
1CMSC 412 – F11 (lect 9)

Announcements

Reading
– Today

• 8.1-8.3, 8.6 (6th Ed)
• 7.1-7.3, 7.6 (8th Ed)

Project #2 is due next Friday at 6:00 PM (11/7/11)

2CMSC 412 – F11 (lect 9)

Sample Synchronization Problem

Class Exercise:
– CMSC 412 Midterm #1 (Spring 1998) Q#3
– Solution posted at:

• http://www.cs.umd.edu/~hollings/cs412/s10/sampleExam
1b.soln.html

3CMSC 412 – F11 (lect 9)

Deadlocks

System contains finite set of resources
– memory space
– printer
– tape
– file
– access to non-reentrant code

Process requests resource before using it,
must release resource after use
Process is in a deadlock state when every
process in the set is waiting for an event that
can be caused only by another process in the
set

4CMSC 412 – F11 (lect 9)

Formal Deadlocks

4 necessary deadlock conditions:
– Mutual exclusion - at least one resource must be

held in a non-sharable mode, that is, only a single
process at a time can use the resource. If another
process requests that resource, the requesting
process must be delayed until the resource is
released

– Hold and wait - There must exist a process that is
holding at least one resource and is waiting to
acquire additional resources that are currently
held by other processors

5CMSC 412 – F11 (lect 9)

Formal Deadlocks

– No preemption: Resources cannot be preempted;
a resource can be released only voluntarily by the
process holding it, after that process has
completed its task

– Circular wait: There must exist a set {P0,...,Pn} of
waiting processes such that P0 is waiting for a
resource that is held by P1, P1 is waiting for a
resource held by P2 etc.

Note that these are not sufficient conditions

6CMSC 412 – F11 (lect 9)

Detecting Deadlock
Work is a vector of length m (resources)
Finish is a vector of length n (processes)

Allocation is an n x m matrix indicating the number of
each resource type held by each process
Request is an m x n matrix indicating the number of
additional resources requested by each process

1. Work = Available;
if Allocation[i] != 0 Finish = false else Finish = true;

2. Find an i such that Finish[i] = false and Requesti <=
Work if no such i, go to 4

3. Work += Allocation ; Finish[i] = true; goto step 2
4. If Finish[i] = false for some i, system is in deadlock
Note: this requires m x n2 steps

This is the difference from the
Banker’s algorithm.

7CMSC 412 – F11 (lect 9)

Recovery from deadlock

Must free up resources by some means
Process termination
– kill all deadlocked processes
– select one process and kill it

• must re-run deadlock detection algorithm again to see if it
is freed.

Resource Preemption
– select a process, resource and de-allocate it
– rollback the process

• needs to be reset the process to a safe state
• this requires additional state

– starvation
• what prevents a process from never finishing?

8CMSC 412 – F11 (lect 9)

Deadlock Prevention
Ensure that one (or more) of the necessary
conditions for deadlock do not hold
Hold and wait
– guarantee that when a process requests a

resource, it does not hold any other resources
– Each process could be allocated all needed

resources before beginning execution
– Alternately, process might only be allowed to wait

for a new resource when it is not currently holding
any resource

9CMSC 412 – F11 (lect 9)

Deadlock Prevention

Mutual exclusion
– Sharable resources do not require mutually

exclusive access and cannot be involved in a
deadlock.

Circular wait
– Impose a total ordering on all resource types and make sure

that each process claims all resources in increasing order of
resource type enumeration

No Premption
– virutalize resources and permit them to be prempted. For

example, CPU can be prempted.

