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Abstract

The spatial join operation is benchmarked using variants of well-known spatial data struc-

tures such as the R-tree, R�-tree, R+-tree, and the PMR quadtree. The focus is on a spatial

join with spatial output because the result of the spatial join frequently serves as input to

subsequent spatial operations (i.e., a cascaded spatial join as would be common in a spatial

spreadsheet). Thus, in addition to the time required to perform the spatial join itself (whose

output is not always required to be spatial), the time to build the spatial data structure

also plays an important role in the benchmark. The studied quantities are the time to build

the data structure and the time to do the spatial join in an application domain consisting

of planar line segment data. Experiments reveal that spatial data structures based on a dis-

joint decomposition of space and bounding boxes (i.e., the R+-tree and the PMR quadtree

with bounding boxes) outperform the other structures that are based upon a non-disjoint

decomposition (i.e., the R-tree and R�-tree). As the size of the output of the spatial join

increases with respect to the larger of the two inputs, the advantage of the bounding boxes

used in methods based on a disjoint non-regular decomposition is no longer a factor and

methods based on a disjoint regular decomposition (i.e., the PMR quadtree regardless of the

presence of bounding boxes) perform signi�cantly better. When the output of the spatial

join is not required to be spatial (i.e., it is a list or table of tuples), then the performance

of the best methods based on a non-disjoint decomposition (i.e., the R�-tree) is comparable

to those with a disjoint decomposition (i.e., the R+-tree and the PMR quadtree with and

without bounding boxes) as long as the size of the output is considerably smaller than that

of the larger of the two inputs (e.g., 10%). However, as the output gets larger, the meth-

ods based on a regular decomposition (i.e., the PMR quadtree with and without bounding

boxes) are much better than those based on an irregular decomposition (i.e, the R�-tree

and the R+-tree) which have comparable performance in this case regardless of whether or

not they are based on a disjoint or non-disjoint decomposition of space.

Keywords and phrases: spatial join, benchmarks, large spatial databases, spatial queries, spatial access

methods, bucketing methods, line segment databases, spatial indexing, spatial data structures, hierar-

chical data structures, geographic information systems, R-trees, R+-trees, R�-trees, PMR quadtrees
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1 Introduction

In this paper, we benchmark the spatial join operation in a spatial database that contains collections

of line segments (i.e., maps) corresponding to features such as roads, railway lines, boundaries of

political and economic units, utility data, etc. A spatial join involves two data sets. It is one of the

most common operations in spatial databases. The term \join" is usually used in conjunction with a

relational database management system [Elma94]. In that context, a join is said to combine entities

from two data sets into a single set for every pair of elements in the two sets that satisfy a particular

condition. These conditions usually involve speci�ed attributes that are common to the two sets. In

the spatial variant of the join, the condition is interpreted as being satis�ed (i.e., two elements are

joined) when the elements of the pair cover some part of the space that is identical.

Our results are distinct from other studies (e.g., [Beck90, Rote91, G�unt93, Brin93, Brin94a, Lo94])

in that we stress the fact that the output of a spatial join operation doesn't just have a relational

component; it also has a spatial component. Thus we don't always want to just report the object pairs

that intersect. In particular, we want to report their locations as well so that they can serve as input to

subsequent spatial operations (i.e., a cascaded spatial join as would be common in a spatial spreadsheet).

Therefore, we also need to construct a map for the output. In other words, the time to build the spatial

data structure plays an important role in the benchmark, in addition to the time required to perform

the spatial join itself whose output is not always required to be spatial. It is interesting to observe

that the spatial join operation was not a part of the Sequoia benchmark [Ston93, DeWi94] where the

examples of what was termed a spatial join were really window operations (i.e., a spatial selection) as

the second map was usually a subset of the entire map. Thus the contribution of our paper is, in part,

an additional operation to the benchmark consisting of a spatial join with a spatial output.

The spatial join problem has been studied both algorithmically and empirically for a variety of

spatial data structures. Spatial join algorithms for regular grid �les [Hinr83] were �rst investigated

in [Beck90]. The grid �le was also employed as the underlying spatial data structure when the spatial

join was examined from the perspective of creating a spatial join index [Rote91]. In this case, the

spatial join index simulations were on grid �les using di�ering node splitting rules (i.e., a regular or

irregular decomposition). These simulations indicated that grid �les employing a regular decomposition

result in considerably fewer leaf node intersections between two joining structures. Spatial joins were

also examined using the generalized tree [G�unt93], an abstracted hierarchical data structure similar

in nature to an R-tree [Gutt84]. Using cost models on arti�cial data, the generalization trees were

shown to outperform join indices if there was either high data structure update rates, or high levels

of join selectivity. Other studies examined the R�-tree [Beck90] in the context of spatially joining

maps composed of large polygons [Brin93, Brin94a]. In this case, various acceleration techniques were

compared for improving cpu speed (e.g., spatial �ltering) as well as I/O performance (e.g., plane-sweep

search ordering). Once a candidate set of polygons was obtained, geometric �ltering (e.g., employing

approximations of the polygonal object) were used prior to the �nal exact geometry testing.

A di�erent approach makes use of the seeded tree [Lo94]. This structure was designed to speed the

more complex spatial join process when one of the two maps being joined is the result of an intermedi-

ate operation such as a selection. The seeded tree is constructed by copying the internal node structure

of one map into the second map (where the second map is assumed to be the result of an intermediate

operation), and then the features are inserted into the second map. This replication of the internal node

structure greatly accelerates the join process as there is a one-to-one mapping between internal nodes

in the two maps. The application of global clustering (i.e., the association of spatially adjacent spatial

objects with physically consecutive disk pages) to a modi�ed R�-tree was studied in [Brin94b]. Modi-

�ed R�-trees (R�-trees without forced feature reinsertion) with global clustering were found to be more
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expensive in terms of cpu construction costs and data storage requirements than the standard unclus-

tered R�-tree. Experimentation with the clustered R�-tree did show, however, that spatial joins were

signi�cantly improved, primarily because of greatly decreased I/O costs. Finally, in the data-parallel

domain, the spatial join has been studied in the algorithmic and empirical context [Hoel94a, Hoel94b].

