
1CMSC 412 – S03 (lect 11)

Announcements
Reading:
– Today: Chapter 9.4-9.6
– Thursday: Chapter 10

Office hours are only for those who attend class
Midterm was returned
– All re-grade requests must:

• Be in writing
• Be submitted by 10:45 AM 3/18/03

– Any re-grade request will result in the entire exam being re-
graded higher or lower as appropriate.

P1 p2 p3 p4 p5 Tot
Min 7 0 0 0 0 7
Max 20 25 20 15 20 96
Average 14.8 16.1 9.4 7.8 12.5 60.6
StdDec 18.6

2CMSC 412 – S03 (lect 11)

Managing Memory
Main memory is big, but what if we run out
– use virtual memory
– keep part of memory on disk

• bigger than main memory
• slower than main memory

Want to have several program in memory at once
– keeps processor busy while one process waits for I/O
– need to protect processes from each other
– have several tasks running at once

• compiler, editor, debugger
• word processing, spreadsheet, drawing program

Use virtual addresses
– look like normal addresses
– hardware translates them to physical addresses

3CMSC 412 – S03 (lect 11)

Advantages of Virtual Addressing

Can assign non-contiguous regions of physical
memory to programs
A program can only gain access to its mapped pages
Can have more virtual pages than the size of physical
memory
– pages that are not in memory can be stored on disk

Every program can start at (virtual) address 0

4CMSC 412 – S03 (lect 11)

Paging
Divide physical memory into fixed sized chunks
called pages
– typical pages are 512 bytes to 64k bytes
– When a process is to be executed, load the pages that are

actually used into memory
Have a table to map virtual pages to physical pages
Consider a 32 bit addresses
– 4096 byte pages (12 bits for the page)
– 20 bits for the page number

Page
Table Main

Memory
+

Virtual Address Location Present Rd/Write

20 bits

12 bits

5CMSC 412 – S03 (lect 11)

Problems with Page Tables

One page table can get very big
– 220 entries (for most programs, most items are empty)

solution1: use a hierarchy of page tables

Page Table
Main

Memory+

Virtual Address

10 bits

12 bits

Page
Directory

10 bits

Pg Tbl Ptr

Physical Page #

6CMSC 412 – S03 (lect 11)

Inverted Page Tables
Solution to the page table size problem
One entry per page frame of physical memory
 <process-id, page-number>
– each entry lists process associated with the page and the page

number
– when a memory reference:

• <process-id,page-number,offset>occurs, the inverted page
table is searched (usually with the help of a hashing
mechanism)

• if a match is found in entry i in the inverted page table, the
physical address <i,offset> is generated

– The inverted page table does not store information about pages
that are not in memory

• page tables are used to maintain this information
• page table need only be consulted when a page is brought in

from disk

7CMSC 412 – S03 (lect 11)

Inverted Page Table Example (PPC)
Virtual Address

Page
Table

(variable size)

one per system
Main

Memory+

16
Segment
Registers

(per process)

4 16

24
Virtual Segment ID

Page Table Group
8 page table entries

Hash Function

12

VS ID (40)
Physical page (20)

Status bits

Page Table Entry (PTE)

Page # ByteSeg

40

8CMSC 412 – S03 (lect 11)

Faster Mapping from Virtual to Physical
Addresses

need hardware to map between physical and virtual
addresses
– can require multiple memory references
– this can be slow

answer: build a cache of these mappings
• called a translation look-aside buffer (TLB)
• associative table of virtual to physical mappings
• typically 16- 64 entries

Virtual Page Physical PageValid

20 bits 20 bits For Intel x86For Intel x86

