
1CMSC 412 – S03 (lect 7)

Announcements
Program #1
– Due in one week (2

Reading
– Chapter 7

2CMSC 412 – S03 (lect 7)

Signals (UNIX)

provide a way to convey one bit of information
between two processes (or OS and a process)
types of signals:
– change in the system: window size
– time has elapsed: alarms
– error events: segmentation fault
– I/O events: data ready

are like interrupts
– a processes is stopped and a special handler function is

called
a fixed set of signals is normally available

3CMSC 412 – S03 (lect 7)

Signals

Signal Handler
Table

SigIOHandler
{
}

SigAlarmHandler
{
}

SetSigAction(sig, handler)

4CMSC 412 – S03 (lect 7)

Shared Memory

Process 1 Process 2

Shared Region

Like Threads, but only part of memory shared
Allows communication without needing kernel action
– Kernel calls setup shared region

5CMSC 412 – S03 (lect 7)

Producer-consumer: shared memory
Consider the following code for a producer

repeat
….
produce an item into nextp
…
while counter == n;
buffer[in] = nextp;
in = (in+1) % n;
counter++;

until false;

Now consider the consumer
repeat

while counter == 0;
nextc = buffer[out];
out = (out + 1) % n;
counter--;
consume the item in nextc

until false;

Does it work?
NO!

6CMSC 412 – S03 (lect 7)

Problems with the Producer-Consumer
Shared Memory Solution

Consider the three address code for the counter
Counter Increment Counter Decrement
reg1 = counter reg2 = counter
reg1 = reg1 + 1 reg2 = reg2 - 1
counter = reg1 counter = reg2

Now consider an ordering of these instructions
T0 producer reg1 = counter { reg1 = 5 }
T1 producer reg1 = reg1 + 1 { reg1 = 6 }
T2 consumer reg2 = counter { reg2 = 5 }
T3 consumer reg2 = reg2 - 1 { reg2 = 4 }
T4 producer counter = reg1 { counter = 6 }
T5 consumer counter = reg2 { counter = 4 }

This
should
be 5!

7CMSC 412 – S03 (lect 7)

Definition of terms

Race Condition
– Where the order of execution of instructions influences the

result produced
– Important cases for race detection are shared objects

• counters: in the last example
Mutual exclusion
– only one process at a time can be updating shared objects

Critical section
– region of code that updates or uses shared data

• to provide a consistent view of objects need to make sure
an update is not in progress when reading the data

– need to provide mutual exclusion for a critical section

8CMSC 412 – S03 (lect 7)

Critical Section Problem

processes must
– request permission to enter the region
– notify when leaving the region

protocol needs to
– provide mutual exclusion

• only one process at a time in the critical section
– ensure progress

• no process outside a critical section may block another
process

– guarantee bounded waiting time
• limited number of times other processes can enter the

critical section while another process is waiting
– not depend on number or speed of CPUs

• or other hardware resources

9CMSC 412 – S03 (lect 7)

Critical Section (cont)

May assume that some instructions are atomic
– typically load, store, and test word instructions

Algorithm #1 for two processes
– use a shared variable that is either 0 or 1
– when Pk = k a process may enter the region

repeat
(while turn != 0);
// critical section
turn = 1;
// non-critical section

until false;

repeat
(while turn != 1);
// critical section
turn = 0;
// non-critical section

until false;

– this fails the progress requirement since process 0 not being
in the critical section stops process 1.

10CMSC 412 – S03 (lect 7)

Critical Section (Algorithm 2)
Keep an array of flags indicating which processes
want to enter the section

bool flag[2];

repeat
flag[i] = true;
while (flag[j]);

// critical section

flag[i] = false;

// non-critical section
until false;

This does NOT work either!
– possible to have both flags set to 1

Both processes
could be here at
the same time

11CMSC 412 – S03 (lect 7)

Critical Section (Algorithm 3)

Combine 1 & 2

bool flag[2];
int turn;

repeat
flag[i] = true;
turn = j;
while (flag[j]&& turn ==j);

// critical section

flag[i] = false;

// non-critical section
until false;

This one does work! Why?

12CMSC 412 – S03 (lect 7)

Critical Section (many processes)

What if we have several processes?
One option is the Bakery algorithm

bool choosing[n];
integer number[n];

choosing[i] = true;
number[i] = max(number[0],..number[n-1])+1;
choosing[i] = false;
for j = 0 to n-1

while choosing[j];
while number[j] != 0 and ((number[j], j) < number[i],i);

end
// critical section
number[i] = 0

13CMSC 412 – S03 (lect 7)

Bakery Algorithm - explained

When a process wants to enter critical section, it
takes a number
– however, assigning a unique number to each process is not

possible
• it requires a critical section!

– however, to break ties we can used the lowest numbered
process id

Each process waits until its number is the highest
one
– it can then enter the critical section

provides fairness since each process is served in the
order they requested the critical section