Experimentation indicated that the data-parallel PMR quadtree [Nels86] signi�cantly outperformed

data-parallel R-trees and R+-trees [Falo87] primarily because the PMR quadtree's regular decomposi-

tion is well-suited to the data-parallel domain. In the data-parallel domain, communication bottlenecks

during a spatial join are greatly reduced by the regular decomposition of the PMR quadtree and the

ability to quickly correlate a region in one map with a corresponding region in a second map. This

ability to correlate regions will be seen to have a similar e�ect on the performance in the sequential

domain as the size of the output of the spatial join increases with respect to the larger of the two

inputs.

The rest of this paper is organized as follows. Section 2 gives a brief review of the six spatial data

structures that we consider. Section 3 is details the spatial join algorithms that are tested. Section 4

presents the execution times, disk I/Os, and storage requirements for the construction of the di�erent

data structures as well as their performance in a spatial join. Section 5 contains our conclusions about

the relative performance of the di�erent data structures.

2 Spatial Data Structures

In this paper we consider representations that sort the data objects with respect to the space that they

occupy. This results in speeding up operations involving search. Our objects consist of lines. The e�ect

of the sort is to decompose the space from which the data is drawn (e.g., the two-dimensional space

containing the lines) into regions called buckets. One approach known as an R-tree [Gutt84] buckets

the data based on the concept of a minimum bounding (or enclosing) rectangle. In this case, lines

are grouped (hopefully by proximity) into hierarchies, and then stored in another structure such as a

B-tree [Come79]. The drawback of the R-tree is that it does not result in a disjoint decomposition of

space | that is, the bounding rectangles corresponding to di�erent lines may overlap. Equivalently,

a line may be spatially contained in several bounding rectangles, yet it is only associated with one

bounding rectangle. This means that a spatial query may often require several bounding rectangles to

be checked before ascertaining the presence or absence of a particular line. In this paper, we study two

methods of this type: the R-tree (both linear and quadratic), and the R�-tree.

The non-disjointness of the R-tree is overcome by a decomposition of space into disjoint cells. In

this case, each line is decomposed into disjoint sublines such that each of the sublines is associated with

a di�erent cell. There are a number of variants of this approach. They di�er in the degree of regularity

imposed by their underlying decomposition rules and by the way in which the cells are aggregated. The

price paid for the disjointness is that in order to determine the area covered by a particular line, we

have to retrieve all the cells that it occupies. This means that an object may be reported as satisfying

a particular query more than once and thus there is a need to remove duplicate answers (e.g., [Aref92]).

Here we study two methods of this type: the R+-tree [Falo87] and the PMR quadtree [Nels86].

The R+-tree partitions the lines into arbitrary sublines having disjoint bounding rectangles which

are grouped in another structure such as a B-tree. The partition and the subsequent groupings are such

that the bounding rectangles are disjoint at each level of the structure. The drawback of the R+-tree is

that the decomposition is data-dependent. This makes it more complex to perform tasks that require

composition of di�erent operations and data sets (e.g., set-theoretic operations such as overlay). In

contrast, the PMR quadtree is based on a regular decomposition. The space containing the lines is



Proc. of the 21st Intl. Conf. on Very Large Data Bases, Zurich, Sept. 1995, pp. 606{618 3

recursively decomposed into four equal area blocks on the basis of the number of lines that it contains

(termed a splitting threshold). The decomposition process can be implemented by a tree structure. It

is useful for set-theoretic operations as the partitions of the two data sets occur in the same positions.

As mentioned above, R-trees and R+-trees are closely related to B-trees. An R-tree or R+-tree of

order (m;M) has the property that each node in the tree, with the exception of the root, contains

between m � dM=2e and M entries. The root node has at least 2 entries unless it itself is a leaf node.

Often the nodes correspond to disk pages. All leaf nodes appear at the same level. Each entry in a leaf

node is a 2-tuple of the form (R,O) such that R is the smallest rectangle that spatially contains line

segment O. Each entry in a non-leaf node is a 2-tuple of the form (R,P ) such that R is the smallest

rectangle that spatially contains the rectangles in the child node pointed at by P . It is interesting

to observe that the node capacity M in the R-tree and R+-tree plays a similar role as the splitting

threshold in the PMR quadtree. We will make use of this analogy in our discussion where, at times,

the terms will be used interchangeably. In the rest of this section we describe these data structures in

more detail by the use of examples.

2.1 R
�

-tree

Figure 1a is an example R-tree with M = 3 and m = 2 for the collection of line segments labeled a { i.

Figure 1b shows the spatial extent of the bounding rectangles of the nodes in Figure 1a, with broken

lines denoting the rectangles corresponding to the subtrees rooted at the non-leaf nodes. Note that the

R-tree is not unique. Its structure depends heavily on the order in which the individual line segments

were inserted into (and possibly deleted from) the tree.

R1 R2

R3 R4 R5 R6

a b c i e fg hd

R3R1

R4

R5

R6R2

a b

c

d
e

f

g h

i

(a) (b)

R0

R0:

R1: R2:

R6:R5:R4:R3:

Figure 1: (a) The spatial extents of the bounding rectangles and (b) the R-tree for

the example collection of line segments.

1

The algorithm for inserting a line segment (i.e., a record corresponding to its enclosing rectangle)

in an R-tree is analogous to that used for B-trees. New line segments are added to leaf nodes. The

appropriate leaf node is determined by traversing the R-tree starting at its root and at each step

choosing the subtree whose corresponding bounding rectangle would have to be enlarged the least.

Once the leaf node has been determined, a check is made to see if insertion of the line segment will

cause the node to overow. If yes, then the node must be split and theM+1 records must be distributed

in the two nodes. Splits are propagated up the tree.

