Announcements

- Reading Chapter 12
- Project #3 is Due Thursday
- Midterm #2 is on Tuesday

Free Space Management

- How do we find a disk block to allocate?
- Bit Vectors
 - array of bits (one per block) that indicates if a block is free
 - compact so can keep in memory
 - 1.3 GB disk, 4K blocks -> 78K per disk
 - easy to find long runs of free blocks
- Linked lists
 - each disk block contains the pointer to the next free block
 - pointer to first free block is keep in a special location on disk
- Run length encoding (called counting in book)
 - pointer to first free block is keep in a special location on disk
 - each free block also includes a count of the number of consecutive blocks that are free

Implementing Directories

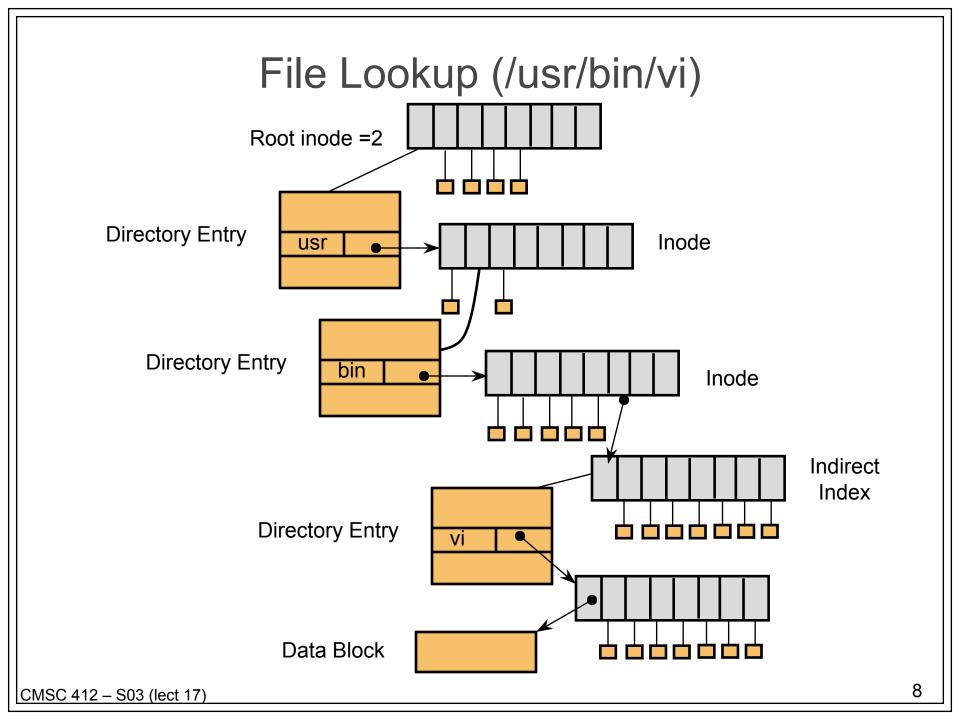
• Linear List

- array of names for files
- must search entire list to find or allocate a filename
- sorting can improve search performance, but adds complexity
- Hash table
 - use hash function to find filenames in directory
 - needs a good hash function
 - need to resolve collisions
 - must keep table small and expand on demand since many directories are mostly empty

DOS Directories

- Root directory
 - immediately follows the FAT
- Directory is a table of 32 byte entries
 - 8 byte file name, 3 byte filename extension
 - size of file, data and time stamp, starting cluster number of the file, file attribute codes
 - Fixed size and capacity
- Subdirectory
 - This is just a file
 - Record of where the subdirectory is located is stored in the FAT

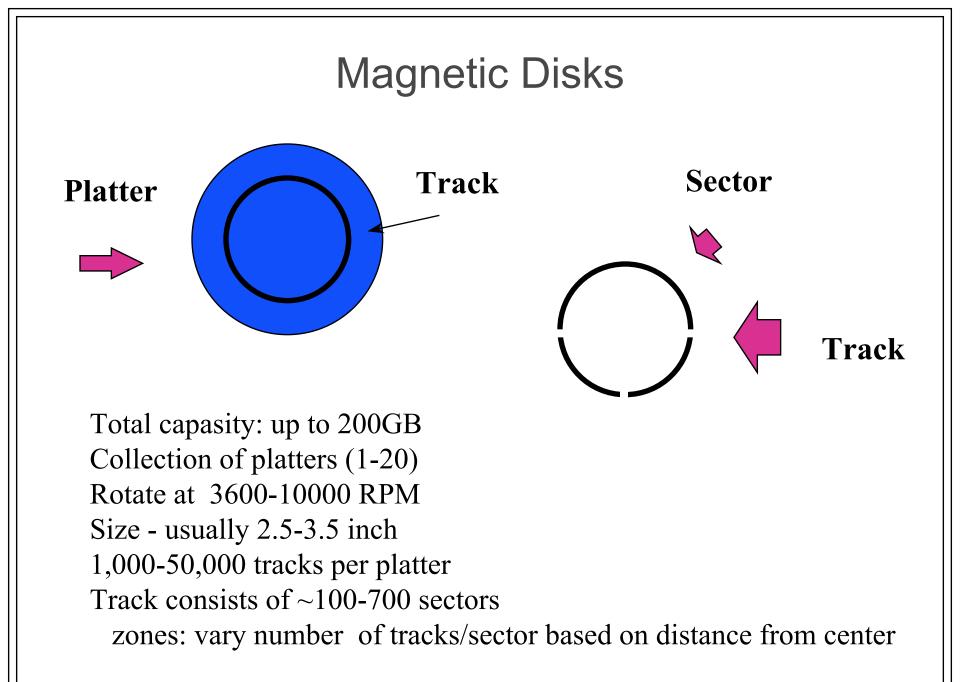
Unix Directories


- Space for directories are allocated in units called chunks
 - Size of a chunk is chosen so that each allocation can be transferred to disk in a single operation
 - Chunks are broken into variable-length directory entries to allow filenames of arbitrary length
 - No directory entry can span more than one chunk
 - Directory entry contains
 - pointer to inode (file data-structure)
 - size of entry
 - length of filename contained in entry (up to 255)
 - remainder of entry is variable length contains file name

inodes

- File index node
- Contains:
 - Pointers to blocks in a file (direct, single indirect, double indirect, triple indirect)
 - Type and access mode
 - File's owner
 - Number of references to file
 - Size of file
 - Number of physical blocks

Unix directories - links


- Each file has unique inode but it may have multiple directory entries in the same filesystem to reference inode
- Each directory entry creates a hard link of a filename to the file's inode
 - Number of links to file are kept in reference count variable in inode
 - If links are removed, file is deleted when number of links becomes zero
- Symbolic or soft link
 - Implemented as a file that contains a pathname
 - Symbolic links do not have an effect on inode reference count

Using UNIX filesystem data structures

• Example: find /usr/bin/vi

- from Leffler, McKusick, Karels and Quarterman
- Search root directory of filesystem to find /usr
 - root directory inode is, by convention, stored in inode #2
 - inode shows where data blocks are for root directory these blocks (not the inode itself) must be retrieved and searched for entry user
 - we discover that the directory user's inode is inode #4
- Search user for bin
 - access blocks pointed to by inode #4 and search contents of blocks for entry that gives us bin's inode
 - we discover that bin's inode is inode #7
- Search bin for vi
 - access blocks pointed to by inode #7 and search contents of block for an entry that gives us vi's inode
 - we discover that vi's inode is inode #7
- Access inode #7 this is vi's inode

