common practice to mention that it is near“Baltimore”, or is
located in “Maryland” – the state containing “Catonsville”.
Here, the locations “Baltimore” and “Maryland” give evi-
dence to the location of “Catonsville”, and vice versa. Fur-
thermore, it is unlikely to find another pair of “Catonsville”
and “Baltimore” in some other part of the world, such that
they are geographically close, and at least one of them is a
familiar place. In STEWARD, the population serves as a
substitute for the place’s familiarity.

This leads to a simple algorithm which we term the pair
strength algorithm. Pairs of feature records are compared to
determine whether or not they give evidence to each other,
based on the familiarity of each location, frequency of each
location, as well as their document and geodesic distances.
We define document distance as follows: given two features
f1 and f2 in d, their document distance is the difference
in the offsets of f1 and f2 from the start of the document.
Given a pair of feature records, the algorithm determines
the pair’s strength based on the frequency, document dis-
tance, geodesic distance and the populations of the pair of
locations. The higher the score of a pair, the more likely
it is that the feature records of the pair are correct. The
pair strength algorithm generates all possible pairs of fea-
ture records, which are then sorted in decreasing order of
the strength of the pairs and stored in a list L. At each iter-
ation, the pair with the highest pair strength is chosen and
removed from L. This effectively assigns one or more fea-
tures to one its feature records. Each assignment may cause
some of the pairs in L to become infeasible; these pairs are
removed from L. For example, if “Springfield” is assigned
to “Springfield, IL”, all instances of pairs with “Springfield,
MA” are removed from L. Finally, when L is empty, each
feature has been assigned to one of its feature records, and
the disambiguation phase is complete. The list of assigned
geolocations and pair strength scores are then stored in the
database with the document’s doc ID.

3.5 Geographic Focus Determination
The next stage of processing calculates the geographic fo-

cus of a document, as determined from the locations iden-
tified in the document. The geographic focus serves as an
ordering of the geolocations in a document, and is presented
in decreasing order of their relevance to the document’s con-
tent. We compute the focus score of a geolocation l in a
document d, which is the measure of the relevance of l to d.

Several methods can be used for determining the focus
scores of all geolocations in d. A simple measure of l’s focus
score can be the frequency of occurrence of l in d. The prob-
lem with this measure is that each location in the document
is considered in isolation; the algorithm does not account for
the fact that d may also contain a number of spatially prox-
imate locations to l. For example, a document that men-
tions several locations in Texas should probably give more
importance to the places in Texas, even though each of them
may be mentioned only a few times. A more sophisticated
algorithm may use a container based [3] or hierarchical clus-
tering technique, which groups the locations in d based on
their classification in a container hierarchy. The advantage
of this clustering technique is that the locations are grouped
according to a natural and logical division method, easily
understood by humans. However, if a document contains
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only a few important locations spread over a large area, the
container object may become too large to be useful.

STEWARD uses an algorithm termed Context-Aware Rel-
evancy Determination (CARD). The rationale behind the
CARD algorithm is as follows. Two locations l1 and l2 are
said to be contextually related in a document d, if l1 and l2
frequently occur in each other’s context in d. A location l is
said to be important to d if l is well distributed throughout d,
as well as contextually related to several spatially proximate
locations in d. The CARD algorithm is an improvement over
other proposed techniques, as it combines both the geodesic
and the document distances between locations in d, and ar-
rives at a focus score that is more relevant to the content of
d.

3.6 Spatio-Textual Query Optimization
An important aspect of our research involves understand-

ing the mechanics of spatio-textual query processing, in or-
der to optimize retrievals for speed, efficiency, and a smaller
memory footprint. This is usually a question of determin-
ing which components of the search (i.e., textual or spatial)
should be performed first. Markowetz et al. [19] suggest us-
ing a query optimizer in order to support these decisions.
For the sake of simplicity, we assume that the keywords in
the documents are indexed using an inverted list, while a hi-
erarchical disk-based spatial data structure, such as a PMR
quadtree [22,29], is used to index the geographical references
in a document (see [33,38] for a discussion of the use of other
spatial indexes).

We now briefly describe the internal workings of spatio-
textual query processing on the STEWARD system. Let us
consider a query input to the system, consisting of a key-
word string k and a spatial input s. We have the option of
executing the keyword search followed by the spatial search,
or vice versa. If we execute the keyword search first, each of
the keywords in k are queried against the inverted list index,
in sequence, for documents containing all the keywords of k.
Note that there is much variability even when it comes to
processing this step of the algorithm. Instead of querying
each keyword in sequence, we can query them in parallel,
and merge the results. Another variant arises if the user
is interested in finding documents containing one or more
keywords, rather then all of them. Once the list l of docu-
ments containing the keywords is obtained, each document
in l is queried against the spatial index, to find geographical
locations that are spatially close to s. Again, this step can
be performed sequentially or in parallel, depending on the
implementation. Next, the keyword and spatial similarities
of the documents are computed, and a total ordering is es-
tablished using a combination of the two similarity values.
Finally, the top few documents are returned as the result of
the query. If we instead choose to perform the spatial search
first, the query processing is similar to that described above,
except that the sequence of operations is interchanged.