There are many possible ways to split a node. One possible goal is to distribute the records

among the nodes so that the likelihood that the nodes will be visited in subsequent searches will be

reduced. This is accomplished by minimizing the total area of the covering rectangles for the nodes (i.e.,
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coverage). An alternative goal is to reduce the likelihood that both nodes are examined in subsequent

searches. This is accomplished by minimizing the area common to both nodes (i.e., overlap). Of

course, at times, these goals may be contradictory. Guttman [Gutt84] used an algorithm based on the

minimization of the total area of the covering rectangles (i.e., satisfying the �rst of the goals described

above). Beckmann [Beck90], however, employed a di�erent node splitting technique resulting in what

is termed an R�-tree. This technique attempts to minimize the amount of intersection area between

covering rectangles, which corresponds to satisfying the second of the previously described goals. It is

described in Section 2.2.

The R-tree node splitting algorithms may be classi�ed by their computational complexity [Gutt84].

The linear algorithm selects two seed elements, one for each of the two resulting nodes, by choosing the

pair of children with the largest normalized separation along any axis. This operation can be done in

linear time. The remaining M � 1 children, where M is the node capacity, are then inserted in random

order into one of the two resulting nodes whose covering rectangle will have to be expanded the least

to accommodate the child. Ties are resolved by inserting the child into the node with the smaller

area. We refer to the R-tree with this node splitting rule as the linear R-tree. A second node splitting

algorithm, the quadratic algorithm, selects the two seed elements by choosing the two children whose

covering bounding box would waste the most amount of space. This can be determined in quadratic

time (O(M2)). The remaining M � 1 children are inserted into the two nodes in an order dependent

upon the magnitude of their preference (i.e., the di�erence between the area increase required of each

node for inclusion of the child) for one of the two resulting nodes. As is done with the linear node

splitting algorithm, the children are inserted into the node whose covering rectangle will have to be

expanded the least to accommodate it, with ties being resolved by inserting the child into the node

with the smaller area. We refer to an R-tree built with this node splitting rule as the quadratic R-tree.

2.2 R
�

-tree

The R�-tree is a variant of the R-tree that uses more sophisticated node insertion and splitting algo-

rithms thereby reducing the storage requirements. When deciding which node is to contain the new

line segment, we choose the one for whom the resulting minimum bounding rectangle has the minimum

increase of amount of overlap with its brothers (i.e., the other nodes pointed at by its father). Note

that this is superior to choosing the node whose bounding rectangle would have to be enlarged the least

since such a choice does not reduce the likelihood that the remaining nodes are examined in subsequent

searches.

Once the node to be split has been chosen, we must determine the axis (i.e., x or y) it is to be split

upon, and the position of the split. The axis is determined by examining all of the possible vertical

and horizontal splits (i.e., so each resulting node has at least m and at most M + 1 � m bounding

rectangles), and choosing the split for which the sum of the perimeters of the two constituent nodes is

minimized. If there is a tie, then choose one of the axes at random. Once the axis has been chosen, say

the x-axis, we choose the split among the M � 2m+ 2 possibilities that results in a minimal amount

of overlap between the two new constituent nodes. If there is a tie, then we choose the split that

minimizes the total area of the two new constituent nodes. These techniques are based on a dynamic

database. If the database can be expected to be static and all of the objects are known a priori, then

the Packed R-tree [Rous85] may be more appropriate, although we do not use it here.
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2.3 R
+
-tree

The R+-tree [Falo87] partitions the lines into arbitrary sublines having disjoint bounding rectangles

which are grouped in another structure such as a B-tree. These sublines are termed q-edges [Same90].

The partition and the subsequent groupings are such that the bounding rectangles are disjoint at each

level of the structure. An example R+-tree is shown in Figure 2.

R1 R2

R3 R4 R5 R6

d g a b c fh ic

R5R0

R3

R1

R6R4

a
b
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d

e

f

g h

i

(a) (b)

R2

R0:

R1: R2:

R6:R5:R4:R3: h e i i

Figure 2: (a) The spatial extents of the bounding rectangles and (b) the R+-tree for

the example collection of line segments.

1

2.4 PMR Quadtree

The PMR quadtree (denoting polygonal map random [Nels86, Nels87]) is an edge{based member of

the PM quadtree family (see also edge-Excell [Tamm81]). It makes use of a probabilistic splitting

rule where a block is permitted to contain a variable number of line segments. The PMR quadtree is

constructed by inserting the line segments one-by-one into an initially empty structure consisting of

one block. Each line segment is inserted into all of the blocks that it intersects. During this process, the

occupancy of each a�ected block is checked to see if the insertion causes it to exceed a predetermined

splitting threshold. Note that the concept of a splitting threshold, although closely related, is di�erent

from the concept of a bucket capacity. If the splitting threshold is exceeded, then the block is split once,

and only once, into four blocks of equal size. The rationale for the use of a splitting threshold is to avoid

splitting a node many times when there are a few very close lines in a block whose number exceeds the

bucket capacity. In this manner, we avoid pathologically bad cases that would occur when a collection

of line segments have endpoints that are very close together. This would result in a large number

of subdivisions in order to separate the endpoints (for more details of this pathological behavior, see

[Nels86]).

1

Figure 3 is an example of a PMR quadtree corresponding to a set of 9 edges labeled a through i

inserted in increasing lexicographical order. Observe that the shape of the PMR quadtree for a given

data set is not unique; instead, it depends on the order in which the lines are inserted into it. This

example assumes that the splitting threshold value is two. Generally, as the splitting threshold is

increased, the construction times and storage requirements of the PMR quadtree decrease while the

time necessary to perform operations on it will increase.

It is interesting to point out that although a bucket can contain more line segments than the splitting

threshold, this is not a problem. In fact, it can be shown that the maximum number of line segments in

a bucket is bounded by the sum of the splitting threshold and the depth of the block (i.e., the number
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f
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Figure 3: PMR quadtree with a splitting threshold of two for a collection of line

segments.

of times the original space has been decomposed to yield this block), provided that the bucket is not

at the maximal depth allowed by the particular implementation of the PMR quadtree [Same90].

