
1CMSC 412 – S02  (lect 4)

Announcements
Program #1 
– Is on the web

Reminder about change in office hours
– Now Tu & Th 11-12

Reading
– Chapter 4
– Chapter 6 (for Tuesday)



2CMSC 412 – S02  (lect 4)

Project Issues

Role of libuser.c
– system call routines
– _Entry

• Calls Main
• Calls Exit

– Useful functions
buildFat
– Standalone program to build fd.img (floppy disk)
– Needs to contain:

• Bootinfo
• Kernel
• User programs



3CMSC 412 – S02  (lect 4)

User Process Memory Layout
File as loaded by loadFile

Elf Header

Text Seg HDR

Data Seg HDR

Text 

Data

User-space Process

0

Text 

Data

Stack Add 10*4096 to have room
For stack

SP

IP

copy

copy

Value of IP is 
Entry from elf hdr

Data starts at 
dataHdr.Vaddr from 
start of region

SP should be size of region allocated
(I.e. dataHdr.Vaddr + dataHdr.memSize + 40960)

This is address 0 when running in user mode.



4CMSC 412 – S02  (lect 4)

Process Termination
Process can terminate self
– via the exit system call

One process can terminate another process
– use the kill system call
– can any process kill any other process?

• No, that would be bad.
• Normally an ancestor can terminate a descendant

OS kernel can terminate a process
– exceeds resource limits
– tries to perform an illegal operation

What if a parent terminates before the child
– called an orphan process
– in UNIX becomes child of the root process
– in VMS - causes all descendants to be killed



5CMSC 412 – S02  (lect 4)

Termination (cont.) - UNIX example

Kernel
– frees memory used by the process
– moved process control block to the terminated queue

Terminated process 
– signals parent of its death (SIGCHILD)
– is called a zombie in UNIX
– remains around waiting to be reclaimed

parent process
– wait system call retrieves info about the dead process

• exit status
• accounting information

– signal handler is generally called the reaper
• since its job is to collect the dead processes



6CMSC 412 – S02  (lect 4)

Threads

processes can be a heavy (expensive) object
threads are like processes but generally a collection 
of threads will share
– memory (except stack)
– open files (and buffered data)
– signals

can be user or system level
– user level: kernel sees one process

+ easy to implement by users
- I/O management is difficult
- in an multi-processor can’t get parallelism

– system level: kernel schedules threads



7CMSC 412 – S02  (lect 4)

Thread Implementation
User Visible Threads

Async Kernel Calls (TruUnix 64)

Light Weigth Processes (Solaris)



8CMSC 412 – S02  (lect 4)

Dispatcher

The inner most part of the OS that runs processes
Responsible for:
– saving state into PCB when switching to a new process
– selecting a process to run (from the ready queue)
– loading state of another process

Sometimes called the short term scheduler
– but does more than schedule

Switching between processes is called context 
switching 
One of the most time critical parts of the OS
Almost never can be written completely in a high 
level language



9CMSC 412 – S02  (lect 4)

Selecting a process to run

called scheduling
can simply pick the first item in the queue
– called round-robin scheduling
– is round-robin scheduling fair?

can use more complex schemes
– we will study these in the future

use alarm interrupts to switch between processes
– when time is up, a process is put back on the end of the 

ready queue
– frequency of these interrupts is an important parameter

• typically 3-10ms on modern systems
• need to balance overhead of switching vs. 

responsiveness