Note that there is no way of predicting which of the above
two strategies is superior without knowledge of the input
spatio-textual query. If the input query to the system is
“Smithsonian Museum, Washington, DC”, then it may be
faster to perform the textual search first to obtain the doc-
uments containing the keyword “Smithsonian Museum”, in-
stead of finding all documents that reference “Washington,
DC”, which may be larger. On the other hand, if the input
query to the system is “Pizza, Boston, MA”, then it may

be faster to perform the spatial search first, followed by the
textual search. The strategy that we adopt is to first exe-
cute the search which we believe will result in a smaller set
of documents.

A good search strategy should also take into consideration
the size of k, the average cost of performing a textual search,
the cost of performing a spatial search, and the cost of par-
allel vs. sequential algorithms. The system must maintain
statistics allowing estimation of the number of documents
resulting from a particular keyword search or a given spa-
tial search. Based on these estimates, the query optimizer
would decide which sequence of operations results in the
fastest possible response time.

3.7 User Interface
A preliminary version of the STEWARD system is cur-

rently being deployed on the HUDUSER.ORG web site, and
is available to anyone with an Internet connection. It uses
an interactive user interface written in HTML and AJAX.
Figure 1 shows a screen shot of STEWARD’s user inter-
face running on the Mozilla Firefox browser. The interface
shows STEWARD’s response to a textual query seeking all
documents containing the keyword“colonias”, which are set-
tlements lying primarily along the US-Mexico border.

From the Figure, we see that the user-interface is divided
into three panes, or regions. The top pane is used to specify
query parameters via text boxes for the textual keyword, as
well as an optional query location. The left pane displays
the documents that contain the keyword, along with small
extracts showing the context in which the keyword is found.
The right pane positions the documents that satisfy the key-
word on a map display, with icons placed at positions that
STEWARD has determined to be their geographic focus.
For this query, we find that the geographic foci of these doc-
uments do indeed lie on the US-Mexico border; this affirms
the accuracy of STEWARD’s focus algorithm. In addition,
the right pane can be used to select the desired location for
the geographic component of a query. Documents that sat-
isfy the keyword are reported in increasing order of the dis-
tance of their geographic focus from the query point. Note
that textual results are cleanly separated from spatial results
in the user interface.

The STEWARD user interface also enables users to
browse through the relevant documents retrieved by the sys-
tem, and to highlight all occurrences of the keyword in se-
quence. It also provides an extract of the context in which
each location appears, as well as a pointer to the most rel-
evant occurrence of each geographic location. This allows
users to browse all geographic locations in a result docu-
ment, or to examine the most important occurrence of each
location.

4. APPLICATIONS
The STEWARD system can be leveraged to create a num-

ber of new application scenarios. For example, STEW-
ARD can be used as a search engine for a collection of
documents in the hidden web, where a pagerank [4] based
algorithm cannot work, due to the scarcity of links to
the documents. We have built one such search engine
for http://www.huduser.org, which is available at http:

//mithra.cs.umd.edu/steward.
The STEWARD system can also be used as a tool for

reading news articles. Instead of organizing articles solely



on topics, as done in, e.g., Google News and MSN Newsbot,
STEWARD can embed news articles on a map, representing
each article by its principal geolocation as determined by its
focus algorithm.

As another example, the STEWARD system can act as
part of an advanced warning system for disease monitoring.
Using an ontology of infectious diseases, STEWARD would
scan newspaper articles to find mentions of infectious dis-
eases. For such documents, STEWARD would then extract
the documents’ geolocations, and associate the infectious
disease with the principal geolocations in the documents.
Such an application would bolster the surveillance of disease
incidents around the world, and help track and understand
the spread of infectious disease. Combined with suitable on-
tologies, STEWARD also can be used to collect and organize
tourist, historical, or recreational information about a city
or a region.

5. CONCLUDING REMARKS
In this paper, we briefly discussed the architecture of the

STEWARD system, which is a spatio-textual search engine
for documents on the web. STEWARD opens up exciting
new possibilities for GIS researchers by providing the ability
to extract and query geographical information from unstruc-
tured text documents, which is a cumbersome and difficult
medium to work with. Some of the challenges in designing a
system like STEWARD include being able to correctly iden-
tify most georeferences in a document, and to reduce the
occurrences of false positives that occur when a word is in-
correctly identified as a geolocation. This problem is further
complicated by correctly identified georeferences which are
not relevant to the document’s content; such georeferences
should be assigned a low focus score. For example, georef-
erences in the bibliography of a document are not relevant
to the content of the document. There is also a problem of
dealing with names of organizations and persons, as well as
addresses, which contain geographical locations (e.g., Uni-
versity of Maryland, Mayor of El Cenizo).

Future work includes an empirical validation of the algo-
rithms described in this paper, where some of these issues
will be investigated further. On another level, and per-
haps an even more important contribution of our work is
that we have highlighted the need for web-based publication
standards that would facilitate and enhance spatio-textual
querying and browsing capabilities. Adoption of such stan-
dards would enable more up-front rather than backend pro-
cessing approaches, which would greatly improve data min-
ing capabilities on the web.
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