The PMR quadtree often acts as an adaptive grid to index various blocks which contain spatial

data. In solid modeling, the quadtree blocks contain complex spatial objects such as B-splines, Bezier

curves, surface patches, etc. [M�ant87]. Frequently, a bounding box is stored in the node so that the

physical extent of the object can be determined easily. This is also the case with each of the studied

R-tree variants. In the general case, the PMR quadtree should have a bounding box (or some other

such approximation) around each feature. In most of the previous studies (e.g., [Nels86, Nels87, Hoel91,

Hoel92]), bounding boxes were not employed with PMR quadtrees containing point or line data, though

they have been with quadtrees containing more complex spatial objects. They were omitted for point

and line PMR quadtrees primarily as a performance optimization. In this paper, in addition to the

customary PMR quadtree we also employ a variant of the PMR quadtree which, like the R-trees,

associates a bounding box with each feature or object identi�er tuple stored in the quadtree leaf nodes.

As we will see, incorporating the bounding box information increases the size of each tuple stored in

the quadtree, but, this increase in size may be compensated by improved spatial join performance when

the size of the output of the spatial join is not too large with respect to the larger of the two inputs.

3 Spatial Join Algorithms

For each spatial data structure that we consider, we assume that the physical representation of the

spatial objects (in our case the line segment endpoint coordinates) are stored in a secondary bu�ered

array structure (termed the feature table). Within the spatial data structures, only descriptors (or

pointers) to the objects in the feature table are stored.

3.1 R-trees and R
+
-trees

Each of the R-tree variants employed a spatial join algorithm similar to one described in [Brin93] in

the context of polygon map spatial joins. The spatial join algorithm uses techniques that are intended

to decrease both cpu time consumption and disk I/O. These techniques, restricting the search space,

and employing a local plane-sweep order with pinning are detailed in [Brin93]. The R-tree1 spatial

join algorithm is a coordinated tree traversal that begins with the two root nodes. For the two nodes

being considered (initially the two root nodes), their bounding boxes are intersected to determine the

1For sake of brevity, we will use the term R-tree in this discussion though the described algorithm can be applied to

each of the four R-tree variants (including the R+-tree).
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overlapping area O between the two nodes. The children of each node are then compared against O.

If a child does not intersect O, then it cannot intersect any children in the other map and is removed

from further consideration. For all children in the �rst node that intersect O, their bounding boxes

are intersected against the bounding boxes of all children in the second node that also intersect O. All

intersections between the two sets of children are recorded.

Once a set of intersecting children has been determined, the node intersection process is recursively

applied to each pair of intersecting child nodes. The child nodes are considered in an order based upon

their plane-sweep order with pinning. Pinning basically keeps (or \pins") in main memory the child

node in one map which intersects the largest number of child nodes in the second map which have not

yet been processed. By employing the pinning technique, in addition to a plane-sweep order, a read

schedule for the child nodes may be determined. If the two child nodes correspond to leaf nodes in the

R-tree, then, for all intersecting bounding boxes in the two leaf nodes, we check if their bounding boxes

intersect. If so, then the associated line segment must be read from the feature table and the two lines

are then intersected. This process terminates when all intersecting nodes have been considered.

3.2 PMR Quadtrees

The algorithm for performing a PMR quadtree spatial join is basically a simple synchronized tree

traversal at the leaf level. Each quadtree node is visited in the order prescribed by the tree structure.

If the joining leaf node in each quadtree is the same size, then all of the line segments in the �rst node

are intersected with all of the line segments in the second node. If one of the joining leaf nodes is larger

than the other leaf node, then the lines in the �rst node are intersected with all the lines in the second

smaller leaf node. Once all the intersections have been performed, then the larger leaf node is joined

with the next smaller leaf node in the second map. This process is repeated for all small nodes that

correspond to the single larger node. If one of the two joining nodes is empty, then the two nodes are

skipped. The process is completed when each quadtree has been traversed in its entirety.

As a performance optimization for the PMR quadtree with bounding boxes, before performing

the line segment intersection, the two corresponding line segment bounding boxes are �rst checked for

intersection. This is a much simpler task and can greatly speed the spatial join process as otherwise two

I/O operations may be required to perform an intersection as the line segment endpoint coordinates

are stored in the bu�ered feature table. One signi�cant advantage of the PMR quadtree spatial join

algorithm is that each node of the two joining PMR quadtrees is only visited once. This is in direct

contrast to the R-tree spatial join algorithm, where any given leaf node may be visited many times due

to the irregular decomposition of space.

1.0

4 Experimental Results

The performance of the six spatial structures (linear R-tree, quadratic R-tree, R�-tree, R+-tree, PMR

quadtree, and PMR quadtree with bounding boxes) is compared using TIGER/Line File [Bure91] maps

comprising the Washington DC metropolitan area (containing approximately 260,000 line segments2).

Extracts from this collection of data were made in order to obtain four disjoint data sets. The �rst

extract, termed roads, consists of all line segments corresponding to the road network of the Washington

area. The roads data set includes 200,482 lines and is shown in Figure 4. The second extract, termed

2The regions comprising this data set are Washington DC, Montgomery Co., Prince Georges Co., Arlington Co.,

Alexandria, VA, Fairfax Co., Fairfax, VA, and Falls Church, VA.
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Figure 4: Roads data set, 200,482 lines.

water, is composed of all hydrological features in the Washington area (37,495 lines). The third extract,

termed boundary, consists of the 18,505 lines that correspond to all non-visible boundaries in this area

(i.e., Zip Code boundaries, town boundaries, political boundaries, etc.). The fourth extract, termed

non-roads, contains the 59,601 lines that correspond to all non-road features in this area (i.e., water

features, boundary features, railroads, pipelines, landmarks, etc.). The non-roads data set is a proper

superset of the water and boundary data sets. In order to test the sensitivity of the performance of the

operations to the size of the output (i.e., the number of intersections), we also constructed a number of

arti�cial data sets by extracting line segments at random from the entire data set for the Washington

DC area.

In addition to employing standard metrics for the performance comparisons such as disk I/Os, fea-

ture intersection tests, and data structure size, we also measure cpu execution times. We have observed

that although some structures may exhibit superior performance with respect to other structures in

terms of disk I/Os, their cpu times may be signi�cantly larger (e.g., data structure construction time

for the R�-tree and R+-tree). Note that all performance tests are made using a bu�er size of 128 KB

on a 90 MHz Pentium (90.1 SPECint92, 72.7 SPECfp92).

