
1CMSC 412 – F11 (lect 3)

Announcements
Program #0
– Due on Friday

Reading
– Today: Processes - Chapter 3 (ch 4, 6th Ed)
– Tuesday: Threads - Chapter 4 (ch 5, 6th Ed)

2CMSC 412 – F11 (lect 3)

Hardware Protection
Need to protect programs from each other
Processor has modes
– user mode and supervisor (monitor, privileged)
– operations permitted in user mode are a subset of supervisor

mode

Memory Protection
– control access to memory
– only part of the memory is available

• can be done with base/bound registers

I/O Protection
– I/O devices can only be accessed in supervisor mode

Processor Protection
– Periodic timer returns processor to supervisor mode

3CMSC 412 – F11 (lect 3)

System Calls

Provide the interface between application programs
and the kernel
Are like procedure calls
– take parameters
– calling routine waits for response

Permit application programs to access protected
resources

load r0, x
system call 10

User Program Operating System
(kernel)

Code for
sys call 10

register r0

4CMSC 412 – F11 (lect 3)

System Call Mechanism

Use numbers to indicate what call is made
Parameters are passed in registers or on the stack
Why do we use indirection of system call numbers
rather than directly calling a kernel subroutine?
– provides protection since the only routines available are

those that are export
– permits changing the size and location of system call

implementations without having to re-link application
programs

5CMSC 412 – F11 (lect 3)

Types of System Calls
File Related
– open, create
– read, write
– close, delete
– get or set file attributes

Information
– get time
– set system data (OS parameters)
– get process information (id, time used)

Communication
– establish a connection
– send, receive messages
– terminate a connection

Process control
– create/terminate a process (including self)

6CMSC 412 – F11 (lect 3)

System Structure

Simple Structure (or no structure)
– any part of the system may use the functionality of the rest of

the system
– MS-DOS (user programs can call low level I/O routines)

Layered Structure
– layer n can only see the functionality that layer n-1 exports
– provides good abstraction from the lower level details

• new hardware can be added if it provides the interface
required of a particular layer

– system call interface is an example of layering
– can be slow if there are too many layers

Hybrid Approach
– most real systems fall somewhere in the middle

7CMSC 412 – F11 (lect 3)

Policy vs. Mechanism

Policy - what to do
– users should not be able to read other users files

Mechanism- how to accomplish the goal
– file protection properties are checked on open system call

Want to be able to change policy without having to
change mechanism
– change default file protection

Extreme examples of each:
– micro-kernel OS - all mechanism, no policy
– MACOS - policy and mechanism are bound together

8CMSC 412 – F11 (lect 3)

Multi-programming

Systems that permit more than one process at once
– virtually all computers today

Permits more efficient use of resources
– while one process is waiting another can run

Provides natural abstraction of different activities
– windowing system
– editor
– mail daemon

Preemptive vs. non-preemptive muti-programming
– preemptive means that a process can be forced off the

processor by the OS
– provides processor protection

