
1CMSC 412 – S04  (lect 4)

Announcements
Program #1 
– Is on the web

Reading
– Chapter 4
– Chapter 6 (for Tuesday)



2CMSC 412 – S04  (lect 4)

Process Termination
Process can terminate self
– via the exit system call

One process can terminate another process
– use the kill system call
– can any process kill any other process?

• No, that would be bad.
• Normally an ancestor can terminate a descendant

OS kernel can terminate a process
– exceeds resource limits
– tries to perform an illegal operation

What if a parent terminates before the child
– called an orphan process
– in UNIX becomes child of the root process
– in VMS - causes all descendants to be killed



3CMSC 412 – S04  (lect 4)

Termination (cont.) - UNIX example

Kernel
– frees memory used by the process
– moved process control block to the terminated queue

Terminated process 
– signals parent of its death (SIGCHILD)
– is called a zombie in UNIX
– remains around waiting to be reclaimed

parent process
– wait system call retrieves info about the dead process

• exit status
• accounting information

– signal handler is generally called the reaper
• since its job is to collect the dead processes



4CMSC 412 – S04  (lect 4)

Relationship between Kernel mod and 
User Mode

User Process

Kernel

User Process

Unique:
Program
Stack
Heap

Unique:
Program
Stack
Heap

Idle Thread

Kernel Threads:
Each has own stack (separate from user mode)
Share heap with other kernel threads
Run same program (kernel) as other kernel threads

System Calls

Initial Thread

Kernel Mode thread of
A user process



5CMSC 412 – S04  (lect 4)

Threads

processes can be a heavy (expensive) object
threads are like processes but generally a collection 
of threads will share
– memory (except stack)
– open files (and buffered data)
– signals

can be user or system level
– user level: kernel sees one process

+ easy to implement by users
- I/O management is difficult
- in an multi-processor can’t get parallelism

– system level: kernel schedules threads



6CMSC 412 – S04  (lect 4)

Thread Implementation
User Visible Threads

Async Kernel Calls (TruUnix 64)

Light Weigth Processes (Solaris)



7CMSC 412 – S04  (lect 4)

Important Terms

Threads
– An execution context sharing an address space

Kernel Threads
– Threads running with kernel privileges

User Threads
– Threads running in user space

Processes
– An execution context with an address space
– Visible to and scheduled by the kernel

Light-Weight Processes
– An execution context sharing an address space
– Visible to and scheduled by the kernel



8CMSC 412 – S04  (lect 4)

Dispatcher

The inner most part of the OS that runs processes
Responsible for:
– saving state into PCB when switching to a new process
– selecting a process to run (from the ready queue)
– loading state of another process

Sometimes called the short term scheduler
– but does more than schedule

Switching between processes is called context 
switching 
One of the most time critical parts of the OS
Almost never can be written completely in a high 
level language



9CMSC 412 – S04  (lect 4)

Selecting a process to run

called scheduling
can simply pick the first item in the queue
– called round-robin scheduling
– is round-robin scheduling fair?

can use more complex schemes
– we will study these in the future

use alarm interrupts to switch between processes
– when time is up, a process is put back on the end of the 

ready queue
– frequency of these interrupts is an important parameter

• typically 3-10ms on modern systems
• need to balance overhead of switching vs. 

responsiveness