Below, we �rst discuss the time necessary to build the data structures followed by the time to

perform the spatial join. The build times will be seen to be an important factor in the performance of

a spatial join with a spatial output. We also measure the execution time as a function of the size of

the output (i.e., the number of intersections). This turns out to be the key factor in the performance

and can be seen by examining Figure 13. Actual conclusions about the relative merits of the di�erent
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spatial structure build time (secs) disk I/Os node splits storage (KB)

R-tree (linear) 305 19,202 8,629 8,427

R-tree (quadratic) 334 19,070 8,271 8,208

R+-tree 276 29,135 8,180 8,152

R�-tree 2,139 21,127 5,648 6,599

PMR quadtree 246 19,099 5,057 8,195

PMR (w/bboxes) 258 24,613 5,308 10,051

Table 1: Construction performance of the six spatial data structures on the roads data

set (200,482 lines; page size 1 KB, 128 page bu�er). In the case of the PMR quadtree,

the node splits are B+-tree node splits.

data structures are made in Section 5.

4.1 Data Structure Construction

Table 1 details data structure construction performance for the six spatial structures using a node

capacity of 50 for the R-tree variants, and a splitting threshold of 8 for the PMR quadtrees for the

roads data set. These values were chosen as they are commonly used in previous studies (e.g., [Gutt84,

Beck90, Falo87, Hoel92]), and they provide a reasonable compromise between optimal build and join

performance. The PMR quadtree was implemented using a linear quadtree [Garg82, Abel84] which is a

pointer-less representation that stores the leaf nodes of the quadtree in a B+-tree. In the table, \node

splits" for the PMR quadtrees actually corresponds to the number of B+-tree [Come79] page splits in

the linear quadtree representation. The actual number of quadtree node splits is 32,737.

Mirroring results from an earlier study that compared the R�-tree, the R+-tree, and the PMR

quadtree [Hoel92], we �nd that the disjoint decompositions (i.e., the PMR quadtrees and the R+-tree)

exhibit superior performance in terms of cpu time relative to the other non-disjoint decompositions

(i.e., the R-trees and the R�-tree). Their build times are roughly ten times faster than that of the R�-

tree, and 20{30% faster than the linear and quadratic R-trees. The R�-tree's performance su�ers from

several computationally expensive operations that occur during the course of inserting a line segment.

For example, the ChooseSubtree procedure (as de�ned by Beckmann et al. [Beck90]) is used to select

the appropriate insertion path. This insertion path selection operation requires O(M2) bounding box

operations for each line segment insertion, where M is the node capacity. We observed that this single

operation consumed approximately 30% of the time spent constructing the structure. Additionally, the

node splitting procedure, where 30% of the lines are reinserted when a node overows, resulted in the

forced reinsertion of 343,364 line segments (an overhead of 171% additional line insertions).

In terms of disk I/O, the quadratic R-tree required the fewest operations (19,070). Its performance

was nearly equaled by the PMR quadtree (19,099) and the linear R-tree (19,202). The R�-tree required

approximately 10% more disk I/Os (21,127), while the PMR quadtree with bounding boxes consumed

30% more disk I/Os (24,613). Finally, the R+-tree was the most disk I/O intensive, requiring over

50% more (29,135) than the quadratic R-tree. Incorporating bounding boxes in the PMR quadtree did

not signi�cantly a�ect build times (a 5% increase), but it did result in increased amounts of disk I/O

relative to the standard PMR quadtree (i.e., a 30% increase). This increase is due primarily to having

fewer tuples on each page of the B+-tree (60 versus 120 due to the need to store the bounding boxes).

We observed that the number of disk I/Os increased by almost 30% (24,613 versus 19,099).
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In terms of storage requirements, the R�-tree used the fewest resources (6,599 KB), consuming

approximately 20% less space than the other R-tree variants (8,152{8,427 KB). The R�-tree (6,599

KB) used 19.5% less space than the standard PMR quadtree (8,195 KB) while using 34.5% less space

than the PMR quadtree with bounding boxes (10,051 KB).
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Figure 5: Lines per second construction speeds on the roads data set for the spatial

data structures which highlights the slowdown in speed as the number of insertions

approaches 200,000 lines (page size 1 KB, 128 page bu�er).

1.0

Another interesting performance behavior is the slowdown experienced by each data structure as

the number of lines in the structure grows. In Figure 5, the number of line insertions per second on

the roads data set is plotted for all but the R�-tree structure3. From the �gure, the R+-tree's insertion

performance is roughly 1250 lines per second for the �rst 10,000 lines of the roads data set. This rate

falls to 735 lines per second (cumulative) by the time the build operation is completed after inserting

200,482 lines. Each of the other structures exhibits similar performance decreases, though none as

great as the R+-tree. These decreases are expected and are due to the increased height of the tree

structures. Interestingly, in an earlier study [Hoel92], the R+-tree was reported as exhibiting the fastest

construction times relative to the R�-tree and the PMR quadtree. That study was performed using

data sets whose size was on the order of 50,000 line segments. From Figure 6, we see that the R+-tree

outperforms all other structures up through 50,000 line insertions. As the number of line insertions

grows toward 200,000, we observe that the R+-tree's performance decreases faster than the two PMR

quadtrees. This results in the two PMR quadtrees outperforming the R+-tree by 7{12% on the larger

data sets used in this study.

1.0

Figure 6 shows the construction times for the PMR quadtree, both with and without bounding

boxes, for the roads data set. From the �gure, it can be observed that as the splitting threshold

increases, the build times decrease. This is due to fewer node splits and a shallower tree structure. As

the splitting threshold grows past 30, build times begin to increase slightly. This is because the PMR

quadtree nodes begin to occupy a signi�cant portion of the B+-tree pages, and PMR quadtree nodes

are more likely to exist on more than one page. This increases the amount of time required to perform

3The R�-tree, which is omitted from the �gure, exhibits performance starting at 109 segments per second, and falling

slightly to 104 segments per second by the completion of the build operation.
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Figure 6: Construction times for PMR quadtrees on the roads data set for varying

splitting thresholds (200,482 lines; 128 KB bu�er).

basic node manipulations.
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Figure 7: Construction times for R-trees on the roads data set for varying node capac-

ities (200,482 lines; 128 KB bu�er).

