
1CMSC 412 – S02 (lect 21)

Announcements
Reading Chapter 19
MT#2 re-grade requests due by end of class

2CMSC 412 – S02 (lect 21)

Computer Threat Model

must consider acceptable risks
– value of item to be protected
– $2,000 of computer time to steal 50 cents of data

• this is a sufficient deter someone
• but computers keep getting faster

Basic Ideas:
– confine access to only the highest level needed

• run programs as root only if needed
• don’t give system access to all users

3CMSC 412 – S02 (lect 21)

Authentication
How does the computer know who is using it?
– need to exchange some information to verify the user
– types of information exchanged:

• pins
– numeric passwords
– too short to be secure in most cases

• passwords
– a string of letters and numbers
– often easy to guess

• challenge/response pairs
– user needs to be apply to apply a specific algorithm
– often involve use of a calculator like device
– can be combined with passwords

• unique attributes of the person
– i.e. signature, thumb print, DNA?
– sometimes these features can change during life

4CMSC 412 – S02 (lect 21)

Authentication (cont.)

How does a user know what computer they are using?
Need to have mutual authentication
– computer presents some information that only it could contain
– example: Windows <ctrl>-<alt>- to login

• user software can’t trap that information
• assumes that the kernel itself is secure

telephone example:
– never give banking/credit card info over the phone unless you

placed the phone call
• i.e. you use the telco namespace for authentication

5CMSC 412 – S02 (lect 21)

Example (UNIX passwords)
use a function that is hard to invert
– “easy” to compute f(x) given x
– hard to compute x given f(x)
– the function used is a variation on the DES algorithm

• changes selected items in the transformation matrix to prevent
hardware attacks

– store only f(x) in the filesystem
to login:
– user supplies a password x’
– compute f(x’) and compare to f(x)

salt
– add an extra two characters to x so that the same x will produce

different values on different machines
dictionary attach
– if its to easy to compute f(x)
– can “guess” many passwords and try them out

6CMSC 412 – S02 (lect 21)

Types of Software Threats
Trojan Horse
– a program that looks like a normal program
– for example a login program written by a user
– UNIX example: never put “.” early in your path

Trap door
– hole left by the programmers to let them into the system
– “system” password set to a default value by the vendor

Worms
– programs that clone themselves and use resources
– Internet worm:

• exploited several bugs and “features” in UNIX
– .rhosts files
– bug in finger command (overwrite strings)
– sendmail “debug” mode to run commands

7CMSC 412 – S02 (lect 21)

Viruses

Most common on systems with little security
– easy to write to boot blocks, system software
– never run untrusted software with special privileges
– Don’t perform daily operations with root/system privileges

Possible to write system independent viruses
– MS Word virus

• uses macros to call into the OS

8CMSC 412 – S02 (lect 21)

Access Matrix

Abstraction of protection for objects in a system.
– Rows are domains (users or groups of users)
– Columns are objects (files, printers, etc.)
– Items are methods permitted by a domain on an objects

• read, write, execute, print, delete, …
Representing the Table
– simple representation (dense matrix) is large
– sparse representation possible: each non-zero in the matrix
– observation: same column used frequently

• represent groups of users with a name and just store that
– create a default policy for some objects without a value

Revocation of access
– when are access rights checked?
– selective revocation vs. global

9CMSC 412 – S02 (lect 21)

Access Matrix

F1 F2 F3 Laser Printer
D1 read execute
D2 execute print
D3 read, write execute
D4 execute
D5 delete

Rows represent users or groups of users
Columns represent files, printers, etc.

10CMSC 412 – S02 (lect 21)

Capabilities

Un-forgeable Key to access something
Implementation: a string
– I.e. a long numeric sequence for a copier)

Implementation: A protected memory region
• tag memory (or procedures) with access rights

– example - x86 call gate abstraction
• permit rights amplification