1.0

Figure 7 shows the construction times for the R-tree variants other than the R�-tree on the roads

data set. From the �gure, we see that build times fall dramatically between node capacities 75 and

100. This is due to the height of the R-trees decreasing by one. The build times then begin to increase

as the node capacity grows past 100 because of the increased expense of determining which node to

insert a line segment into, as well as the increased cost of splitting a node. Note the relative rate of

build time increase for the linear and quadratic R-trees. In particular, the construction time for the

quadratic R-tree increases at a faster rate than the linear R-tree because of the more expensive node

splitting algorithm (i.e., O(M2) versus O(M), where M is the node capacity).

1.0

Figure 8 shows the construction times for the R�-tree on two data sets (roads and water) for various



Proc. of the 21st Intl. Conf. on Very Large Data Bases, Zurich, Sept. 1995, pp. 606{618 12

100

500

1000

5000

10,000

40,000

50 100 150 200

C
P

U
 S

ec
on

ds
 (

lo
g 

sc
al

e)

Node Capacity (log scale)

R*-tree (roads)
R*-tree (water)

Figure 8: Double logarithmic plot of construction times for R*-trees on the roads

(200,482 lines) and water (37,495 lines) data sets for varying node capacities (128 KB

bu�er).

node capacities. As we can see, the R�-tree exhibits a signi�cant decrease in construction performance

as the node capacityM increases. This is primarily because the R�-tree construction algorithm requires

O(M2n) bounding box intersections, where n is the size of the input data set. The double log plot of

the construction times highlights this relationship, with the performance curve appearing linear. For

small node capacities (i.e., 50), building the R�-tree is roughly one order of magnitude slower than any

of the other data structures. For larger node capacities (i.e., 200), building the R�-tree is approximately

two orders of magnitude slower than the other data structures.

4.2 Spatial Join Performance

The performance of the spatial join was measured for each of the six spatial structures using the four

extracted data sets (road, water, and boundary). Two joins are studied in greater detail. The �rst

joins the road data set and the water data set (resulting in 6,404 intersections). The second joins the

roads and the boundaries data set (resulting in 10,983 intersections). Other joins were also tested so

that we could see the e�ect of the size of the output (i.e., the number of intersections). Additionally,

we measured the performance of each data set when the join resulted in the generation of an output

map containing all points of intersection (termed spatial output), and joins which resulting in a list of

tuples containing identi�ers of the intersecting lines (termed non-spatial output).

4.2.1 Roads and Water Spatial Join

Table 2 summarizes the performance of each data structure on the roads versus water spatial join

(node capacity 50, splitting threshold 8). For spatial joins which result in a spatial output, the PMR

quadtree with bounding boxes outperformed the other structures in terms of cpu time (155 seconds).

It was 5% faster than the next fastest structure (the R+-tree, 164 seconds). Adding bounding boxes to

the PMR quadtree reduces the join time relative to the standard PMR quadtree by almost 30% (155

seconds versus 211 seconds).

In terms of disk I/O, each of the PMR quadtrees required considerably fewer operations (6,137{

6,233 disk I/Os) than any of the R-tree variants (8,575{27,021 disk I/Os). This is primarily due to the
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spatial spatial output non-spatial output

structure cpu time (secs) disk I/Os cpu time (secs) disk I/Os

R-tree (linear) 192 25,883 175 25,525

R-tree (quadratic) 206 27,021 182 26,627

R+-tree 164 11,452 153 11,171

R�-tree 191 8,575 142 8,372

PMR quadtree 211 6,137 198 5,851

PMR (w/bboxes) 155 6,233 141 5,953

Table 2: Spatial join performance of the six spatial data structures using the roads

and water data sets (6,404 intersections; page size 1 KB, 128 page bu�er).

spatial summary performance pairs tested

structure cpu time disk I/Os lines naive lines internal nodes leaf nodes

R-tree (linear) 175 25,525 24,814 59,884,481 10,976 103,106

R-tree (quadratic) 182 26,627 24,814 62,325,273 10,028 97,737

R+-tree 153 11,171 25,583 16,554,775 3,560 16,069

R�-tree 142 8,372 24,814 14,408,052 2,903 9,805

PMR quadtree 198 5,851 1,267,939 1,267,939 not applicable 323,804

PMR (w/bboxes) 141 5,953 37,118 1,267,939 not applicable 323,804

Table 3: Spatial join performance (non-spatial output) detailing line and node inter-

section testing of the six spatial data structures using the roads and water data sets

(6,404 intersections; page size 1 KB, 128 page bu�er).

ability of the PMR quadtree (or any other spatial structure employing a regular decomposition of space)

to rapidly spatially correlate the contents of one map with another. With the regular decomposition of

the PMR quadtree, there will exist either a one-to-one, one-to-many, or many-to-one mapping between

the two joining data sets at the leaf level. This is in contrast with the R-tree variants which will often

have a many-to-many mapping between joining data sets. The many-to-many mapping between leaf

nodes among two di�erent data sets prevents a simple traversal of each data set where each page is

read into memory a single time. The more complex the many-to-many mapping, the more often a page

must be read from disk. The incorporation of bounding boxes into the PMR quadtree accelerates the

join process with respect to that for a PMR quadtree without bounding boxes as considerable amounts

of pruning can be done at the leaf node level thereby saving accesses to the secondary storage structure

(the bu�ered feature table). The more sophisticated and computationally expensive node splitting

rule utilized by the R�-tree resulted in considerably fewer disk I/Os as compared with the linear and

quadratic R-trees (8,575 versus 25,883 and 27,021). This large decrease in disk I/Os was o�set by the

increased amount of time necessary to construct the output map thereby resulting in the R�-tree taking

only 1{15 less seconds than the two R-trees.

Table 3 highlights the number of intersection tests that are performed on each structure during a

spatial join of the roads and water data sets. For example, the linear R-tree performs 24,814 line-to-

line intersection tests (the third data column in the table). Note that each of the other non-disjoint
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R-tree variants (i.e., the quadratic R-tree and the R�-tree) also exhibit the same number of line-to-line

intersection tests. The linear R-tree also had 10,976 internal node intersection tests between the joining

structures, as well as 103,106 leaf node intersection tests. The column labeled \naive lines" corresponds

to the number of line intersection tests that would be required if bounding boxes and spatial �ltering

were not employed in the spatial join algorithm. Bounding boxes and spatial �ltering are very simple

techniques for spatial join acceleration, even for simple features such as line segments. From Table 3,

the incorporation of bounding boxes into the PMR quadtree reduced the join time by 57 seconds (27%),

with the number of line versus line intersection tests falling from over 1.2 million to 37,118 (a 97%

reduction). The trade-o� is the increased storage requirement for the bounding boxes resulting in the

PMR quadtree without bounding boxes occupying 1,856 KB less disk space (18.5%; see Table 1).

The number of internal node and leaf node intersection tests (as shown in Table 3) is a useful

measure of the \goodness" of the spatial decompositions. From the table, the R�-tree requires the

fewest node intersection tests, both internally and at the leaf level as compared with the other R-tree

variants. The linear R-tree requires the largest number of node intersection tests. This is not surprising

as the linear R-tree has the simplest and least expensive node splitting algorithm among the R-tree

variants. The PMR quadtrees are not directly comparable in the node intersection test sense as the

tested quadtree implementation is linear (as opposed to pointer-based, see [Garg82]), and the node size

is much smaller given a splitting threshold of eight.

Join times without spatial output are nearly equivalent for the R�-tree, the R+-tree, and the PMR

quadtree with bounding boxes (141{153 seconds). Surprisingly, for the roads and water spatial join,

the linear R-tree slightly outperforms the quadratic R-tree (192 seconds versus 206 seconds).
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Figure 9: Execution times for a spatial join with spatial output for PMR quadtrees on

the roads and water data sets for varying splitting thresholds (6,404 intersections; 128

KB bu�er).

1.0

Figures 9 and 10 show execution times for a spatial join with a spatial output of the roads and

water data sets for the six structures when the node capacities and splitting thresholds are allowed

to vary. The two PMR quadtrees exhibit optimal performance at di�ering splitting thresholds. In

Figure 9, the standard PMR quadtree performs best with a splitting threshold of 8{12, while the PMR

quadtree with bounding boxes performs the best with splitting thresholds of 20{24. The PMR quadtree

with bounding boxes outperforms the standard PMR quadtree primarily because the bounding boxes
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facilitate pruning the number of line intersection tests required to join two quadtrees (recall the \lines"

and \naive lines" pairs tested entries in Table 3).
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Figure 10: Execution times for a spatial join with spatial output for the R-tree variants

on the roads and water data sets for varying node capacities (6,404 intersections; 128

KB bu�er).

1.0

In Figure 10, we observe that the R+-tree outperforms all other R-tree variants for all tested node

capacities. Interestingly, the R�-tree, which performed relatively poorly for the smaller node capacities

(50{100), exhibited good performance for the larger node capacities (150{200). Unfortunately, the

build times for the R�-tree are signi�cantly larger than for the other data structures for large node

capacities and larger data sets (refer to Figures 7 and 8).
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Figure 11: Spatial join disk I/Os for PMR quadtrees on the roads and water data

sets for varying splitting thresholds with spatial output (6,404 intersections; 128 KB

bu�er).

1.0

Figures 11 and 12 show the disk I/O performance of the six spatial structures when the node
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capacities and splitting thresholds are allowed to vary in the case of spatial output for the spatial join

of the roads and water data sets. For the two PMR quadtrees, we see in Figure 11 that both PMR

quadtrees exhibit decreasing amounts of disk I/O as the splitting thresholds increase. This is due in

part to the decreased size of the data structures. In particular, as the splitting threshold increases,

the number of q-edges decreases, asymptotically approaching 1. The amount of additional disk I/O

required by the PMR quadtree with bounding boxes is not signi�cant.
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Figure 12: Spatial join disk I/Os for the R-tree variants on the roads and water data sets

for varying node capacities with spatial output (6,404 intersections; 128 KB bu�er).

1.0

Figure 12 shows the disk I/O performance of the R-tree variants for di�erent node capacities.

Interestingly, the R�-tree and the R+-tree signi�cantly outperform the two R-trees. The R�-tree, with

its expensive node splitting rule, exhibits the best performance. The R+-tree requires 15{25%more disk

I/Os than the equivalent R�-tree. As the node capacity increases, the amount of disk I/O decreases

for these two structures. The linear and quadratic R-trees exhibit their best performance for node

capacities near 100. For large node capacities, the two R-trees require an order of magnitude more disk

I/Os than the equivalent R�-trees and R+-trees.

4.2.2 Roads and Boundary Spatial Join

Performance statistics were also gathered for the roads and boundary map spatial join. Summary

statistics are shown in Table 4. Despite the boundary data set having fewer line segments than the

water data set (18,505 and 37,495 lines respectively), there were more intersections detected when

joining the roads and boundary data sets (10,983 versus 6,404 for the roads and water spatial join).

The most interesting di�erence between this spatial join and one described earlier (roads and water) is

the relative performance of the R�-tree. Because the road and boundary spatial join has almost twice

as many reported intersections, and the build time for constructing the spatial output for R�-tree joins

is considerably slower than for the other spatial structures, the R�-tree's performance with a spatial

output declines relative to the other structures. For the roads and boundary spatial join, the R�-tree

is 52% slower than the fastest structure (the PMR quadtree with bounding boxes), while it was only

23% slower than the fastest structure (again the PMR quadtree with bounding boxes; refer to Table 2)

for the smaller roads and water spatial join. In contrast, the performance of the R+-tree only declined

from 6% to 9% slower than the PMR quadtree with bounding boxes. Based upon these two spatial
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spatial spatial output non-spatial output

structure cpu time (secs) disk I/Os cpu time (secs) disk I/Os

R-tree (linear) 279 28,463 261 27,666

R-tree (quadratic) 286 28,089 262 27,340

R+-tree 176 10,543 165 10,030

R�-tree 246 9,376 172 8,970

PMR quadtree 217 6,065 197 5,410

PMR (w/bboxes) 162 6,194 141 5,521

Table 4: Spatial join performance of the six spatial data structures using the roads

and boundary data sets (10,983 intersections; page size 1 KB, 128 page bu�er).

spatial spatial output non-spatial output

structure cpu time (secs) disk I/Os cpu time (secs) disk I/Os

R-tree (linear) 506 24,112 482 22,942

R-tree (quadratic) 498 23,241 474 21,927

R+-tree 231 12,785 211 11,828

R�-tree 380 11,935 226 11,097

PMR quadtree 256 7,709 224 6,290

PMR (w/bboxes) 247 8,467 215 6,365

Table 5: Spatial join performance of the six spatial data structures using the roads

and non-roads data sets (18,739 intersections; page size 1 KB, 128 page bu�er).

joins, and coupled with the data structure build statistics described in Figures 7 and 8, it is clear that

as the size of the spatial join increases, the relative performance of the R�-tree will continue to decline.

Note that since the data sets are quite di�erent (e.g., in terms of locality, etc.), the number of disk

I/Os may decrease or show little change even though the size of the output increases (e.g., for the PMR

quadtree in Tables 2 and 4).

4.2.3 Roads and Non-roads Spatial Join

Spatial join performance statistics for the roads and non-roads data sets are shown in Table 5. This

is a larger, both in terms of both input and output map sizes, spatial join. Many of the previously

observed performance di�erences between the six spatial structures (refer to Tables 2 and 4) become

even more exaggerated with the larger data sets. Most notably, the spatial structures employing

disjoint decompositions (the R+-tree and PMR quadtrees) outperform the non-disjoint decompositions

(the R-trees and the R�-tree), in terms of execution times (231{256 seconds versus 380{506 seconds

respectively). We again observe that despite performing well when there is no spatial output, the

R�-tree's performance deteriorates much more, in a relative sense, than the other �ve structures when

there is spatial output.

1.0

Figure 13 displays the spatial join with spatial output execution times for the six spatial data

structures according to the number of intersecting lines determined by the spatial join. The data is

taken from Tables 2, 4, and 5, as well as some arti�cial data sets formed by extracting line segments at
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Figure 13: Execution times for the spatial join with spatial output for all spatial

structures according to the number of intersections in the output (node capacity 50,

splitting threshold 8, 128 KB bu�er).

random from the entire data set for the Washington DC area. From the �gure, it is apparent that as

the number of intersections found in the spatial join increases, the disjoint decompositions outperform

the non-disjoint decompositions. The implications of this conclusion are discussed in greater detail in

Section 5.

5 Comparison of the Di�erent Data Structures

Our experiments (most notably Figure 13) have revealed a number of interesting results. Most impor-

tantly, they show that when the output of the spatial join is spatial, then spatial data structures based

on a disjoint decomposition of space (e.g., the R+-tree and the PMR quadtree) outperform spatial data

structures based on a non-disjoint decomposition (e.g., the numerous variants of the R-tree including

the R�-tree). This di�erence is primarily because of the need to build the data structure as part of the

output.

These di�erences in execution time become more pronounced as the size of the output becomes

larger (e.g., 25% of the larger of the two inputs and higher). This is especially true for the spatial data

structures based on a regular decomposition (e.g., the PMR quadtree) with respect to the R+-tree

and to an even greater extent with respect to the R�-tree. This di�erence is primarily because the

bounding box information which is used so e�ectively in the R-tree variants (including the R�-tree,

the R+-tree, and the PMR quadtree with bounding boxes) to limit the number of lines that must be

tested for possible intersection is no longer so useful in the sense that it does not prune enough of the

intersections.

In contrast, spatial data structures based on a regular decomposition are more useful in such an

environment as they provide a correlation between occupied space in the two data sets that are being

joined. This was veri�ed by our observations that as the size of the output increased, the use of

bounding boxes with the PMR quadtree did not lead to a signi�cant improvement in performance

(Figure 13) whereas it did so when the size of the output was smaller (e.g., Tables 2 and 4). Moreover,

as the size of the output becomes larger, the bounding boxes in the PMR quadtree lead to more nodes

being needed (as they each contain fewer line segments due to the need to include the bounding boxes).
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Thus more node intersections must be performed each of which may require a disk I/O operation

thereby cancelling the e�ect of the pruning resulting from the use of the bounding boxes.

When the output of the spatial join is not required to be spatial, then the performance of the R*tree

is comparable to that of the R+-tree and the two variants of the PMR quadtree as long as the size of

the output is considerably smaller than that of the larger of the two inputs (e.g., 10%). However, as

the output gets larger, the R*tree requires about 50% more time than the PMR quadtree (with and

without bounding boxes). while having only a slightly worse performance than the R+-tree.

These observations lead us to conclude that when the size of the output of the spatial join is of

the same order of magnitude as the largest of the two inputs (e.g., � 25%), then regardless of whether

the output is spatial or not, the PMR quadtree (without bounding boxes) yields signi�cantly better

execution time performance than any of the R-tree variants (including the R�-tree) and the R+-tree.

Moreover, since the R+-tree requires the same amount of storage as the PMR quadtree (without

bounding boxes), there is no reason to use the R+-tree in such cases.

On the other hand, a case can still be made for the use of the R�-tree as its storage requirements are

somewhat smaller than those of the PMR quadtree (19.5%) for our example data set of over 260,000

line segments, although, of course, its build time is signi�cantly higher. This di�erence is compounded

when the structure is used in an application where operations are cascaded so that the output of one

spatial operation serves as input to another spatial operation. We also observe that the number of

disk I/O operations is always lower for the PMR quadtree than any of the remaining structures at the

expense of higher cpu costs for each disk I/O operation due to the added complexity of the operations

on each node.

An interesting issue is whether further reductions in the execution time of a spatial join can be ob-

tained. We believe that this could be done by clustering records so that that the records corresponding

to lines that are in close spatial proximity to each other are on the same page on the disk. This is left

for future research.
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